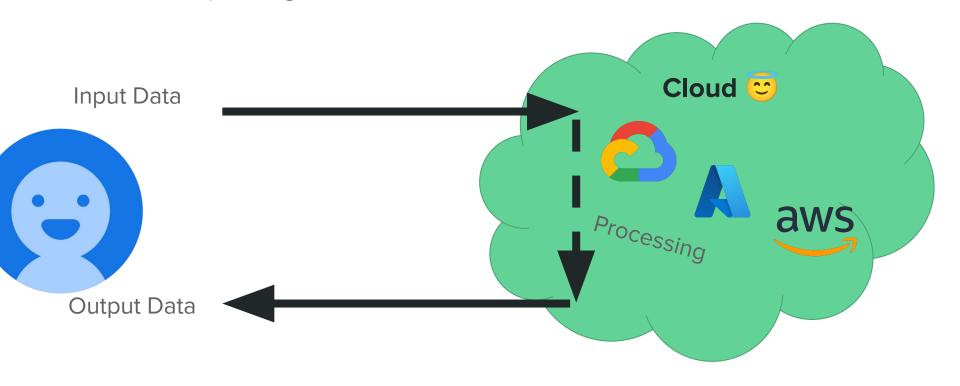
Verifiable Computation for Approximate Homomorphic Encryption Schemes

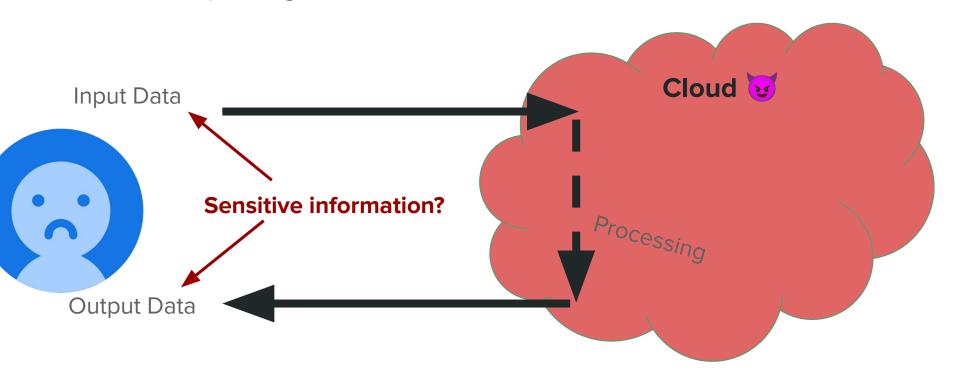
Ignacio Cascudo, Anamaria Costache, <u>Daniele Cozzo</u>, Dario Fiore, Antonio Guimarães, Eduardo Soria-Vazquez

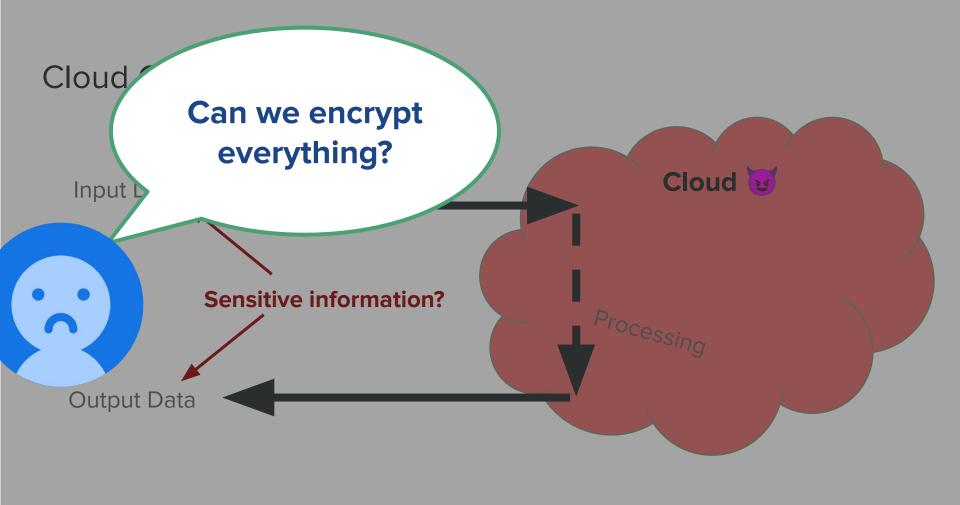
Context

Cloud Computing

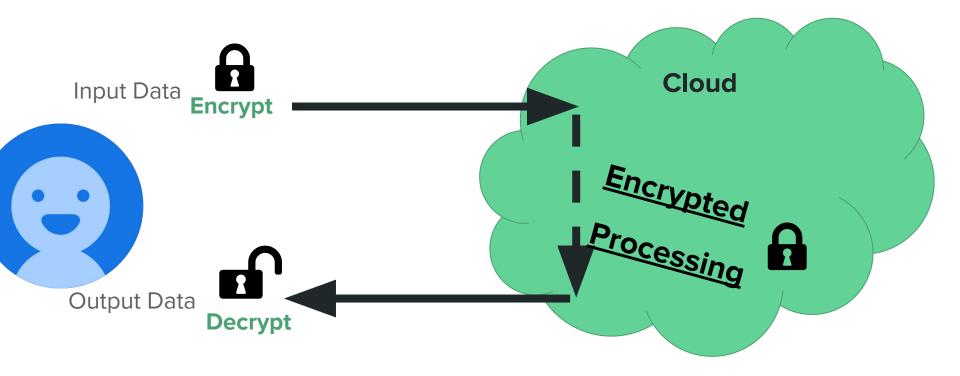


Cloud Computing



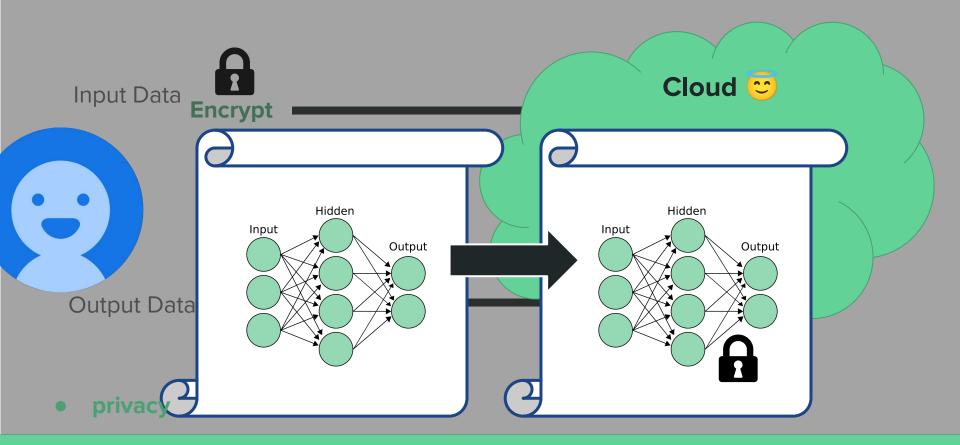


Homomorphic Encryption (HE)

