Simple and General Counterexamples to Evasive LWE

Nico Döttling CISPA

Abhishek Jain
JHU and NTT Research

Giulio Malavolta
Bocconi University

Surya Mathialagan
MIT → NTT Research

Vinod Vaikuntanathan MIT

• Give a <u>simple</u> attack that rules out **all** variants of <u>private-coin</u> evasive LWE.

- Give a <u>simple</u> attack that rules out **all** variants of <u>private-coin</u> evasive LWE.
 - Our attack is an example of a "zeroizing" attack.

- Give a <u>simple</u> attack that rules out **all** variants of <u>private-coin</u> evasive LWE.
 - Our attack is an example of a "zeroizing" attack.
 - Questions the underlying philosophy of evasive LWE in the private-coin setting.

- Give a <u>simple</u> attack that rules out **all** variants of <u>private-coin</u> evasive LWE.
 - Our attack is an example of a "zeroizing" attack.
 - Questions the underlying philosophy of evasive LWE in the private-coin setting.
- Concurrent work: [Hsieh-Jain-Lin 25], [Agrawal-Modi-Yadav-Yamada 25] also show attacks on evasive LWE. More on this later.

• Let $\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m}$, $\mathbf{S} \leftarrow \mathbb{Z}_q^{\ell \times n}$, $\mathbf{E} \leftarrow \chi^{\ell \times m}$, then:

• Let
$$\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m}$$
, $\mathbf{S} \leftarrow \mathbb{Z}_q^{\ell \times n}$, $\mathbf{E} \leftarrow \chi^{\ell \times m}$, then:

$$(\mathbf{B}, \mathbf{SB} + \mathbf{E}) \approx_{c} (\mathbf{B}, \mathcal{U})$$

• Let
$$\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m}$$
, $\mathbf{S} \leftarrow \mathbb{Z}_q^{\ell \times n}$, $\mathbf{E} \leftarrow \chi^{\ell \times m}$, then:

$$(\mathbf{B}, \mathbf{SB} + \mathbf{E}) \approx_c (\mathbf{B}, \mathcal{U})$$

In this talk, we will treat **S** as a matrix rather than a vector.

• Let
$$\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m}$$
, $\mathbf{S} \leftarrow \mathbb{Z}_q^{\ell \times n}$, $\mathbf{E} \leftarrow \chi^{\ell \times m}$, then:

$$(\mathbf{B}, \mathbf{SB} + \mathbf{E}) \approx_{c} (\mathbf{B}, \mathcal{U})$$

• Let
$$\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m}$$
, $\mathbf{S} \leftarrow \mathbb{Z}_q^{\ell \times n}$, $\mathbf{E} \leftarrow \chi^{\ell \times m}$, then:

$$(\mathbf{B}, \mathbf{SB} + \mathbf{E}) \approx_{c} (\mathbf{B}, \mathcal{U})$$

• Let
$$\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m}$$
, $\mathbf{S} \leftarrow \mathbb{Z}_q^{\ell \times n}$, $\mathbf{E} \leftarrow \chi^{\ell \times m}$, then:

$$(\mathbf{B}, \mathbf{SB} + \mathbf{E}) \approx_{c} (\mathbf{B}, \mathcal{U})$$

• Let
$$\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m}$$
, $\mathbf{S} \leftarrow \mathbb{Z}_q^{\ell \times n}$, $\mathbf{E} \leftarrow \chi^{\ell \times m}$, then:

$$(\mathbf{B}, \mathbf{SB} + \mathbf{E}) \approx_c (\mathbf{B}, \mathcal{U})$$

• LWE has proven to be extremely fruitful: e.g. Fully homomorphic encryption, attribute-based encryption, etc.

• Let
$$\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m}$$
, $\mathbf{S} \leftarrow \mathbb{Z}_q^{\ell \times n}$, $\mathbf{E} \leftarrow \chi^{\ell \times m}$, then:

$$(\mathbf{B}, \mathbf{SB} + \mathbf{E}) \approx_{c} (\mathbf{B}, \mathcal{U})$$

- LWE has proven to be extremely fruitful: e.g. Fully homomorphic encryption, attribute-based encryption, etc.
- However, some applications have still evaded us.

• Let
$$\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m}$$
, $\mathbf{S} \leftarrow \mathbb{Z}_q^{\ell \times n}$, $\mathbf{E} \leftarrow \chi^{\ell \times m}$, then:

$$(\mathbf{B}, \mathbf{SB} + \mathbf{E}) \approx_c (\mathbf{B}, \mathcal{U})$$

- LWE has proven to be extremely fruitful: e.g. Fully homomorphic encryption, attribute-based encryption, etc.
- However, some applications have still evaded us.
 - Some souped up "LWE++" seems sufficient. E.g. want to give out some "auxiliary" information involving the trapdoor of B_{\cdots}

Want to be able to compute:

Want to be able to compute:

B

$$S'B + E'$$

Want to be able to compute:

$$\mathbf{SP} + \widetilde{\mathbf{E}}$$

$$S'B + E'$$

$$S'P + \widetilde{E}'$$

Want to be able to compute:

B

P

SB + E

$$\mathbf{SP} + \widetilde{\mathbf{E}}$$

$$S'B + E'$$

But want to give out:

Want to be able to compute:

B

P

SB + E

$$SP + \widetilde{E}$$

S'B + E

But want to give out:

B

P

$$SB + E$$

$$S'B + E'$$

Want to be able to compute:

B

P

SB + E

$$SP + \widetilde{E}$$

S'B + E

But want to give out:

