New Collision Attacks on Round-Reduced SHA-512

 $\underline{\underline{\text{Yingxin Li}}}^1$, Fukang Liu², Gaoli Wang¹(\boxtimes), Haifeng Qian¹, Keting Jia³, Xiangyu Kong¹

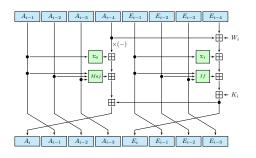
¹East China Normal University ²Tokyo Institute of Technology ³Tsinghua University

August, 2025

Overview

Background

2 The New Collision Attacks on SHA-512


Summary

Y.Li et al. Practical Collision on SHA-512 August, 2025

SHA-2

- A popular hash function family standardized by NIST.
- Strengthening SHA-1 (more complex compression function).
- Two main versions: SHA-256 and SHA-512.
- Used worldwide.

Compression Functions of SHA-512

■ Step function

$$E_{i} = A_{i-4} \boxplus E_{i-4} \boxplus \Sigma_{1}(E_{i-1}) \boxplus \operatorname{IF}(E_{i-1}, E_{i-2}, E_{i-3}) \boxplus K_{i} \boxplus W_{i},$$

$$A_{i} = E_{i} \boxminus A_{i-4} \boxplus \Sigma_{0}(A_{i-1}) \boxplus \operatorname{MAJ}(A_{i-1}, A_{i-2}, A_{i-3}).$$

Compression Functions of SHA-512

■ Boolean functions $\Sigma_0, \Sigma_1, \mathrm{IF}$ and MAJ are given by

$$IF(x, y, z) = (x \wedge y) \oplus (x \wedge z) \oplus z,$$

$$MAJ(x, y, z) = (x \wedge y) \oplus (x \wedge z) \oplus (y \wedge z),$$

$$\Sigma_0(x) = (x \gg 28) \oplus (x \gg 34) \oplus (x \gg 39),$$

$$\Sigma_1(x) = (x \gg 14) \oplus (x \gg 18) \oplus (x \gg 41).$$

Compression Functions of SHA-512

■ Message expansion

The message expansion of SHA-512 splits the 1024-bit message block M_j into 16 words m_i , $i=0,\cdots,15$, and expands them into 80 expanded message words W_i

$$W_{i} = \begin{cases} m_{i} & 0 \leq i \leq 15, \\ \sigma_{1}(W_{i-2}) \boxplus W_{i-7} \boxplus \sigma_{0}(W_{i-15}) \boxplus W_{i-16} & 16 \leq i \leq 79. \end{cases}$$

The functions $\sigma_0(x)$ and $\sigma_1(x)$ are given by

$$\sigma_0(x) = (x \gg 1) \oplus (x \gg 8) \oplus (x \gg 7),$$

$$\sigma_1(x) = (x \gg 19) \oplus (x \gg 61) \oplus (x \gg 6).$$

Y.Li et al. Prac

Key Progress in Collision Attacks on SHA-2

Expanded Message Words	Version	Step	Types	Ref.
$(W_7, W_8, W_{12}, W_{15}, W_{17})$	SHA-256	27	Practical	Asiacrypt 2011
	SHA-512	27	Practical	Asiacrypt 2015
$(W_8, W_9, W_{13}, W_{16}, W_{18})$	SHA-256 SHA-512	28 28		Eurocrypt 2013 Eurocrypt 2024
$(W_5,\ldots,W_9,W_{16},W_{18})$	SHA-256	31	Practical	Asiacrypt 2024
	SHA-512	31	Theoretic	Asiacrypt 2024

Collision Attack framework for 31-step SHA-512

The collision attack framework based on a two-block message consists of three steps, where the first message block is denoted by M_0 , which is freely chosen.

Pre-processing Phase. Find valid solutions of

$$(A_1, \ldots, A_{12}, E_5, \ldots, E_{12}, W_9, \ldots, W_{12}).$$

Then choose N_{start} solutions with distinct

$$(A_1, \ldots, A_4, E_5, \ldots, E_8).$$

Finally, according to the state update function and each starting point $(A_1, \ldots, A_4, E_5, \ldots, E_8)$, first exhaust all possible (W_8, E_4) to obtain A_0 . Then exhaust all possible (W_7, E_3) to obtain A_{-1} from each tuple (W_8, E_4, A_0) . Based on such a process, we can obtain all valid tuples $(A_{-1}, \ldots, A_{12}, E_3, \ldots, E_{12}, W_7, \ldots, W_{12})$, and store them in a table denoted by TAB₂.