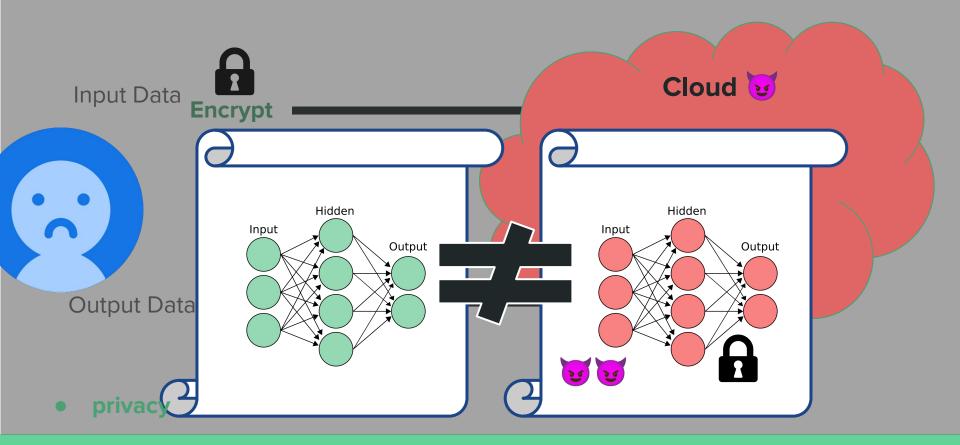


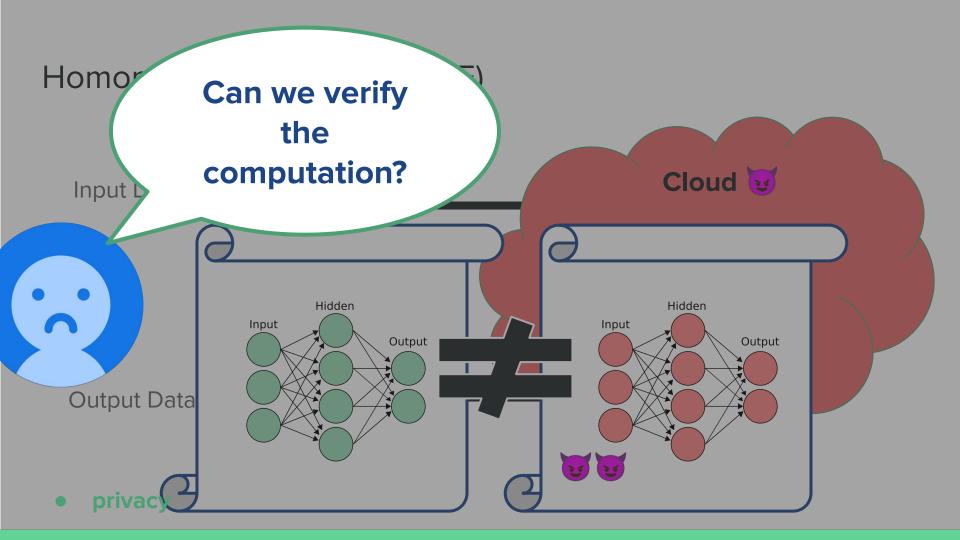
privacy

Homomorphic Encryption (HE)

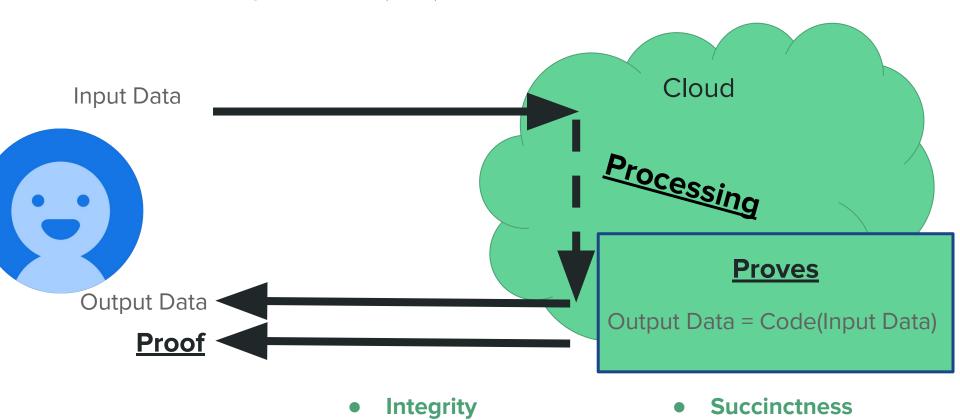


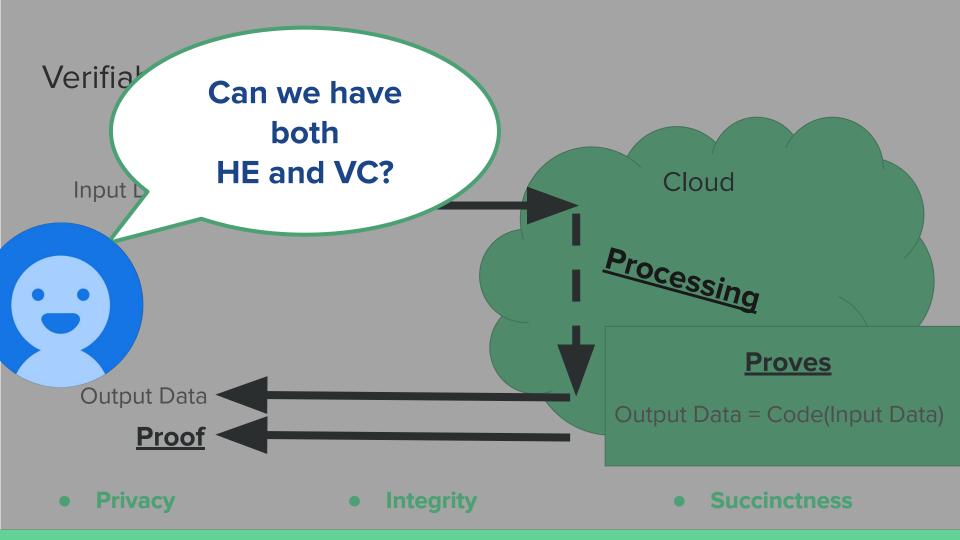
Homomorphic Encryption (HE)