B

P

$$SB + E$$

 $B^{-1}(P)$

$$S'B + E$$

 $\mathbf{B}^{-1}(\mathbf{P})$ is a Gaussian preimage sample such that $\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{P}$

Want to be able to compute:

B

P

SB + E

S'B + **E**

But want to give out:

B

P

 $B^{-1}(P)$

$$S'B + E'$$

 $\mathbf{B}^{-1}(\mathbf{P})$ is a Gaussian preimage sample such that $\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{P}$

Want to be able to compute:

B

P

$$S'B + E'$$

But want to give out:

B

P

$$SB + E$$

 $B^{-1}(P)$

$$S'B + E'$$

Let's you approximately compute **SP** and **S'P**! Gives you *compression*

 $\mathbf{B}^{-1}(\mathbf{P})$ is a Gaussian preimage sample such that $\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{P}$

Want to be able to compute:

$$SB + E$$

$$SP + \widetilde{E}$$

$$S'B + E'$$

But want to give out:

$$B^{-1}(P)$$

$$S'B + E'$$

Let's you approximately compute **SP** and **S'P**! Gives you *compression*

Evasive LWE: When can give out $\mathbf{B}^{-1}(\mathbf{P})$?

• Let S, P, aux \leftarrow Samp(rand).

• Let S, P, aux \leftarrow Samp(rand).

• Let S, P, aux \leftarrow Samp(rand).

• Let S, P, aux \leftarrow Samp(rand).

then $(\mathbf{B},\mathbf{P},\mathbf{S}\mathbf{B}+\mathbf{E},\mathbf{B}^{-1}(\mathbf{P}),\mathsf{aux}) \approx_c (\mathbf{B},\mathbf{P},\mathcal{U},\mathbf{B}^{-1}(\mathbf{P}),\mathsf{aux})$

• Let S, P, aux \leftarrow Samp(rand).

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux})$

B

• Let S, P, aux \leftarrow Samp(rand).

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux})$

B

S

• Let S, P, aux \leftarrow Samp(rand).

A heuristic to justify the post-condition

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_{c} (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux})$

B

• Let S, P, aux \leftarrow Samp(rand).

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux})$

B

• Let S, P, aux \leftarrow Samp(rand).

Will omit aux for the next few slides.

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux})$$

S

B

P

Toy Examples

[Inspired by Hoeteck's talks]

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux})$

[Inspired by Hoeteck's talks]

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux})$

[Inspired by Hoeteck's talks]

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux})$

If $\mathbf{P} = \mathcal{U}$, then both pre and post-conditions hold! [GPV08]

[Inspired by Hoeteck's talks]

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux})$

If $\mathbf{P} = \mathcal{U}$, then both pre and post-conditions hold! [GPV08]

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P})) \approx_{s} (\mathbf{B}, \mathbf{BD}, \mathbf{SB} + \mathbf{E}, \mathbf{D}) \approx_{c} (\mathbf{B}, \mathbf{BD}, \mathcal{U}, \mathbf{D})$$

[Inspired by Hoeteck's talks]

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux})$

If $\mathbf{P} = \mathcal{U}$, then both pre and post-conditions hold! [GPV08]

 $\mathbf{B}^{-1}(\mathbf{P})$ is a Gaussian preimage sample such that $\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{P}$

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P})) \approx_{s} (\mathbf{B}, \mathbf{BD}, \mathbf{SB} + \mathbf{E}, \mathbf{D}) \approx_{c} (\mathbf{B}, \mathbf{BD}, \mathcal{U}, \mathbf{D})$$

[Inspired by Hoeteck's talks]

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux})$

If $\mathbf{P} = \mathcal{U}$, then both pre and post-conditions hold! [GPV08]

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P})) \approx_{s} (\mathbf{B}, \mathbf{BD}, \mathbf{SB} + \mathbf{E}, \mathbf{D}) \approx_{c} (\mathbf{B}, \mathbf{BD}, \mathcal{U}, \mathbf{D})$$

[Inspired by Hoeteck's talks]

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux})$

If $\mathbf{P} = \mathcal{U}$, then both pre and post-conditions hold! [GPV08]

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P})) \approx_{s} (\mathbf{B}, \mathbf{BD}, \mathbf{SB} + \mathbf{E}, \mathbf{D}) \approx_{c} (\mathbf{B}, \mathbf{BD}, \mathcal{U}, \mathbf{D})$$

[Inspired by Hoeteck's talks]

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux})$

If $\mathbf{P} = \mathcal{U}$, then both pre and post-conditions hold! [GPV08]

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P})) \approx_s (\mathbf{B}, \mathbf{BD}, \mathbf{SB} + \mathbf{E}, \mathbf{D}) \approx_c (\mathbf{B}, \mathbf{BD}, \mathcal{U}, \mathbf{D})$$

If SP = 0, then both pre and post-condition do not hold!