Collision Attack framework for 31-step SHA-512

- **Matching Phase.** Try an arbitrary M_0 , and get the corresponding chaining input $(A_{-4}, A_{-3}, A_{-2}, A_{-1}, E_{-4}, E_{-3}, E_{-2}, E_{-1})$ to match A_{-1} from TAB₂. Once a match is found, perform the on-the-fly detection of the validity of A_{-2} and A_{-3} , which is indeed to test the conditions on (W_5, W_6) .
- **9 Fulfill the Conditions on** $(E_{13}, E_{14}, E_{15}, W_{16}, W_{18})$. Up to this step, $(W_i)_{0 \le i \le 12}$ have been fixed. Use the degrees of freedom in $(W_i)_{13 \le i \le 15}$ to fulfill the remaining uncontrolled conditions on $(E_{13}, E_{14}, E_{15}, W_{16}, W_{18})$. If it fails, go to Step 2.

Complexity Evaluation

In the Step 1, suppose that there are n_1 n_2 , n_3 and n_4 bit conditions on W_8 , E_4 , W_7 and E_3 , respectively. N_{start} is defined as the number of starting points. Denote the time complexity to obtain one starting point by T_{sat} . Denote the number of all conditions on (W_5, W_6) by N_{pro} . The time complexity of Step 1 is estimated as

$$T_{pre} = N_{start} \times (T_{sat} + min(2^{n-n_1}, 2^{n-n_2}) + 2^{n-n_1-n_2} \times min(2^{n-n_3}, 2^{n-n_4})).$$

The time complexity of Step 2-3 is estimated as

$$T_{match} = \frac{2^{N_{pro} + \beta + n_1 + n_2 + n_3 + n_4 - n}}{N_{start}} + 2^{N_{pro} + \beta}.$$

The total time complexity of memory-efficient collision attack framework is

$$T_{pre} + T_{match}$$

The memory complexity denoted by M is

$$M = N_{start} \cdot 2^{2n-n_1-n_2-n_3-n_4}$$

Y.Li et al.

Collision Attacks on 31-Step SHA-512 in Asiacrypt 2024

_			
1	ΔA_i	ΔE_i	ΔW_i
-4			
-3			
-2			
-1			
0			
1			
2			
3		=11=00000====10=0====000==101=0===1=====0==1==1	
4		=00011100=11101=1===10111==010=1===0===1=10=01=00==101101	
5	-nunuuuuuuuuunnnuu-nunnnn	uuulnuuuul0lunnn1000lununnnnn1n=lunnu10=010u0llnu0ullunnnnn1111	
6	n	00nnnnnnu0unu0u0u0n111unnn101u010u0011110u0un0nn0uu11uun10n0nn1nu1	n0u011=01u=====0n====10n====un===un=====nuuuuu=
7	-nnunnuu-u-uuu-n-u-nnnnnnn	uluulluln0nuul000nnul0uulunluu0ul10un111110nuluu0n1010011nn=uulu	a=0=1====
8		11110011001100u000100u1n00n0011==n=0000n=0nu0un0n1n00010n0111110	n00
9		11n1==111=010111011101unn01000u0=011u1u00=0110010101=1==10101101	
10	nuu	==10==1===111=10u0==101=0n0==11==11010n11=1u=0110=0=0n==1101=nuu	
11		=1u1=====un0=n=nn===11001u==un====unnn0n==n=======u==u=10=100	
12		=000======00n=1=11==10==u1==00===1010u11==1========1==1==0=11u	
13		1110-1-0111111111-10	
14			
15		00000	
16		1	11nuuuuuu
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
_			

- $\mathbf{m} \ n = 64, n_1 = 20, n_2 = 29, n_3 = 36, n_4 = 16, \mathcal{N}_{\mathtt{start}} = 4, \mathcal{N}_{\mathtt{pro}} = 65, \ \beta \approx 0.9.$
- Time Complexity: $2^{94.7}$, Memory Complexity: $2^{35.2}$.