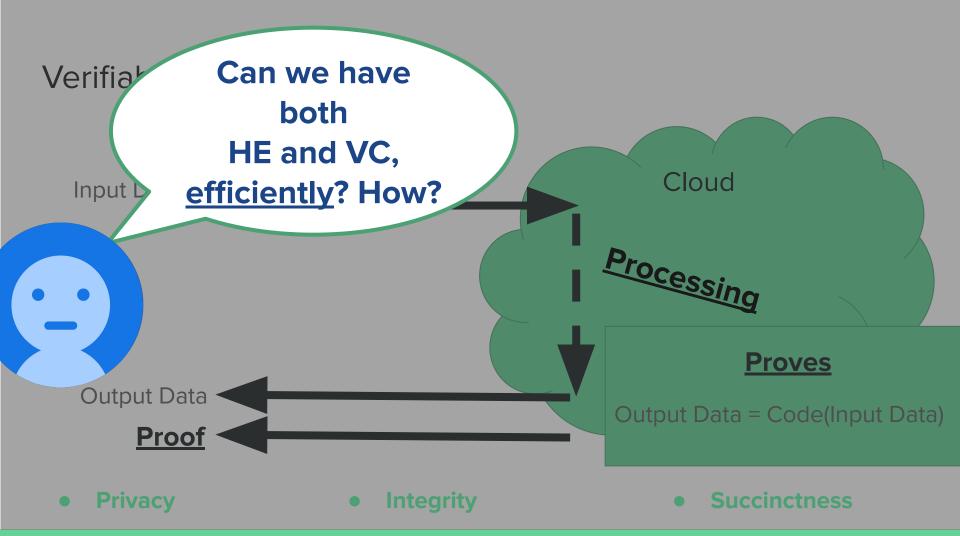




Verifiable computation (VC)







vHE

VHE

	Native <i>R</i> _q Arithmetic	Efficient Key Switching / Rescale	Efficient Bootstrapping	Public Verification	CKKS (approximate schemes)
Generic SNARK ^[1]	×	×	×	√	✓
Rinocchio ^[2]	1	×	×	×	✓
HE-IOPs ^[3]	✓	✓	✓	×	×
Our Work	✓	✓	?	√	✓

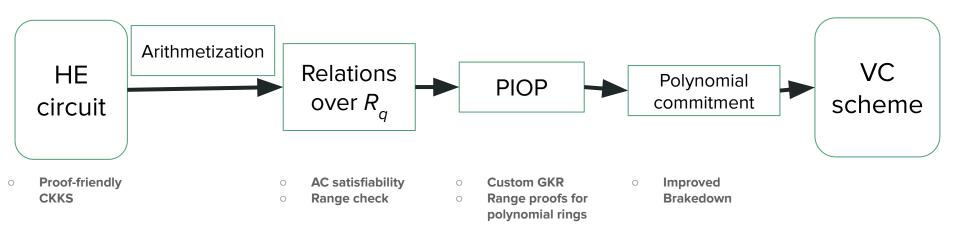
^[1] A. Viand, C. Knabenhans, and A. Hithnawi, "Verifiable Fully Homomorphic Encryption" arXiv:2301.07041

^[2] C. Ganesh, A. Nitulescu, and E. Soria-Vazquez, "Rinocchio: SNARKs for Ring Arithmetic" Journal of Cryptology, 2023

^[3] D. F. Aranha, A. Costache, A. Guimarães, and E. Soria-Vazquez, "HELIOPOLIS: Verifiable Computation over Homomorphically Encrypted Data from Interactive Oracle Proofs is Practical" ASIACRYPT 2024

Our contributions

- vHE for CKKS
- Modular solution



Setting up the ring

$$q \approx 2^{300}$$
 $N \approx 2^{14}$

 R_q

- Efficient HE computations
 - RNS

 R_q

- Efficient HE computations
 - RNS
- Soundness
 - Large exceptional set

$$egin{aligned} R_q = \prod\limits_{i=1}^L p_i & R_{p_1} \ & \cong & R_{p_2} \ & & R_{p_3} \end{aligned}$$

- Efficient HE computations
 - RNS
- Soundness
 - Large exceptional set

$$egin{aligned} R_q = \prod_{i=1}^L p_i & R_{p_1} & \stackrel{X^N+1}{=} \prod_{i=1}^{k} (X^{-\zeta}) & \stackrel{X^N+1}{=} \prod_{i=1}^{k} (X^{d-\zeta}) & \stackrel{X^N+1}{=} \prod_{i=1$$

$$X^{N+1} = \prod_{i=1}^{k} (X^{d} - \zeta^{2i-1}) \mod p_1$$
 $R_{11} R_{12} R_{13} R_{14}$

$$X^N + 1 = \prod_{i=1}^k (X^d - \zeta^{2i-1}) \mod p_2$$

$$X^N + 1 = \prod_{i=1}^k (X^d - \zeta^{2i-1}) \mod p_3$$

$$R_{11} R_{12} R_{13} R_{14}$$

$$R_{21} R_{22} R_{23} R_{24}$$

$$R_{31} R_{32} R_{33} R_{34}$$

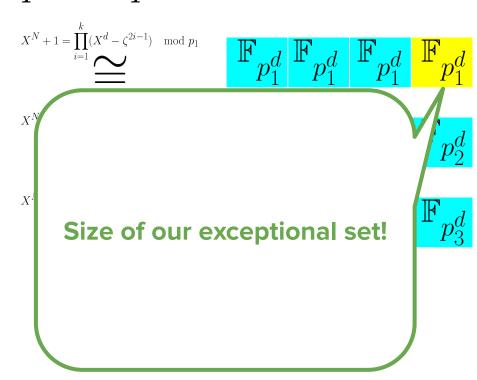
- Efficient HE computations
 - RNS
- Soundness
 - Large exceptional set

$$egin{align*} R_q = \prod_{i=1}^L p_i & R_{p_1} & \prod_{i=1}^{X^N+1} \prod_{i=1}^{\lfloor (X^d-\zeta^{2i-1}) \mod p_1} & \mathbb{F}_{p_1^d} \mathbb{F}_{p_1^d} \mathbb{F}_{p_1^d} \mathbb{F}_{p_1^d} \end{bmatrix} \\ R_{p_2} & \prod_{i=1}^{X^N+1} \prod_{i=1}^K (X^d-\zeta^{2i-1}) \mod p_2} & \mathbb{F}_{p_2^d} \mathbb{F}_{p_2^d} \mathbb{F}_{p_2^d} \mathbb{F}_{p_2^d} \end{bmatrix} \\ R_{p_3} & \prod_{i=1}^{X^N+1} \prod_{i=1}^K (X^d-\zeta^{2i-1}) \mod p_3} & \mathbb{F}_{p_3^d} \mathbb{F}_{p_3^d} \mathbb{F}_{p_3^d} \mathbb{F}_{p_3^d} \end{bmatrix} \mathbb{F}_{p_3^d} \end{bmatrix}$$