[Inspired by Hoeteck's talks]

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux})$

If $\mathbf{P} = \mathcal{U}$, then both pre and post-conditions hold! [GPV08]

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P})) \approx_{s} (\mathbf{B}, \mathbf{BD}, \mathbf{SB} + \mathbf{E}, \mathbf{D}) \approx_{c} (\mathbf{B}, \mathbf{BD}, \mathcal{U}, \mathbf{D})$$

If SP = 0, then both pre and post-condition do not hold!

$$(SB + E) \cdot B^{-1}(P) = EB^{-1}(P)$$

[Inspired by Hoeteck's talks]

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux})$

If $\mathbf{P} = \mathcal{U}$, then both pre and post-conditions hold! [GPV08]

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P})) \approx_{s} (\mathbf{B}, \mathbf{BD}, \mathbf{SB} + \mathbf{E}, \mathbf{D}) \approx_{c} (\mathbf{B}, \mathbf{BD}, \mathcal{U}, \mathbf{D})$$

If SP = 0, then both pre and post-condition do not hold!

$$(\mathbf{SB}+\mathbf{E})\cdot\mathbf{B}^{-1}(\mathbf{P})=\mathbf{EB}^{-1}(\mathbf{P})$$
 Both \mathbf{E} and $\mathbf{B}^{-1}(\mathbf{P})$ have low norm! We now have an equation over integers, AKA "zeroizing"

[Wee '22]

• Let $S, P \leftarrow Samp(rand)$.

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}') \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P})) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}))$

S

B

P

[Wee '22]

• Let $S, P \leftarrow Samp(rand)$.

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}') \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P})) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}))$

S

B

P

[Wee '22]

• Let $S, P \leftarrow Samp(rand)$.

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}') \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P})) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}))$

B

Hope: Hard to collect equations over integers if $\mathbf{SP} + \mathbf{E}' \approx_{c} \mathcal{U}$

• Let $S, P \leftarrow Samp(rand)$.

if
$$(B, P, SB + E, SP + E') \approx_c (B, P, \mathcal{U}, \mathcal{U})$$

then $(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P})) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}))$

B

LWE Zoo

LWE Leveled FHE, ABE, CIH, NIZK, etc

LWE Zoo

LWE

Leveled FHE, ABE, CIH, NIZK, etc

Optimal broadcast

Multi-Authority ABE

Succinct CP-ABE

Unleveled FHE

iO for circuits

Witness encryption

LWE Zoo

LWE

Leveled FHE, ABE, CIH, NIZK, etc

Optimal broadcast

Multi-Authority ABE

Succinct witness encryption*

Succinct CP-ABE

Unleveled FHE

iO for circuits

Witness encryption

LWE

Leveled FHE, ABE, CIH, NIZK, etc

Optimal broadcast

Multi-Authority ABE

Succinct witness encryption*

Succinct CP-ABE

Unleveled FHE

iO for circuits

Witness encryption

What can we do with Evasive LWE?

- Optimal Broadcast Encryption
 [Wee22]
- Multi-Authority ABE [WWW22]
- Unbounded depth ABE [HLL23]
- Witness Encryption [CVW18, VWW22]
- SNARKs for UP [MPV24]

- SNARGs for NP [JKLM24]
- ABE for TMs [AKY24]
- Pseudorandom Obfuscation (FHE, succinct WE) [DJMMPV25]
- Pseudorandom functional encryption [AKY24]
- Succinct iO for Turing Machines [JJMP25]

• Let $S, P \leftarrow Samp(rand)$.

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux} = \mathbf{rand}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux} = \mathbf{rand})$$

then
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux} = \text{rand}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux} = \text{rand})$$

• Let $S, P \leftarrow Samp(rand)$.

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux} = \mathbf{rand}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux} = \mathbf{rand})$$

then
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux} = \text{rand}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux} = \text{rand})$$

• Let $S, P \leftarrow Samp(rand)$.

Randomness used to sample S, P is public

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux} = \mathbf{rand}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux} = \mathbf{rand})$$

then
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux} = \text{rand}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux} = \text{rand})$$

S

B

P

• Let $S, P \leftarrow Samp(rand)$.

Randomness used to sample S, P is public

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux} = \mathbf{rand}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux} = \mathbf{rand})$$

then
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux} = \text{rand}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux} = \text{rand})$$

S

B

P

[VWW22, Tsabary 22]

• Let $S, P, aux \leftarrow Samp(rand)$.

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux})$$

S P

[VWW22, Tsabary 22]

• Let $S, P, aux \leftarrow Samp(rand)$.

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux})$$

B

[VWW22, Tsabary 22]

• Let S, P, aux \leftarrow Samp(rand). Randomness used to sample S, P, aux is private

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux})$$

B

[VWW22, Tsabary 22]

• Let $S, P, aux \leftarrow Samp(rand)$.

Randomness used to sample S, P, aux is <u>private</u>

if
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

then
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathbf{aux})$$

Many variants! E.g. Fully available **B**, **P**, Hidden **B**, **P**, etc.

Succinct witness encryption*

Unleveled FHE

iO for circuits

Witness encryption

[Brzuska-Unal-Woo '25]

[Brzuska-Unal-Woo '25]

[Brzuska-Unal-Woo '25]

Private-Coin Evasive Attacks

[Brzuska-Unal-Woo '25]

^{*}pre-condition needs to satisfy additional conditions, but we will gloss over this for this talk

Private-Coin Evasive Attacks

^{*}pre-condition needs to satisfy additional conditions, but we will gloss over this for this talk

Private-Coin Evasive Attacks

• We give $S, P, aux \leftarrow Samp(rand)$ such that:

$$(\mathbf{B}, \mathbf{P}, \mathbf{S}\mathbf{B} + \mathbf{E}, \mathbf{S}\mathbf{P} + \mathbf{E}', \mathsf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathsf{aux})$$

$$(\mathbf{B}, \mathbf{P}, \mathbf{S}\mathbf{B} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathsf{aux}) \not\approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathsf{aux})$$

• We give $S, P, aux \leftarrow Samp(rand)$ such that:

Satisfies strongest pre-condition

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux}) \not\approx_{c} (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux})$$