Y.Li et al. Pra

Modeling the Two-Bit Conditions of Boolean Functions

 \blacksquare SHA-512 mainly have three Boolean functions, XOR,IF and MAJ are given by

$$XOR(x, y, z) = x \oplus y \oplus z,$$

$$IF(x, y, z) = (x \wedge y) \oplus (x \wedge z) \oplus z,$$

$$MAJ(x, y, z) = (x \wedge y) \oplus (x \wedge z) \oplus (y \wedge z).$$

■ $\nabla w = XOR(\nabla x, \nabla y, \nabla z)$ For $\nabla w = XOR(\nabla x, \nabla y, \nabla z)$, consider the propagation rule [n==n], where: $\nabla x[i] = [n]$, $\nabla y[i] = [n]$, $\nabla w[i] = [n]$.

- 1 In the fast model: [n==n]
- 2 In the full model: [n==n0**]

Both model have the condition

$$x[i] = 0, y[i] \oplus z[i] = 0.$$

Both models do not capture the bit conditions $y[i] \oplus z[i] = 0!!!$

Y.Li et al. Practical Collision on SHA-512

Modeling the Two-Bit Conditions of Boolean Functions

Definition

In our cryptanalysis of SHA-512, a condition controlling difference propagation is called a **2-bit condition** if it takes the form of either a=b or $a \neq b$, where $a, b \in \mathbb{F}_2$.

To capture the 2-bit conditions, we slightly modify the propagation rules of Boolean functions in the full model.

- 1 In the fast model: [n==n]
- ② In the full model: [n==n0**]
- In the modified full model: [n==n0**1]

Specifically, we consider the possible values of the following tuple by adding an extra flag variable flag[i]:

$$(\nabla x[i], \nabla y[i], \nabla z[i], \nabla w[i], x[i], y[i], z[i], flag[i]).$$

If the propagation rule implicitly involves a 2-bit condition, then flag[i] = 1; otherwise, flag[i] = 0.

Modeling the Two-Bit Conditions of Boolean Functions

The full model for the Boolean functions XOR, IF and MAJ

Rules for XOR	
$(\nabla x[i], \nabla y[i], \nabla z[i], \nabla w[i], x[i], y[i], z[i], flag[i])$	_
[,***,0],	_
[n==n,0**,1],[n==u,0**,1],[u==u,1**,1],[u==n,1**,1],	
[=n=n,*0*,1],[=n=u,*0*,1],[=u=u,*1*,1],[=u=n,*1*,1],	
[nn,**0,1],[nu,**0,1],[uu,**1,1],[un,**1,1],	
[nn=-,00*,0],[n=n-,0*0,0],[=nn-,*00,0],[nu=-,01*,0],[n=u-,0*1,0],[=nu-,*01,0]	0],
[uu==,11*,0],[u=u=,1*1,0],[=uu=,*11,0],[un==,10*,0],[u=n=,1*0,0],[=un=,*10,0]	δ],
[nuun,011,0],[nunu,010,0],[nnuu,001,0],[nnnn,000,0],	
[unnu,100,0],[unun,101,0],[uunn,110,0],[uuuu,111,0].	
Rules for IF	
$(\nabla x[i], \nabla y[i], \nabla z[i], \nabla w[i], x[i], y[i], z[i], flag[i])$	
[===,***,0],	
[n===,0**,1],[=n==,00*,0],[==n=,1*0,0],[==nn,0*0,0]	
[u,1**,1],[-u,01*,0],[u-,1*1,0],[uu,0*1,0],	
[nn==,001,0],[n=n=,000,0],[n==n,010,0],	
[nu==,010,0],[n=u=,011,0],[n==u,001,0],	
[uu==,111,0],[u=u=,101,0],[u==u,110,0],	
[un==,100,0],[u=n=,110,0],[u==n,101,0],	
[=n=n,10*,0],[=u=u,11*,0],[=nnn,*00,0],[=uuu,*11,0],	
[=nuu,001,0],[=unn,010,0],[=nun,101,0],[=unu,110,0],	
[nn=n,00*,0],[nnu=,001,0],[n=uu,001,0],[nun=,010,0],[nu=u,011,0],[n=nn,010,0]	
[uu=u,110,0],[uun=,110,0],[u=nn,100,0],[unu=,101,0],[un=n,101,0],[u=uu,111,0]	٥],
[nuuu,011,0],[nnnn,000,0],[unnn,100,0],[uuuu,111,0].	
Rules for MA I	_
	_
$(\nabla x[i], \nabla y[i], \nabla z[i], \nabla w[i], x[i], y[i], z[i], flag[i])$	
[,***,0],	
[u-,**1,1],[-u,*1*,1],[u,1**,1],[n,0**,1],[-n,*0*,1],[n-,**0,:	
[n==n,0**,1],[u==u,1**,1],[=n=n,*0*,1],[=u=u,*1*,1],[==nn,**0,1],[==uu,**1,:	
[u=n=,1*0,0],[n=u=,0*1,0],[un==,10*,0],[nu==,01*,0],[=nu=,*01,0],[=un=,*10,0]	
[=nnn,*00,0],[=uuu,*11,0],[n=nn,0*0,0],[u=uu,1*1,0],[nn=n,00*,0],[uu=u,11*,	
[nnun,001,0],[uunu,110,0],[unuu,101,0],[unnn,100,0],[nuuu,011,0],[nunn,010,0]	Э.
[nnnn,000,0],[uuuu,111,0].	
[*] represents the 2-bit condition.	