- Efficient HE computations
 - RNS
- Soundness
 - Large exceptional set

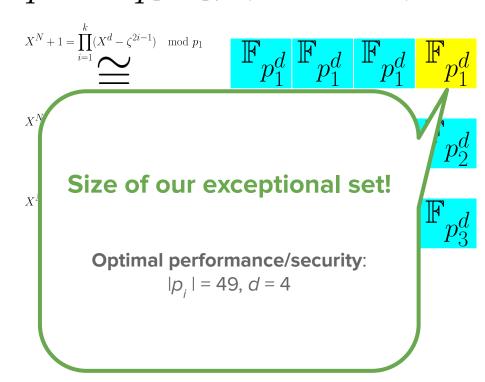
$$egin{aligned} R_q = \prod\limits_{i=1}^L p_i & R_{p_1} \ & \cong & R_{p_2} \ & & R_{p_3} \end{aligned}$$

- Efficient HE computations
 - RNS
- Soundness
 - Large exceptional set



$$egin{aligned} R_q = \prod_{i=1}^L p_i & R_{p_1} \ & \cong & R_{p_2} \ & R_{p_3} \end{aligned}$$

- Efficient HE computations
 - RNS
- Soundness
 - Large exceptional set



 R_q $\stackrel{q=\prod\limits_{i=1}^{q}}{\cong}$

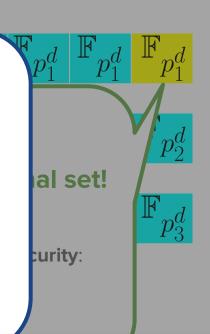
Efficient arithmetic for almost-fully-splitting rings:

- Incomplete NTTs^[1]
- Cost:

$$\circ$$
 d = 2 -> ~5%

 \circ d = 4 -> 20%

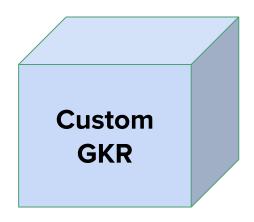
- Efficient HE comp
 - RNS
- Soundness

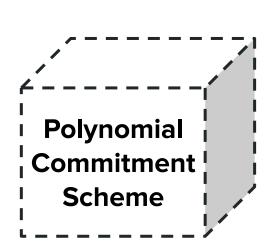


[1] V. Lyubashevsky and G. Seiler, "NTTRU: Truly Fast NTRU Using NTT," IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 180–201, May 2019, doi: 10.13154/tches.v2019.i3.180-201.

Proof-friendly CKKS

Proof components





Range proof over R_q

CKKS

An approximate scheme:

• RLWE ciphertext:

$$(a_0, a_1) \in R_q^2$$

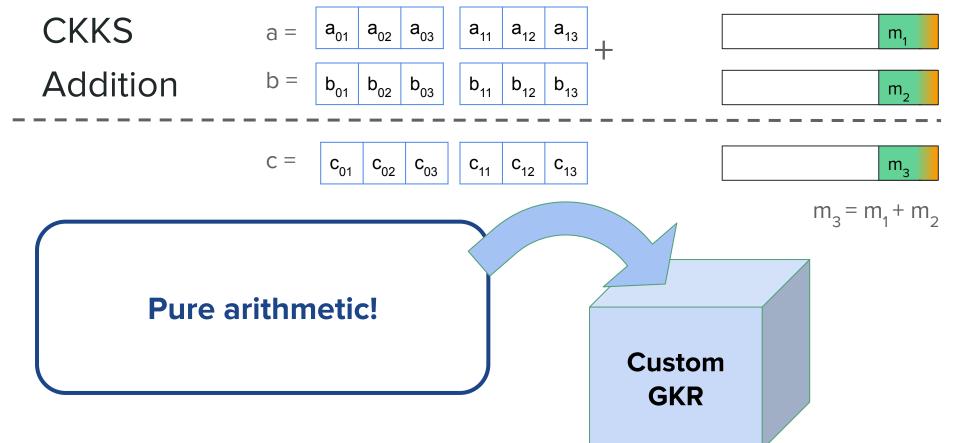
RNS representation (with e.g. 3 components):

$$a_{01} \ a_{02} \ a_{03} \ a_{11} \ a_{12} \ a_{13}$$

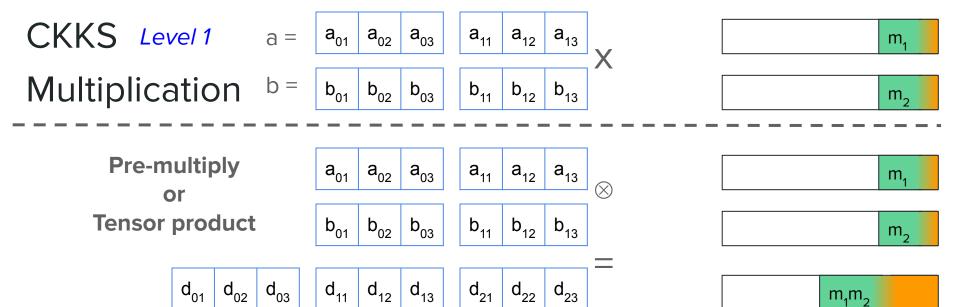
$$C = \begin{bmatrix} c_{01} & c_{02} & c_{03} \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} & c_{13} \end{bmatrix}$$