• We give $S, P, aux \leftarrow Samp(rand)$ such that:

Satisfies strongest pre-condition

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

(B, P, SB + E, B⁻¹(P), aux)
$$\not\approx_c$$
 (B, P, \mathcal{U} , B⁻¹(P), aux)

We give S, P, aux ← Samp(rand) such that:

Satisfies strongest pre-condition

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

(B, P, SB + E, B⁻¹(P), aux)
$$\not\approx_c$$
 (B, P, \mathcal{U} , B⁻¹(P), aux)

Does not satisfy weakest postcondition

• We give $S, P, aux \leftarrow Samp(rand)$ such that:

$$(\mathbf{B}, \mathbf{P}, \mathbf{S}\mathbf{B} + \mathbf{E}, \mathbf{S}\mathbf{P} + \mathbf{E}', \mathsf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathsf{aux})$$

$$(\mathbf{B}, \mathbf{P}, \mathbf{S}\mathbf{B} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathsf{aux}) \not\approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathsf{aux})$$

• We give $S, P, aux \leftarrow Samp(rand)$ such that:

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

(B, P, SB + E, B⁻¹(P), aux)
$$\not\approx_c$$
 (B, P, \mathcal{U} , B⁻¹(P), aux)

• $(S, P, aux = SP - 2T) \leftarrow Samp, where:$

• We give $S, P, aux \leftarrow Samp(rand)$ such that:

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathsf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathsf{aux})$$

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathsf{aux}) \not\approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathsf{aux})$$

- $(S, P, aux = SP 2T) \leftarrow Samp, where:$
 - S, P have uniform \mathbb{Z}_q entries, where q is odd.

• We give $S, P, aux \leftarrow Samp(rand)$ such that:

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathsf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathsf{aux})$$

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \mathsf{aux}) \not\approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \mathsf{aux})$$

- $(S, P, aux = SP 2T) \leftarrow Samp, where:$
 - S, P have uniform \mathbb{Z}_q entries, where q is odd.
 - $T \leftarrow [0,1,...,\lfloor q/2\rfloor]$, (i.e. $2T \approx \text{random matrix with } \underline{\text{even}}$ entries mod q).

Goal: (SB + E, B⁻¹(P), aux) $\not\approx_c (\mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux})$ where aux = SP - 2T

Goal: (SB + E, B⁻¹(P), aux) $\not\approx_c (\mathcal{U}, B^{-1}(P), aux)$ where aux = SP - 2T

Goal: (SB + E, B⁻¹(P), aux) $\not\approx_c (\mathcal{U}, B^{-1}(P), aux)$ where aux = SP - 2T

LHS:

Goal: (SB + E, B⁻¹(P), aux) $\not\approx_c (\mathcal{U}, B^{-1}(P), aux)$ where aux = SP - 2T

LHS:

 $(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) - \mathsf{aux} \pmod{q}$

Goal: (SB + E, B⁻¹(P), aux) $\not\approx_c (\mathcal{U}, B^{-1}(P), aux)$ where aux = SP - 2T

LHS:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) - \text{aux} \pmod{q}$$
$$= (\mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})) - (\mathbf{SP} - 2\mathbf{T}) \pmod{q}$$

Goal: (SB + E, B⁻¹(P), aux) $\not\approx_c (\mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux})$ where aux = SP - 2T

LHS:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) - \text{aux} \pmod{q}$$

$$= (\mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})) - (\mathbf{SP} - 2\mathbf{T}) \pmod{q}$$

$$= \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) + 2\mathbf{T} \pmod{q}$$

Goal: (SB + E, B⁻¹(P), aux) $\not\approx_c (\mathcal{U}, B^{-1}(P), aux)$ where aux = SP - 2T

LHS:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) - \mathsf{aux} \pmod{q}$$
$$= (\mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})) - (\mathbf{SP} - 2\mathbf{T}) \pmod{q}$$

$$= \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) + 2\mathbf{T} \pmod{q}$$

Because $\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})$ is *small*, whp. does not wrap around $\mod q!$

Goal: (SB + E, B⁻¹(P), aux) $\not\approx_c (\mathcal{U}, B^{-1}(P), aux)$ where aux = SP - 2T

LHS:

 $\equiv \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) \pmod{2}$

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) - \text{aux} \pmod{q}$$

$$= (\mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})) - (\mathbf{SP} - 2\mathbf{T}) \pmod{q}$$

$$= \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) + 2\mathbf{T} \pmod{q}$$
Because $\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})$

Because $\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})$ is *small*, whp. does not wrap around $\mod q!$

Goal: (SB + E, B⁻¹(P), aux) $\not\approx_c (\mathcal{U}, B^{-1}(P), aux)$ where aux = SP - 2T

LHS:

```
(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) - \text{aux} \pmod{q}
= (\mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})) - (\mathbf{SP} - 2\mathbf{T}) \pmod{q}
= \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) + 2\mathbf{T} \pmod{q}
\equiv \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) \pmod{2}
```

Goal: (SB + E, B⁻¹(P), aux) $\not\approx_c (\mathcal{U}, B^{-1}(P), aux)$ where aux = SP - 2T

LHS:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) - \text{aux} \pmod{q}$$

$$= (\mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})) - (\mathbf{SP} - 2\mathbf{T}) \pmod{q}$$

$$= \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) + 2\mathbf{T} \pmod{q}$$

$$\equiv \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) \pmod{2}$$

In the row span of $\mathbf{B}^{-1}(\mathbf{P}) \pmod{2}$!

