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Contributions

We propose a new model of Bitwise Garbling Schemes, and prove
a 3

2λ-bit lower bound of ciphertexts for AND gates with free-XOR.
That is to say, the garbling scheme of [RR21] is optimal. When
free-XOR is forbidden, we prove a 2λ-bit lower bound of
ciphertexts for AND gates.

We extend our model into garbling of fan-in 3 gates. In this case,
we prove a 7

4λ-bit lower bound. This lower bound can only be
achieved when the truth table is of even-parity. For example,
a ∧ (b⊕ c).
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Description of the Model

anticipate

The Garble Algorithm

The Eval Algorithm

Ai, Bj Random Oracle
Responses
Q1, . . . , Qq

Ciphertexts
G1, . . . , Gm

and Ai, Bj

G1, . . . , Gm

Mapping Function

The output label of Ei,j

inputs
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Valid Responses

Qk in
Q1, . . . , Qq

Ei,j

learns with
probability pki,j

either pki,j = 1 (Perfect Correctness),

or |pki,j − 1/2| ≤ poly(λ)/2λ (Security).

We require:Valid Responses

We say oracle response Qk is valid if pki,j satisfies one of these two
requirements for any i, j ∈ {0, 1}.
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Classification of Oracle Responses

In our model, we only consider valid responses. For example, no
garbling scheme will use half of an input label A0 to query the random
oracle, because E1,0 can obtain the response with an advantage
poly(λ/2)/2λ/2.

By the way, we can make this invalid response valid by XORing it with
a valid response.
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Classification of Oracle Responses

n-valid oracle responses

If there is an oracle response Qk and a set E of size n, such that

p
(i,j)
k = 1 where Ei,j ∈ E and |p(i,j)k − 1/2| ≤ poly(λ)/2λ where

Ei,j ∈ {Ei,j |i, j ∈ {0, 1}} \ E , then Qk is an n-valid oracle response.

We leave out trivial 0-valid and 4-valid oracle responses. In our model,
we only take 2-valid oracle responses into account, since they lead to a
better result.

Furthermore, we say that Qk is associated with the set E . Since E is of
size 2, there are only

(4
2

)
= 6 types of 2-valid oracle responses.
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3-Valid Oracle Responses

To see why 3-valid oracle responses do not exist, we assume a 3-valid
oracle response Qk known by {E0,0, E0,1, E1,0}.
Because E0,0, E0,1 obtain Qk with probability 1, Qk and B0 are
independent, so we directly assume that E0,0, E0,1 use h(A0) = Qk.
Clearly, E1,0 (or E1,1) can not obtain valid Qk with an advantage
better than poly(λ)/2λ.

The work of [JRR25] enhances this conclusion by information theory,
and shows that 1-valid responses can be replaced by 2-valid responses
through the method of secret sharing.
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The Linear Model

The Eval Algorithm used by Ei,j

Ai, Bj Random Oracle
Responses
available to
Ei,j

G1, . . . , Gm

Linear Combination

The output label of Ei,j

Through our classification,
Ei,j has responses of fixed
types. Therefore, we can
build a matrix to describe
all linear combinations.
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Bitwise Linear Garbling Schemes

We follow the idea of linear model in [ZRE15] to propose the model of
Bitwise Linear Garbling Schemes, and get the 3

2λ lower bound of m,
which is the length of ciphertexts.

In this model, we require that the mapping function performs linear
combinations on its inputs. Since the output labels C0 and
C1 = C0 ⊕∆ must be computed by the same linear combination of
responses, we can decide the lower bound of m by studying the rank of
a matrix.
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Bitwise Linear Garbling Schemes

Theorem 1

In the model of Bitwise Linear Garbling Schemes, suppose free-XOR is
supported. The lower bound of rk is 5

2λ, and therefore m ≥ 3
2λ.

However, when we reach the lower bound, we realize that the lower
bound of m is equal to the number of responses that an evaluator is
unaware of. For example, E0,0 does not know all the 1.5λ responses
used by E0,1, E1,0 and E1,1. This inspires a new proof method.
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New Proof Method

Table 1: 2-valid oracle responses and corresponding sets

Qi+1(e.g. H(Ai)) Qi+3(e.g. H(Bi)) Qi+5(e.g. H(A0⊕
Bi))

i = 0 {E0,0, E0,1} {E0,0, E1,0} {E0,0, E1,1}
i = 1 {E1,0, E1,1} {E0,1, E1,1} {E0,1, E1,0}

We include 6 types of 2-valid responses in {Qi|i ∈ [6]}, and suppose
that each Qi is of length ni.
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New Proof Method

Note that E0,0 takes Q1,Q3,Q5, input labels and public ciphertexts as
the input of the mapping function, while E0,1 already learns Q1.

Q1

Q3

Q5

E0,0

uses

E0,1
knows

E1,0
knows

E1,1
knows

From the view of E0,1,
learningQ3 andQ5 should
not be easier than learning
B0.
Hence, n3 + n5 ≥ λ. Sim-
ilarly, n1 + n5 ≥ λ and
n1 + n3 ≥ λ.

guesses
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New Proof Method

Q2

Q4

Q6

E0,1

E1,0

E1,1

From the view of E0,0,
learningQ4 andQ6 should
not be easier than learning
B1.
Hence, n4 + n6 ≥ λ.

use

E0,0

guesses

Similarly, n2 + n6 ≥ λ and n2 + n4 ≥ λ. Adding them up, we get
n2 + n4 + n6 ≥ 1.5λ.
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Lower Bound

In this case, we propose the model of Bitwise Garbling Schemes, which
do not restrict the mapping function.