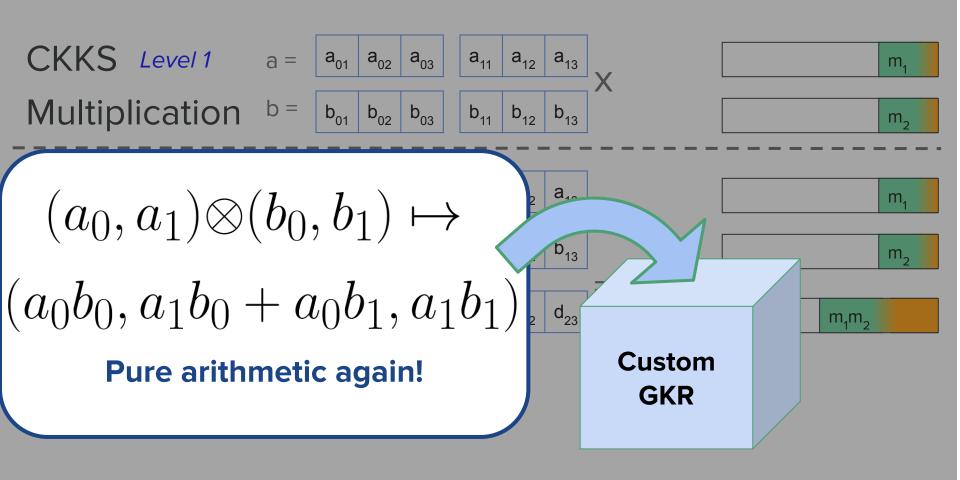
$$m_3 = m_1 + m_2$$

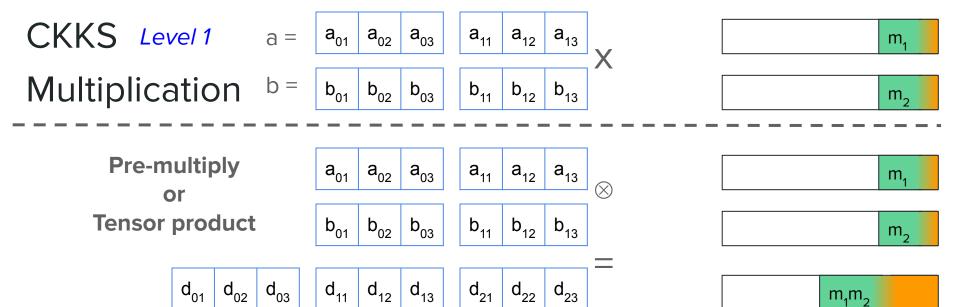
 m_3

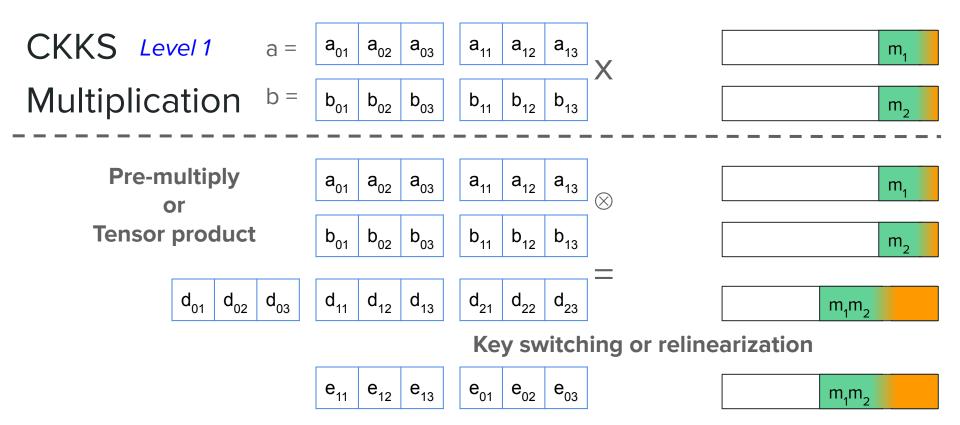


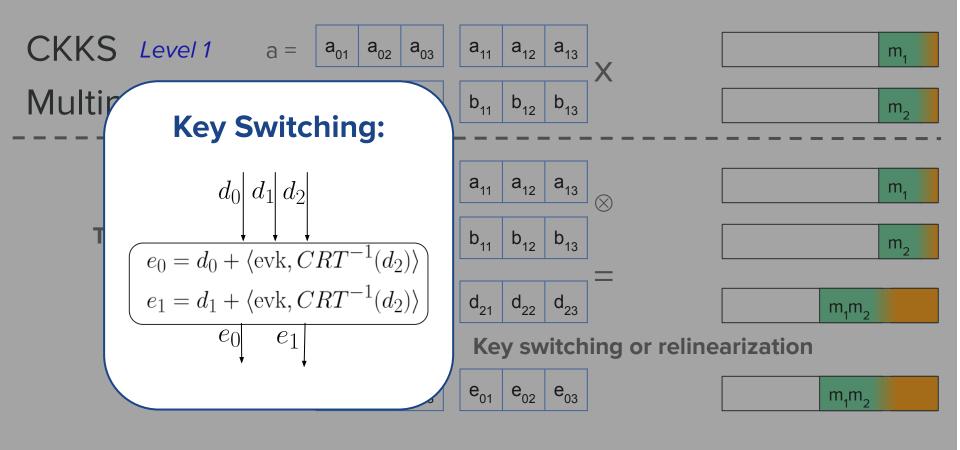
CKKS Level 1 $a = \begin{bmatrix} a_{01} & a_{02} & a_{03} \\ b_{01} & b_{02} & b_{03} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ b_{11} & b_{12} & b_{13} \end{bmatrix} \times \begin{bmatrix} m_1 & m_2 & m_2 \\ m_2 & m_2 & m_3 \end{bmatrix}$