Goal: (SB + E, B⁻¹(P), aux) $\not\approx_c (\mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux})$ where aux = SP - 2T

LHS:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) - \text{aux} \pmod{q}$$

$$= (\mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})) - (\mathbf{SP} - 2\mathbf{T}) \pmod{q}$$

$$= \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) + 2\mathbf{T} \pmod{q}$$

$$\equiv \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) \pmod{2}$$

In the row span of $\mathbf{B}^{-1}(\mathbf{P}) \pmod{2}$!

RHS:

Goal: (SB + E, B⁻¹(P), aux) $\not\approx_c (\mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux})$ where aux = SP - 2T

LHS:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) - \text{aux} \pmod{q}$$

$$= (\mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})) - (\mathbf{SP} - 2\mathbf{T}) \pmod{q}$$

$$= \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) + 2\mathbf{T} \pmod{q}$$

$$= \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) \pmod{2}$$

RHS:

$$\mathcal{U} \cdot \mathbf{B}^{-1}(\mathbf{P}) - \mathsf{aux} \approx_s \mathcal{U} \pmod{2}$$

In the row span of $\mathbf{B}^{-1}(\mathbf{P}) \pmod{2}$!

Goal: (SB + E, B⁻¹(P), aux) $\not\approx_c (\mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux})$ where aux = SP - 2T

LHS:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) - \text{aux} \pmod{q}$$

$$= (\mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})) - (\mathbf{SP} - 2\mathbf{T}) \pmod{q}$$

$$= \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) + 2\mathbf{T} \pmod{q}$$

$$= \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) \pmod{2}$$

In the row span of $\mathbf{B}^{-1}(\mathbf{P}) \pmod{2}$!

RHS:

$$\mathcal{U} \cdot \mathbf{B}^{-1}(\mathbf{P}) - \operatorname{aux} \approx_{s} \mathcal{U} \pmod{2}$$
Leftover hash lemma!

Goal: (SB + E, B⁻¹(P), aux) $\not\approx_c (\mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux})$ where aux = SP - 2T

LHS:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) - \text{aux} \pmod{q}$$

$$= (\mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})) - (\mathbf{SP} - 2\mathbf{T}) \pmod{q}$$

$$= \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) + 2\mathbf{T} \pmod{q}$$

$$\equiv \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) \pmod{2}$$

In the row span of $\mathbf{B}^{-1}(\mathbf{P}) \pmod{2}$!

RHS:

$$\mathcal{U} \cdot \mathbf{B}^{-1}(\mathbf{P}) - \operatorname{aux} \approx_s \mathcal{U} \pmod{2}$$
Leftover hash lemma!

NOT in the row span of $\mathbf{B}^{-1}(\mathbf{P}) \pmod{2}$ with high probability! Recall $\mathbf{B}^{-1}(\mathbf{P})$ is wide.

Goal: (SB + E, B⁻¹(P), aux) $\not\approx_c (\mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux})$ where aux = SP - 2T

LHS:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) - \text{aux} \pmod{q}$$

$$= (\mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})) - (\mathbf{SP} - 2\mathbf{T}) \pmod{q}$$

$$= \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) + 2\mathbf{T} \pmod{q}$$

$$= \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) \pmod{2}$$

RHS:

$$\mathcal{U} \cdot \mathbf{B}^{-1}(\mathbf{P}) - \operatorname{aux} \approx_s \mathcal{U} \pmod{2}$$

Leftover hash lemma!

NOT in the row span of $\mathbf{B}^{-1}(\mathbf{P}) \pmod{2}$ with high probability! Recall $\mathbf{B}^{-1}(\mathbf{P})$ is wide.

In the row span of $\mathbf{B}^{-1}(\mathbf{P}) \pmod{2}$!

Zeroizing Attack!!

- $(S, P, aux = SP 2T) \leftarrow Samp, where:$
 - S, P have uniform \mathbb{Z}_q entries, where q is odd.
 - $T \leftarrow [0,1,...,\lfloor q/2\rfloor]$, (i.e. $2T \approx \text{random matrix with } \underline{\text{even}}$ entries mod q).

Goal:

- $(S, P, aux = SP 2T) \leftarrow Samp, where:$
 - S, P have uniform \mathbb{Z}_q entries, where q is odd.
 - $T \leftarrow [0,1,...,\lfloor q/2\rfloor]$, (i.e. $2T \approx \text{random matrix with } \underline{\text{even}}$ entries mod q).

Goal: (B, P, SB + E, SP + E', aux) \approx_c (B, P, \mathcal{U} , aux)

- $(S, P, aux = SP 2T) \leftarrow Samp, where:$
 - S, P have uniform \mathbb{Z}_q entries, where q is odd.
 - $T \leftarrow [0,1,...,\lfloor q/2\rfloor]$, (i.e. $2T \approx \text{random matrix with } \underline{\text{even}}$ entries mod q).

Goal:
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathsf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathsf{aux})$$

 $(\mathbf{SP} + \mathbf{E}', \mathbf{SP} - 2\mathbf{T}) \approx_s (\mathbf{SP} + 2\mathbf{E}'' + \mathbf{E}', \mathbf{SP} + 2\mathbf{E}'' - 2\mathbf{T})$

- $(S, P, aux = SP 2T) \leftarrow Samp, where:$
 - S, P have uniform \mathbb{Z}_q entries, where q is odd.
 - $T \leftarrow [0,1,...,\lfloor q/2\rfloor]$, (i.e. $2T \approx \text{random matrix with } \underline{\text{even}}$ entries mod q).