E0,0 does not learn 1.5λ responses in Q2,Q4,Q6 used by Ei,j where
(i, j) ̸= (0, 0), but they may have the same output label. It is easy to
show that ciphertexts of length 1.5λ are needed.

Moreover, the work of [JRR25] indicates how to prove this lower bound
by Shannon Inequalities.
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Without Free-XOR

Qi+1(e.g. H(Ai)) Qi+3(e.g. H(Bi))

i = 0 {E0,0, E0,1} {E0,0, E1,0}
i = 1 {E1,0, E1,1} {E0,1, E1,1}

To eliminate free-XOR, we directly assume that Q5 and Q6 do not
exist.

Q2

Q4

E0,1

E1,0

E1,1

Without free-XOR, we re-
quire that n2 ≥ λ and
n4 ≥ λ.

use

E0,0

guesses
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Lower Bound without Free-XOR

Without free-XOR, we find that ni ≥ λ where i ∈ [4]. Since
n2 + n4 ≥ 2λ, the lower bound of m is 2λ.

Theorem 2

In the model of Bitwise Garbling Schemes, suppose free-XOR is
forbidden. Then, m ≥ 2λ.
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Extension: Fan-in 3 Garbling

Consider three input labels Ai, Bj , Ck where i, j, k ∈ {0, 1}.

n3-valid oracle responses

For three input wire labels, if there is an oracle response Qs and a set

E of size n, such that p
(i,j,k)
s = 1 where Ei,j,k ∈ E and

|p(i,j,k)s − 1/2| ≤ poly(λ)/2λ where Ei,j,k ∈ {Ei,j,k|i, j, k ∈ {0, 1}} \ E ,
then we say Qs is an n3-valid oracle response.

Similar to 2-valid, we can prove that we only need to consider 43-valid
oracle responses of these representative forms H(y1A0 ⊕ y2B0 ⊕ y3C0)
and H(y1A0 ⊕ y2B0 ⊕ y3C0 ⊕∆) where (y1, y2, y3) ∈ {0, 1}3 \ {(0, 0, 0)}.
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Fan-in 3 Garbling

There are 14 types of 43-valid oracle responses Qi where i ∈ [14]. E0,0,0

learns 7 of them, so we assume that these 7 types are in {Qi|i ∈ [7]}.
Note that we can refer to the situation with two inputs.

Let Ei,j,k guess responses of E0,0,0 where (i, j, k) ̸= (0, 0, 0).

E0,0,0

uses
know

one of
Q1, . . . ,Q7

three of
{Ei,j,k|i, j, k ∈ {0, 1}} \ {E0,0,0}

There are 7 inequalities for 7 evaluators. Each ni appears in 4 of
7 inequalities, since 4 of these evaluators do not know Qi. Adding
them up, 4

∑7
i=1 ni ≥ 7λ.

The remaining four

guess
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Fan-in 3 Garbling

E0,0,0

useone of
Q8, . . . ,Q14

four of
{Ei,j,k|i, j, k ∈ {0, 1}} \ {E0,0,0}

There are also 7 inequalities for 7 evaluators. Each ni appears in
4 of 7 inequalities, since 4 of them know Qi.

guesses

Let E0,0,0 guess responses of Ei,j,k where (i, j, k) ̸= (0, 0, 0).

Adding them up, 4
∑14

i=8 ni ≥ 7λ. Hence, we obtain the 1.75λ-bit lower
bound for fan-in 3 garbling.
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The Corresponding Construction

We prove the 7
4λ lower bound of ciphertexts for fan-in 3 garbling.

Similar to [RR21], we can obtain the corresponding construction by
slicing. However, as we observe in [RR21], the single bit of the entire
output label is computed in the form of half-gates garbling scheme. It
is easy to check that this construction does not work when the truth
table is of odd parity.
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Intuitive Extension: Fan-in w Garbling

Let us consider a higher fan-in gate with w pairs of input wire labels
{Wi,Wi ⊕∆|i ∈ [w]}. Intuitively, we assume that oracle responses
are indeed generated by querying the random oracle in the form
H(

⊕w
i=1 yiWi) or H(

⊕w
i=1 yiWi ⊕∆) where yi ∈ {0, 1}.

For fan-in 3 garbling, we can prove that choosing these forms is
reasonable.

For fan-in w garbling, we do not find a way to generalize, so this
extension is intuitive.

There are 2× (2w − 1) types of 2w−1
w-valid oracle responses. We

denote all types by Qi where i ∈ [2w+1 − 2]. Suppose Qi is of length ni.
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Intuitive Extension: Fan-in w Garbling

An evaluator obtains 2w − 1 of them, and we assume they are in
{Qi|i ∈ [2w − 1]}. We have 2w − 1 inequalities for 2w − 1 evaluators.
For 2w−1

w-valid oracle responses, each ni appears in 2w−1 of 2w − 1
inequalities. Adding them all up,

2w−1
2w−1∑
i=1

ni ≥ (2w − 1)λ.

In the same way, we obtain the

2w − 1

2w−1
λ = 2λ− 1

2w−1
λ

lower bound for fan-in w gates. When w increases, the intuitive lower
bound of ciphertexts gradually approaches 2λ.
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Thanks for your attention!
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