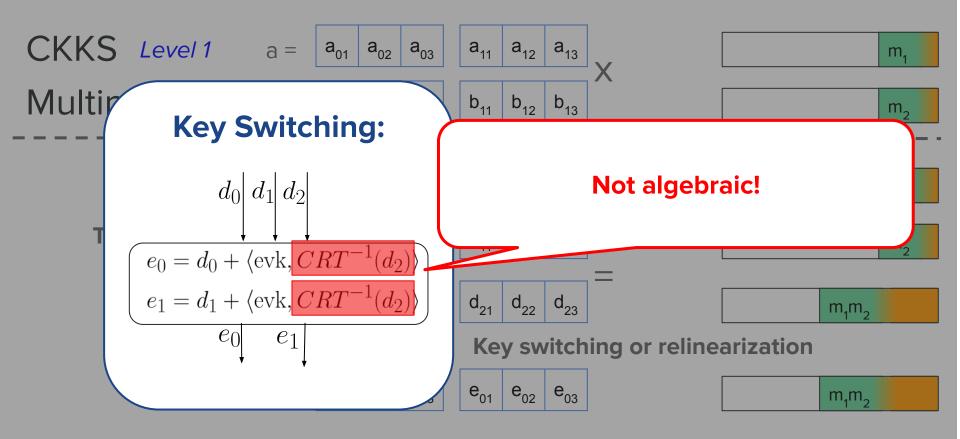






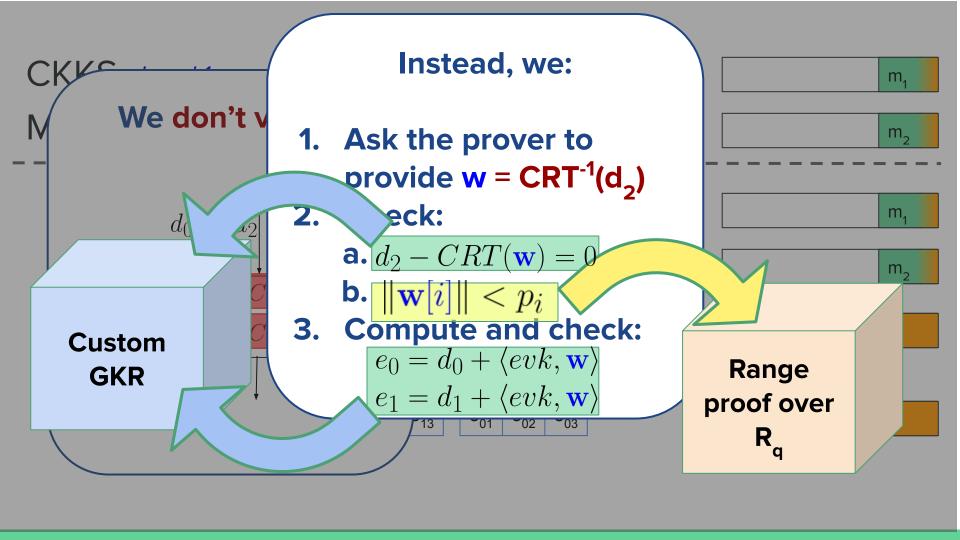


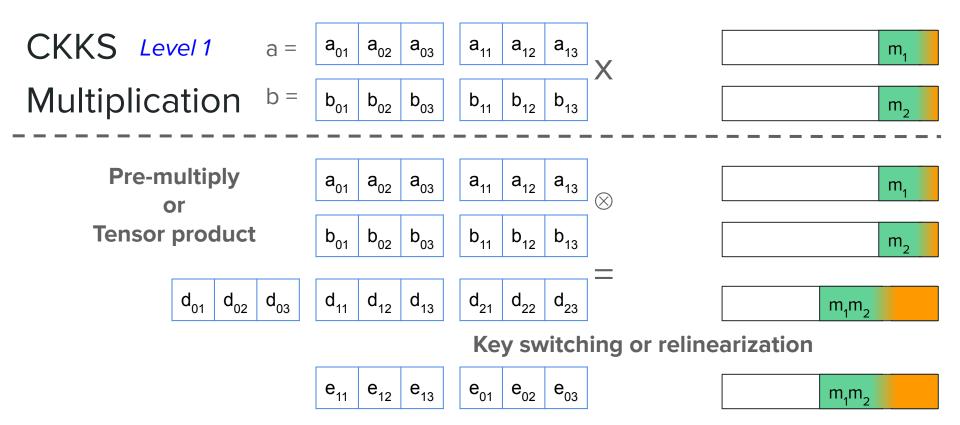


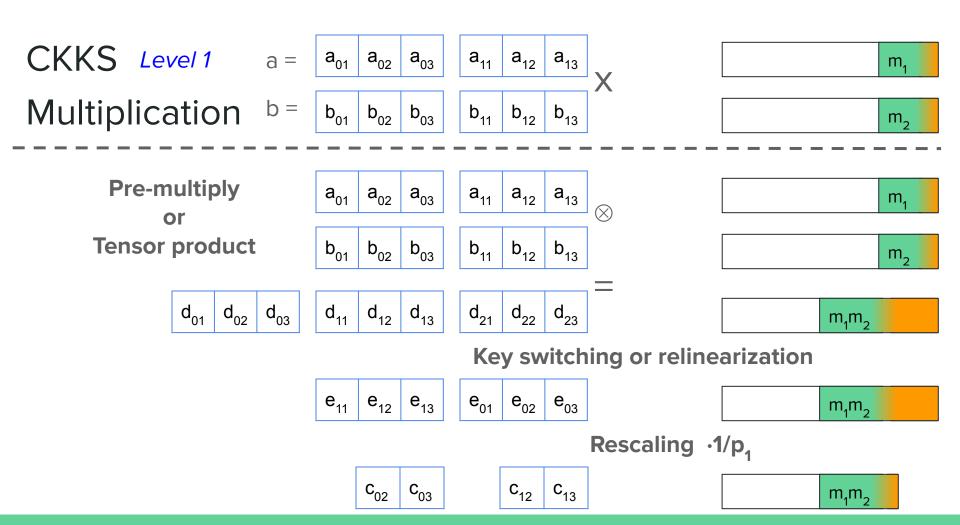


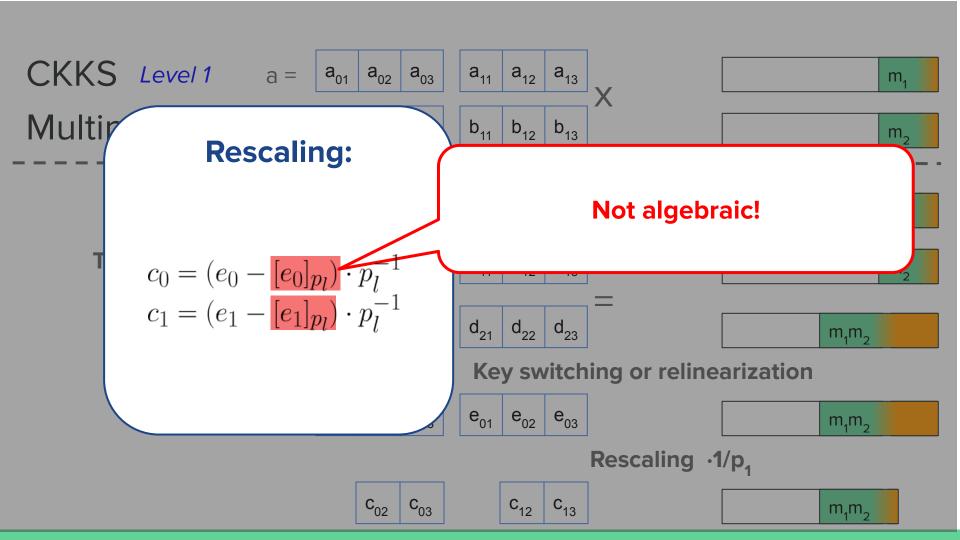
We don't verify: Instead, we: 1. Ask the prover to $d_0 d_1 d_1 d_2$ provide $w = CRT^{-1}(d_2)$ 03 2. Check: $e_0 = d_0 + \langle \text{evk}, CRT^{-1} \rangle$ **a.** $d_2 - CRT(\mathbf{w}) = 0$ $e_1 = d_1 + \langle \text{evk}, \overline{CRT} \rangle$ **b.** $\|\mathbf{w}[i]\| < p_i$ 3. Compute and check: $e_0 = d_0 + \langle evk, \mathbf{w} \rangle$ $e_1 = d_1 + \langle evk, \mathbf{w} \rangle$

a₀₃ a₁₁ We don't verify: Instead, we: **D**₀₃ 1. Ask the prover to $d_0 d_1 d_1 d_2$ provide $w = CRT^{-1}(d_2)$ 03 2. Check: $e_0 = d_0 + \langle \text{evk}, \underline{CRT}^{-1} \rangle$ **a.** $d_2 - CRT(\mathbf{w}) = 0$ $e_1 = d_1 + \langle \text{evk}, \overline{CRT}^- \rangle$ 3. Compute and check: $e_0 = d_0 + \langle evk, \mathbf{w} \rangle$ $e_1 = d_1 + \langle evk, \mathbf{w} \rangle$