Goal:
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

 $(\mathbf{SP} + \mathbf{E}', \mathbf{SP} - 2\mathbf{T}) \approx_s (\mathbf{SP} + \mathbf{2E}'' + \mathbf{E}', \mathbf{SP} + \mathbf{2E}'' - 2\mathbf{T})$

- $(S, P, aux = SP 2T) \leftarrow Samp, where:$
 - S, P have uniform \mathbb{Z}_q entries, where q is odd.
 - $T \leftarrow [0,1,...,\lfloor q/2\rfloor]$, (i.e. $2T \approx \text{random matrix with } \underline{\text{even}}$ entries mod q).

Goal:
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

 $(\mathbf{SP} + \mathbf{E}', \mathbf{SP} - 2\mathbf{T}) \approx_s (\mathbf{SP} + \mathbf{2E}'' + \mathbf{E}', \mathbf{SP} + \mathbf{2E}'' - 2\mathbf{T})$

By noise-flooding and picking $\mathbf{E}'' \ll \mathbf{E}', \mathbf{T}$. (Pick q to be super polynomial.)

- $(S, P, aux = SP 2T) \leftarrow Samp, where:$
 - S, P have uniform \mathbb{Z}_q entries, where q is odd.
 - $T \leftarrow [0,1,...,\lfloor q/2\rfloor]$, (i.e. $2T \approx \text{random matrix with } \underline{\text{even}}$ entries mod q).

Goal:
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathsf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathsf{aux})$$

 $(\mathbf{SP} + \mathbf{E}', \mathbf{SP} - 2\mathbf{T}) \approx_s (\mathbf{SP} + 2\mathbf{E}'' + \mathbf{E}', \mathbf{SP} + 2\mathbf{E}'' - 2\mathbf{T})$

- $(S, P, aux = SP 2T) \leftarrow Samp, where:$
 - S, P have uniform \mathbb{Z}_q entries, where q is odd.
 - $T \leftarrow [0,1,...,\lfloor q/2\rfloor]$, (i.e. $2T \approx \text{random matrix with } \underline{\text{even}}$ entries mod q).

Goal:
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathsf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathsf{aux})$$

 $(\mathbf{SP} + \mathbf{E}', \mathbf{SP} - 2\mathbf{T}) \approx_s (\mathbf{SP} + 2\mathbf{E}'' + \mathbf{E}', \mathbf{SP} + 2\mathbf{E}'' - 2\mathbf{T})$

- $(S, P, aux = SP 2T) \leftarrow Samp, where:$
 - S, P have uniform \mathbb{Z}_q entries, where q is odd.
 - $T \leftarrow [0,1,...,\lfloor q/2\rfloor]$, (i.e. $2T \approx \text{random matrix with } \underline{\text{even}}$ entries mod q).

Goal:
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathsf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathsf{aux})$$

 $(\mathbf{SP} + \mathbf{E}', \mathbf{SP} - 2\mathbf{T}) \approx_s (\mathbf{SP} + 2\mathbf{E}'' + \mathbf{E}', \mathbf{SP} + 2\mathbf{E}'' - 2\mathbf{T})$
 $\approx_c (\mathcal{U} + \mathbf{E}', \mathcal{U} - 2\mathbf{T})$

- $(S, P, aux = SP 2T) \leftarrow Samp, where:$
 - S, P have uniform \mathbb{Z}_q entries, where q is odd.
 - $T \leftarrow [0,1,...,\lfloor q/2\rfloor]$, (i.e. $2T \approx \text{random matrix with } \underline{\text{even}}$ entries mod q).

Goal:
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathsf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathsf{aux})$$

 $(\mathbf{SP} + \mathbf{E}', \mathbf{SP} - 2\mathbf{T}) \approx_s (\mathbf{SP} + 2\mathbf{E}'' + \mathbf{E}', \mathbf{SP} + 2\mathbf{E}'' - 2\mathbf{T})$
 $\approx_c (\mathcal{U} + \mathbf{E}', \mathcal{U} - 2\mathbf{T})$

LWE with **even** error (because q is odd)

Analyzing the Pre-Condition

- $(S, P, aux = SP 2T) \leftarrow Samp, where:$
 - S, P have uniform \mathbb{Z}_q entries, where q is odd.
 - $T \leftarrow [0,1,...,\lfloor q/2\rfloor]$, (i.e. $2T \approx \text{random matrix with } \underline{\text{even}}$ entries mod q).

Goal:
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathsf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathsf{aux})$$

 $(\mathbf{SP} + \mathbf{E}', \mathbf{SP} - 2\mathbf{T}) \approx_s (\mathbf{SP} + 2\mathbf{E}'' + \mathbf{E}', \mathbf{SP} + 2\mathbf{E}'' - 2\mathbf{T})$
 $\approx_c (\mathcal{U} + \mathbf{E}', \mathcal{U} - 2\mathbf{T})$

Analyzing the Pre-Condition

- $(S, P, aux = SP 2T) \leftarrow Samp, where:$
 - S, P have uniform \mathbb{Z}_q entries, where q is odd.
 - $T \leftarrow [0,1,...,\lfloor q/2\rfloor]$, (i.e. $2T \approx \text{random matrix with } \underline{\text{even}}$ entries mod q).