Search for the new 31-step differential trail

- Find a solution of $(\nabla W_i)_{0 \le i \le 30}$ with the minimal $H(\nabla W_{16})$ and the minimal $H(\nabla W_{18})$.
- Find the minimal differential conditions on $(E_i)_{14 \le i \le 16}$.
- Find the minimal Hamming weight and 2-bit conditions of $(A_i)_{0 \le i \le 30}$.
- Find the minimal Hamming weight of $(E_i)_{0 \le i \le 30}$.
- Detection free bit value of $(A_i)_{3 \le i \le 12}$.

The Collision Attacks on 31-Step SHA-512

i	∇A_i	∇E_i	∇W_i
-4			
-3			
-2			
-1			
0			
1			
2			
3		=-0=====11=0=====11=0======1	
4		==1===10====11=0====1==0=0011=1=====1==1	
5	n0nu0uuuuuuun-u1	01n0=0111n00111un0=1=0un110unn=n00=1uu010000u=10nu0u00001=1u1100	n
6	00u	=100n0uu0101nu1u00111u00u0n0nu1u00u11011un00u00001nn1u0n00n000n1	n0u011=01u====0n====10n====un===un===n==uu===u==u==u=nuuuuu=
7	-n0nnnuu-u	1nnu1un0n0=u0001un0001uu011n000nu00=u10100n1111=10000110n000nn1n	-u
8	00	01011100100001u11001=u0n11n010111n00100n10nu0un=n0n01000n=0=1110	n
9	000	00n1=01011=1=10=011101unn01101u10001u1u10==1=11=011==1==11=11111	n
10	nuu	==10==0===01=10u0==101=0n0==01==11010n11=1u=000100=1n==1110=nuu	
11		=0u1=====un0=n=nn===01001u==un====unnn0n==n==========	
12		=000=====00n=1=11==10==u1==00===1010u11==1========1==1==0=11u	
13		==1=====110=1=01======11==11=====1111=1==0======	
14			
15		00000	
16		11	nuuuuuuu11nuuuuuu
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			

- $n = 64, n_1 = 20, n_2 = 27, n_3 = 36, n_4 = 17, \mathcal{N}_{\text{start}} = 2^{10.7}, \mathcal{N}_{\text{pro}} = 65, \beta \approx 0.9.$
- Time Complexity: 2^{85.5}, Memory Complexity: 2^{44.4}.

29-step Collision Attacks on SHA-512

Finding a valid attack requires attackers to finish the following three tasks:

Three tasks

- Task 1: Select the message difference to construct a local collision;
- Task 2: Search for a corresponding differential trail in (W_i, A_i, E_i) ;
- Task 3: Find a colliding message pair based on the differential trail.

Y.Li et al.

Detailed Analysis of the Message Expansion in SHA-512

According to the SHA-2 message expansion, when $i \ge 16$,

$$W_i = \sigma_1(W_{i-2}) \boxplus W_{i-7} \boxplus \sigma_0(W_{i-15}) \boxplus W_{i-16}.$$

Analysis of this equation reveals that (W_{i-15}, W_{i-16}) are adjacent, W_i and W_{i-2} has distance 2, and W_i and W_{i-7} has distance 7. So, if we introduce difference in two consecutive message words (W_i, W_{i+1}) , they will cause differences in $(W_{i+15}, W_{i+16}, W_{i+17})$.

Relationship between (W_i, W_{i+1}, W_{i+5}) and local collisions

(i,i+1,i+5)	local collision	relationship	attacked steps
(9, 10, 14)	0-28	W_{14} updates W_{29}	29
(10, 11, 15)	0-29	W_{15} updates W_{30}	30

The time complexity remains impractical for a 30-step collision attack!!!