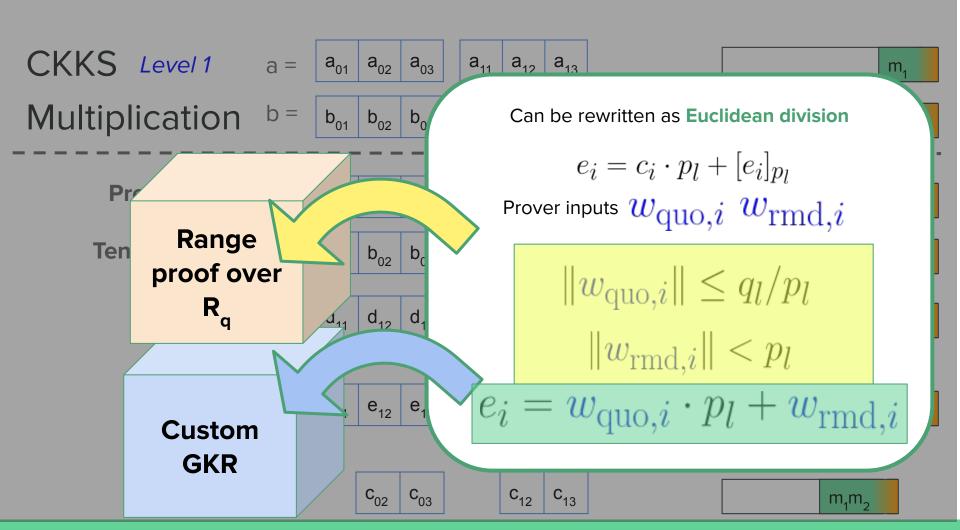


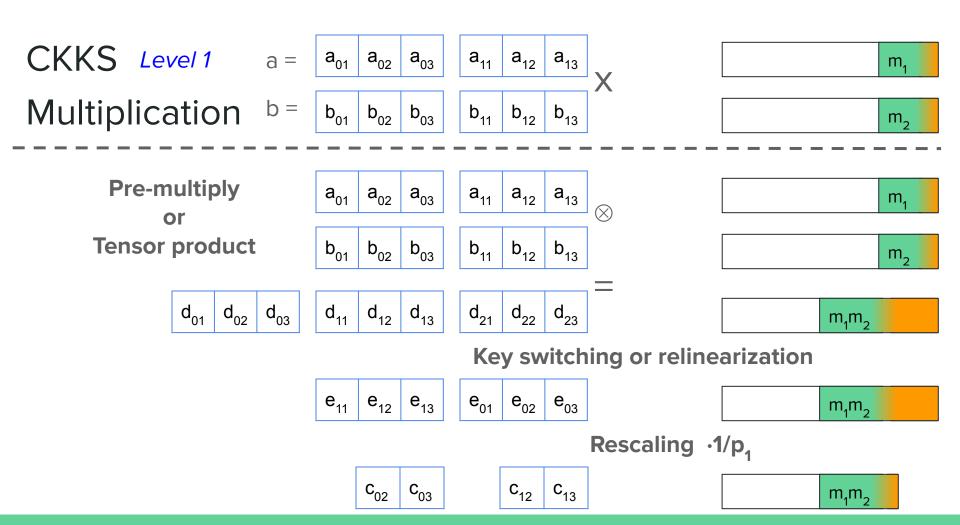


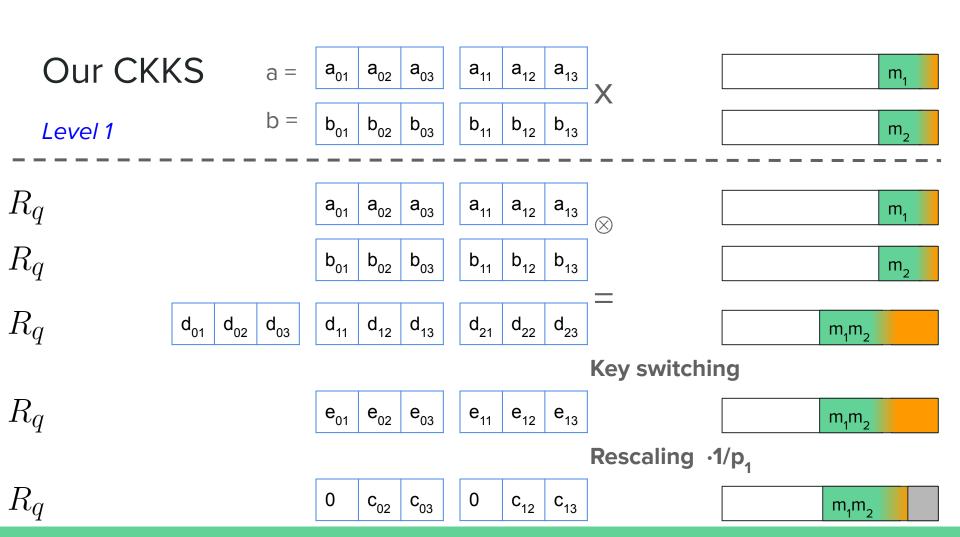


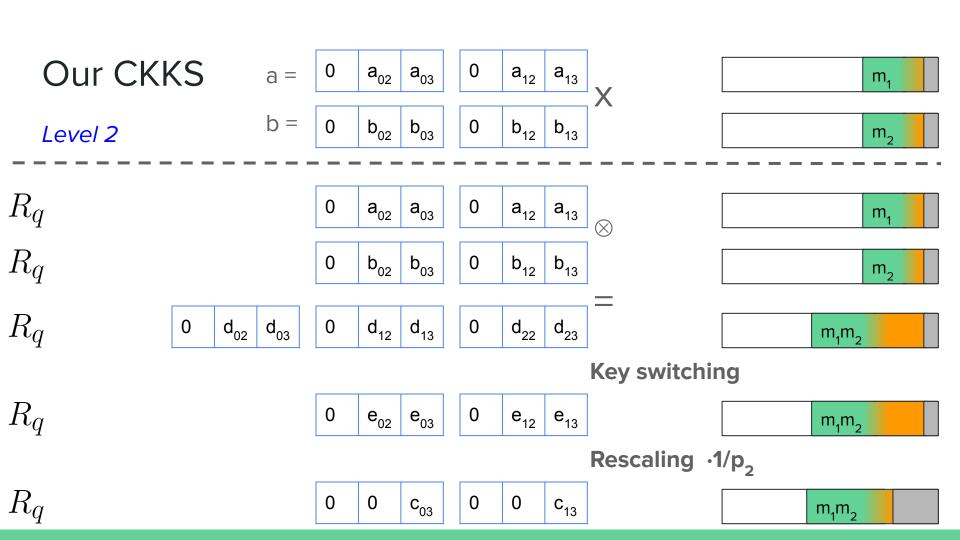


a₀₃ CKKS Level 1 $a_{11} | a_{12} | a_{13}$ a = Can be rewritten as **Euclidean division** b **Rescaling:** $e_i = c_i \cdot p_l + [e_i]_{p_l}$ a_{c} Prover inputs $w_{\mathrm{quo},i}$ $w_{\mathrm{rmd},i}$ $c_0 = (e_0 - [e_0]_{p_l}) \cdot p_l^{-1}$ $c_1 = (e_1 - [e_1]_{p_l}) \cdot p_l^{-1}$ b $\|\mathbf{w}_{\mathrm{quo},i}\| \le q_l/p_l$ d. $\|\mathbf{w}_{\mathrm{rmd},i}\| < p_l$ $e_i = w_{\text{quo},i} \cdot p_l + w_{\text{rmd},i}$ e, C₁₃ m₁m₂









Proof-friendly CKKS vs CKKS

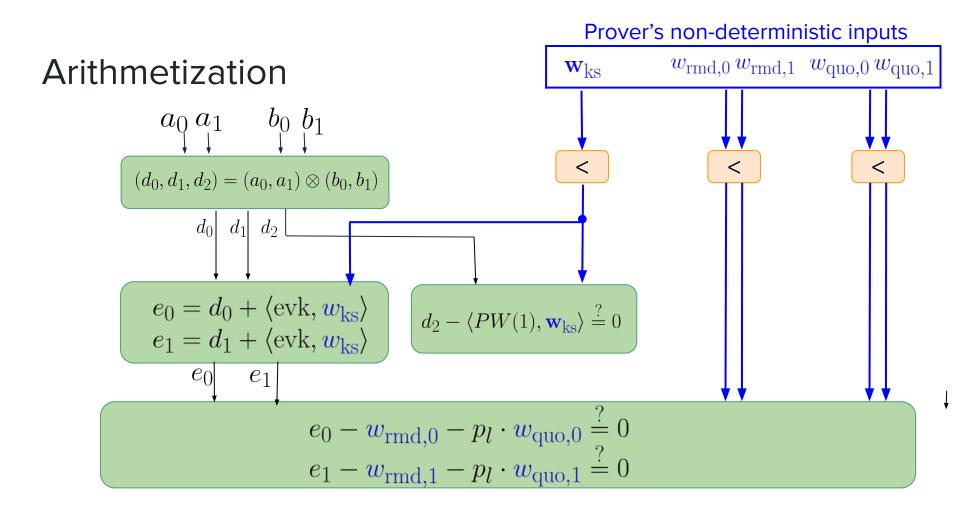
	Proof-friendly CKKS		CKKS