Goal:
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathsf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathsf{aux})$$

 $(\mathbf{SP} + \mathbf{E}', \mathbf{SP} - 2\mathbf{T}) \approx_s (\mathbf{SP} + 2\mathbf{E}'' + \mathbf{E}', \mathbf{SP} + 2\mathbf{E}'' - 2\mathbf{T})$
 $\approx_c (\mathcal{U} + \mathbf{E}', \mathcal{U} - 2\mathbf{T})$
 $\approx_s (\mathcal{U}, \mathcal{U}')$

Analyzing the Pre-Condition

- $(S, P, aux = SP 2T) \leftarrow Samp, where:$
 - S, P have uniform \mathbb{Z}_q entries, where q is odd.
 - $T \leftarrow [0,1,...,\lfloor q/2\rfloor]$, (i.e. $2T \approx \text{random matrix with } \underline{\text{even}}$ entries mod q).

Goal:
$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathsf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathsf{aux})$$

$$(\mathbf{SP} + \mathbf{E}', \mathbf{SP} - 2\mathbf{T}) \approx_s (\mathbf{SP} + 2\mathbf{E}'' + \mathbf{E}', \mathbf{SP} + 2\mathbf{E}'' - 2\mathbf{T})$$

$$\approx_c (\mathcal{U} + \mathbf{E}', \mathcal{U} - 2\mathbf{T})$$

$$\approx_s (\mathcal{U}, \mathcal{U}')$$

• [Hsieh-Jain-Lin/Agrawal-Modi-Yadav-Yamada 25]

- [Hsieh-Jain-Lin/Agrawal-Modi-Yadav-Yamada 25]
 - Shows the exact version of evasive LWE used in the works of [Agrawal-Kumari-Yadav24] and [BDJ+25] are insecure.

- [Hsieh-Jain-Lin/Agrawal-Modi-Yadav-Yamada 25]
 - Shows the exact version of evasive LWE used in the works of [Agrawal-Kumari-Yadav24] and [BDJ+25] are insecure.
- [AMYY25]

- [Hsieh-Jain-Lin/Agrawal-Modi-Yadav-Yamada 25]
 - Shows the exact version of evasive LWE used in the works of [Agrawal-Kumari-Yadav24] and [BDJ+25] are insecure.
- [AMYY25]
 - Also shows a counterexample to the circular private-coin evasive LWE (used in [Hsieh-Lin-Luo 22])

- [Hsieh-Jain-Lin/Agrawal-Modi-Yadav-Yamada 25]
 - Shows the exact version of evasive LWE used in the works of [Agrawal-Kumari-Yadav24] and [BDJ+25] are insecure.
- [AMYY25]
 - Also shows a counterexample to the circular private-coin evasive LWE (used in [Hsieh-Lin-Luo 22])
- Our work: Simple attack on evasive LWE itself

- [Hsieh-Jain-Lin/Agrawal-Modi-Yadav-Yamada 25]
 - Shows the exact version of evasive LWE used in the works of [Agrawal-Kumari-Yadav24] and [BDJ+25] are insecure.
- [AMYY25]
 - Also shows a counterexample to the circular private-coin evasive LWE (used in [Hsieh-Lin-Luo 22])
- Our work: Simple attack on evasive LWE itself
- All zeroizing attacks!

• **Aftermath:** Private-coin evasive LWE in its full generality is broken, but many constructions are **still unbroken**.

- Aftermath: Private-coin evasive LWE in its full generality is broken, but many constructions are still unbroken.
 - See [VWW22] and Hoeteck's talk from Simons for specific versions.

- Aftermath: Private-coin evasive LWE in its full generality is broken, but many constructions are still unbroken.
 - See [VWW22] and Hoeteck's talk from Simons for specific versions.
- One view: Evasive LWE as a lens to LWE-based security.

- Aftermath: Private-coin evasive LWE in its full generality is broken, but many constructions are still unbroken.
 - See [VWW22] and Hoeteck's talk from Simons for specific versions.
- One view: Evasive LWE as a lens to LWE-based security.
 - Never meant to be an end goal, meant to be a stepping stone.

- Aftermath: Private-coin evasive LWE in its full generality is broken, but many constructions are still unbroken.
 - See [VWW22] and Hoeteck's talk from Simons for specific versions.
- One view: Evasive LWE as a lens to LWE-based security.
 - Never meant to be an end goal, meant to be a stepping stone.
 - E.g. Rate-1 laconic function evaluation: first constructed from evasive LWE/ ℓ -succinct LWE [Wee24]; later shown from standard LWE [AMR25]

- **Aftermath:** Private-coin evasive LWE in its full generality is broken, but many constructions are **still unbroken**.
 - See [VWW22] and Hoeteck's talk from Simons for specific versions.
- One view: Evasive LWE as a lens to LWE-based security.
 - Never meant to be an end goal, meant to be a stepping stone.
 - E.g. Rate-1 laconic function evaluation: first constructed from evasive LWE/ ℓ -succinct LWE [Wee24]; later shown from standard LWE [AMR25]
 - E.g. Almost all implications from public coin evasive LWE have now been shown from falsifiable lattice assumptions (\$\mathcal{\epsilon}\$-succinct LWE)
 [Personal communication with Hoeteck]

- **Aftermath:** Private-coin evasive LWE in its full generality is broken, but many constructions are **still unbroken**.
 - See [VWW22] and Hoeteck's talk from Simons for specific versions.
- One view: Evasive LWE as a lens to LWE-based security.
 - Never meant to be an end goal, meant to be a stepping stone.
 - E.g. Rate-1 laconic function evaluation: first constructed from evasive LWE/ ℓ -succinct LWE [Wee24]; later shown from standard LWE [AMR25]
 - E.g. Almost all implications from public coin evasive LWE have now been shown from falsifiable lattice assumptions (\$\mathcal{\ell}\$-succinct LWE)
 [Personal communication with Hoeteck]
- Open: Can we achieve a similar story in the private-coin setting?