Y.Li et al.

Detailed Analysis of the Message Expansion in SHA-512

Based on the above analysis, injecting differences in the expanded message words

$$(W_9, W_{10}, W_{14}, W_{17}, W_{19})$$

can create a local collision spanning 11 steps (steps 9 to 19) in the message expansion, which allows a collision attack on 29-step SHA-512.

Search for the 29-step differential trail

- Find a solution of $(\nabla W_i)_{0 \le i \le 28}$ with the minimal $H(\nabla W_{17})$ and the minimal $H(\nabla W_{19})$.
- Find the minimal number of differential conditions on $(E_i)_{15 < i < 17}$.
- Find the minimal Hamming weight of $H(\nabla A_i)_{9 \le i \le 17}$.
- Find the minimal Hamming weight of $H(\nabla E_i)_{9 \le i \le 17}$.
- Detect free bit value of $(A_i)_{7 \le i \le 13}$.

The 29-step differential trail

i	∇A_i	∇E_i	∇W_i
-4			
-3			
-2			
-1			
0			
1			
2			
3			
4			
5			
6			
7	0010001111100100110100010010001111001010	100111-1-10011	
8	001000011110000111111110110101000111011000111000111010	1=00==01===1101===1000=00=01010===100==00===011111===1==1	
9	010unnu00nu0u01unnnn10n0u0u0111110u0100nn1n000uunu0000110100unnnn	10111uu01=0nn1000=00uuu1uun1unnnnn01nu00uu1unnu1n00100=101=10+0u	unnnn=nnuuu=u====unn==p=u=u=nnnnnn=nuu==uu==
10	u0nn00nu0u0n11011nuuuuuuu1uuuuuuuuuuuuu	u1uu01un110u0nu000unnn1u011n10n101nu100u01=10unnuu100n0=un111nn1	
11	unnnnnnnnnnnnnn000011110100n00001011010un0110010nuuuuuuuu	1nu100101==1n000=10001010n1nuuu111001100100100100=0u==1011=0un	
12	1111101101010010111110100101000101110101	10u0==01==1001uu1n100nuuu0u000u==1100=10u=1n101101010n01u0=01001	
13	010010111001100000==0110110100=======0001=01000111110110	=01======0=10=0===1011u1011=======1=0==1=====0==0=====10	
14		==00======n=0000===111100===1=====n=0=01=======1=0=====u	=====nu=======nnnnnnnnnnnnnn=======unnnn=un=
15		α	
16		00	
17		0100	=====unnnnn====nuuuuuuuu======unnnnn======
18			
19			n
20			
21			
22			
23			
24			
25			
26			
27			
28			

Y.Li et al. Practical Collision on SHA-512 August, 2025

21 / 26

Message modification

- Find a valid solution in the expanded message words $W_9 W_{14}$, as well as the state words $(A_i)_{1 \le i \le 14}$ and $(E_i)_{5 \le i \le 14}$ by the step update function. We call such a valid solution as **starting points**.
- After determining the message words and state words in Step 1, the remaining the message words (W_0, \ldots, W_8, W_{15}) have not been fixed. At this step, our primary goal is to use (W_0, \ldots, W_8) to connect the state words with the initial value IV. Before using (W_0, \ldots, W_7) to connect the state words with the IV, we must first determine W_8 .
- At this point, (W_0, \ldots, W_{14}) have already been fixed, and only W_{15} remains unfixed. We can use the degree of freedom of W_{15} to satisfy the conditions on $(E_{15}, E_{16}, E_{17}, W_{17}, W_{19})$. If all conditions are satisfied, the colliding message pair will be found. Otherwise, go back to Step 2 and choose new W_8 . If W_8 is used, choose a new starting point.

Details of Step 3.

We propose a novel approach to efficiently exploit the degrees of freedom of W_{15} to fulfill the remaining conditions. Up to this, (W_0, \ldots, W_{14}) have already been fixed, and there are 56 conditions in W_{17} in total. And we can obtain all 2^8 possible values for W_{17} , which are stored in table TAB_{w_{17}}. We first verify W_{19} based on the update function

$$W_{19} = \sigma_1(W_{17}) \boxplus W_{12} \boxplus \sigma_0(W_4) \boxplus W_3,$$

where W_{17} can be obtained by exhaustively checking TAB_{w17}, and W_{12} , W_4 , W_3 are known. Once the conditions on W_{19} are satisfied, the bit conditions on (E_{15}, E_{16}, E_{17}) can be verified based on the update function

$$W_{17} = \sigma_1(W_{15}) \boxplus W_{10} \boxplus \sigma_0(W_2) \boxplus W_1,$$

where (W_1, W_2, W_{10}) have already been fixed in Step 2.

August, 2025

Complexity Evaluation.

The probability of Step 1 and Step 2 being satisfied is 1. In Step 3, we need to satisfy 88 conditions in $(E_{15}, E_{16}, E_{17}, W_{17}, W_{19})$, of which 56 conditions are in W_{17} . To satisfy these conditions, we first determine all possible values of W_{17} , i.e., there are 2^8 possible values for W_{17} . Once W_{17} is satisfied, there are 32 remaining conditions in $(E_{15}, E_{16}, E_{17}, W_{19})$ that need to be met. Therefore, the overall time complexity is 2^{32} and the memory complexity is 2^8 .

The colliding message pair for 29-step SHA-512

IV	6a09e667f3bcc908	bb67ae8584caa73b	3c6ef372fe94f82b	a54ff53a5f1d36f1
10	510e527fade682d1	9b05688c2b3e6c1f	1f83d9abfb41bd6b	5be0cd19137e2179
	36fc57878e6a1478	39356d4e68533f81	11720aae7e5496f3	e25446d46d336ce3
м	3fbe62e17052367f	65eb73407a88f8bb	def9586059b730a8	72e21b64757e2d03
IVI	00d43e0b169d0ea7	7b173317d3029fff	85f92000ef600000	70cdb9b71952cc80
	43f82cfa8e26489d	f0c2a87d655d9c26	9a8cfbfff7d847cc	daffd76f9b8e668a
	36fc57878e6a1478	39356d4e68533f81	11720aae7e5496f3	e25446d46d336ce3
ΛΔ'	36fc57878e6a1478 3fbe62e17052367f	39356d4e68533f81 65eb73407a88f8bb	11720aae7e5496f3 def9586059b730a8	e25446d46d336ce3 72e21b64757e2d03
M'				
M'	3fbe62e17052367f	65eb73407a88f8bb	def9586059b730a8	72e21b64757e2d03
M'	3fbe62e17052367f 00d43e0b169d0ea7	65eb73407a88f8bb 80ff41b80fc82000	def9586059b730a8 86011fc0f15fffff	72e21b64757e2d03 70cdb9b71952cc80

Application to 29-step SHA-256

SHA-256 and SHA-512 share a similar structure, with the primary difference being the size of the state words and the Boolean function σ and $\Sigma.$ We can also apply similar message word selection methods and message modification techniques to SHA-256, enabling the generation of practical collision message pairs for 29 steps of SHA-256.

The colliding message pair for 29 steps of SHA-256

IV	6a09e667	bb67ae85	3c6ef372	a54ff53a	510e527f	9ъ05688с	1f83d9ab	5be0cd19
М	02faff1b 2977f996	d7e755b4 6ce55306		b70c6987 e3b173bc				b5b3ec6a 55189e54
M'	02faff1b 2977f996	d7e755b4 5fdd4384		b70c6987 e3b173bc				b5b3ec6a 55189e54
hash	b6631f1f	071314ff	56cb6d39	6a6f192c	12509316	cc8f897c	0c916a47	e76f6ba1

Summary of (semi-free-start) Collision Attacks on SHA-2

State size	Hash size	Attack type	Steps	Time	Memory	Year
			28	practical	\	2013
			29	practical	\	2025
		collision	31^{\dagger}	$2^{65.5}$	2^{34}	2013
256	All		31^{\dagger}	$2^{49.8}$	2 ⁴⁸	2023
			31^{\dagger}	practical	$2^{19.8}$	2024
		CEC!!:-:	38	practical	\	2013
		SFS collision	39	practical	\	2023
			27	practical	\	2015
			28	practical	\	2023
		collision	29	practical	\	2025
512	All	Collision	31^\dagger	$2^{115.6}$	$2^{77.3}$	2023
512	All		31^{\dagger}	$2^{97.3}$	$2^{35.2}$	2024
			31^{\dagger}	$2^{85.5}$	244.4	2025
		SFS collision	38	practical	\	2014
		3F3 COMSION	39	practical	\	2015

[†] It is a two-block collision.