Thank you for your attention!

[VWW22, BUW24, HHY25]

Private-coin evasive LWE has a "contrived" obfuscation-based attack.

- Private-coin evasive LWE has a "contrived" obfuscation-based attack.
- $S, P, aux = O_W \leftarrow Samp,$

- Private-coin evasive LWE has a "contrived" obfuscation-based attack.
- $S, P, aux = O_W \leftarrow Samp,$
 - S, P are sampled uniformly,

- Private-coin evasive LWE has a "contrived" obfuscation-based attack.
- $S, P, aux = O_W \leftarrow Samp,$
 - S, P are sampled uniformly,
 - $\mathbf{W} = \mathbf{SP} + \widetilde{\mathbf{E}}$ and O_W accepts low-rank $\mathbf{M_1}, \mathbf{M_2}$ such that $\mathbf{W} \approx \mathbf{M_1M_2}$.

[VWW22, BUW24, HHY25]

- Private-coin evasive LWE has a "contrived" obfuscation-based attack.
- $S, P, aux = O_W \leftarrow Samp,$

By LWE, $\mathbf{W} \approx_c \mathscr{U}$ in pre-condition, so $O_{\mathbf{W}} = \mathbf{Zero}$.

- S, P are sampled uniformly,
- W = SP + E and O_W accepts low-rank M_1, M_2 such that $W \approx M_1 M_2$.

[VWW22, BUW24, HHY25]

- Private-coin evasive LWE has a "contrived" obfuscation-based attack.
- $S, P, aux = O_W \leftarrow Samp,$

By LWE, $\mathbf{W} \approx_c \mathscr{U}$ in pre-condition, so $O_{\mathbf{W}} = \mathbf{Zero}$.

- S, P are sampled uniformly,
- W = SP + E and O_W accepts low-rank M_1, M_2 such that $W \approx M_1 M_2$.

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{SP} + \mathbf{E}', \mathbf{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathcal{U}, \mathbf{aux})$$

Return to main body

[VWW22, BUW24, HHY25]

- Private-coin evasive LWE has a "contrived" obfuscation-based attack.
- $S, P, aux = O_W \leftarrow Samp,$

By LWE, $\mathbf{W} \approx_c \mathcal{U}$ in pre-condition, so $O_{\mathbf{W}} = \mathbf{Zero}$.

- S, P are sampled uniformly,
- W = SP + E and O_W accepts low-rank M_1, M_2 such that $W \approx M_1 M_2$.

Pre (B, P, SB + E, SP + E', aux)
$$\approx_c$$
 (B, P, \mathcal{U} , \mathcal{U} , aux)

[VWW22, BUW24, HHY25]

- Private-coin evasive LWE has a "contrived" obfuscation-based attack.
- $S, P, aux = O_W \leftarrow Samp,$

By LWE, $\mathbf{W} \approx_c \mathscr{U}$ in pre-condition, so $O_{\mathbf{W}} = \mathbf{Zero}.$

- S, P are sampled uniformly,
- $\mathbf{W} = \mathbf{SP} + \widetilde{\mathbf{E}}$ and O_W accepts low-rank $\mathbf{M_1}, \mathbf{M_2}$ such that $\mathbf{W} \approx \mathbf{M_1M_2}$.

Pre
$$(B, P, SB + E, SP + E', aux) \approx_c (B, P, \mathcal{U}, \mathcal{U}, aux)$$

$$(\mathbf{B}, \mathbf{P}, \mathbf{SB} + \mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux}) \approx_c (\mathbf{B}, \mathbf{P}, \mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux})$$

Return to main body

[VWW22, BUW24, HHY25]

- Private-coin evasive LWE has a "contrived" obfuscation-based attack.
- $S, P, aux = O_W \leftarrow Samp,$

By LWE, $\mathbf{W} \approx_c \mathcal{U}$ in pre-condition, so $O_{\mathbf{W}} = \mathbf{Zero}$.

- S, P are sampled uniformly,
- $\mathbf{W} = \mathbf{SP} + \widetilde{\mathbf{E}}$ and O_W accepts low-rank $\mathbf{M_1}, \mathbf{M_2}$ such that $\mathbf{W} \approx \mathbf{M_1M_2}$.

Pre (B, P, SB + E, SP + E', aux)
$$\approx_c$$
 (B, P, \mathcal{U} , \mathcal{U} , aux)

Post (B, P, SB + E, B⁻¹(P), aux)
$$\approx_c$$
 (B, P, \mathcal{U} , B⁻¹(P), aux)

Return to main body

[VWW22, BUW24, HHY25]

- Private-coin evasive LWE has a "contrived" obfuscation-based attack.
- $S, P, aux = O_W \leftarrow Samp,$

By LWE, $\mathbf{W} \approx_c \mathcal{U}$ in pre-condition, so $O_{\mathbf{W}} = \mathbf{Zero}$.

- S, P are sampled uniformly,
- $\mathbf{W} = \mathbf{SP} + \widetilde{\mathbf{E}}$ and O_W accepts low-rank $\mathbf{M_1}, \mathbf{M_2}$ such that $\mathbf{W} \approx \mathbf{M_1M_2}$.

Pre (B, P, SB + E, SP + E', aux)
$$\approx_c$$
 (B, P, \mathcal{U} , \mathcal{U} , aux)

Post (B, P, SB + E, B⁻¹(P), aux)
$$\approx_c$$
 (B, P, \mathcal{U} , B⁻¹(P), aux)

Return to main body