	d = 2	d = 4	HEXL
CKKS multiplication	7.394ms	8.457ms	7.197ms

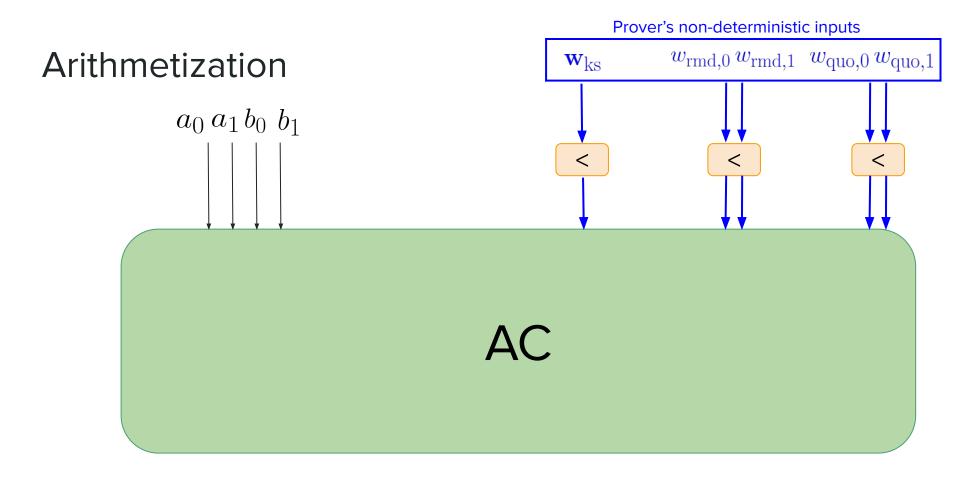
N = 16384#RNS components (L) = 6

Proof-friendly CKKS in summary

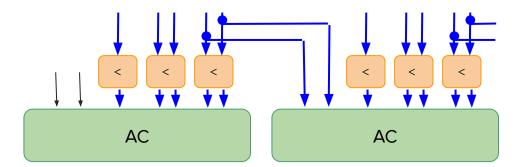
- Carefully chosen ring setup
 - High soundness for proof system
 - Efficiency of computations
- Ring does not change
 - Proof system works on same ring
- Noise analysis
 - Easier to prove bounds on ciphertexts

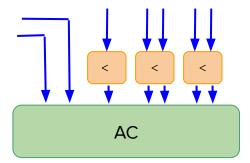
Proof of AC satisfiability



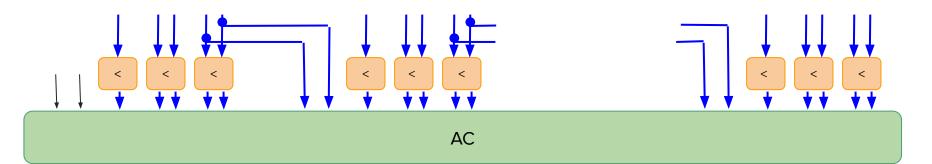


Flattening the circuit





GKR-style proof system for AC



- Custom gates (bdcon, rescon, ...)
- Flattened system of relations => constant depth 4
- Not affected by recent FS attacks

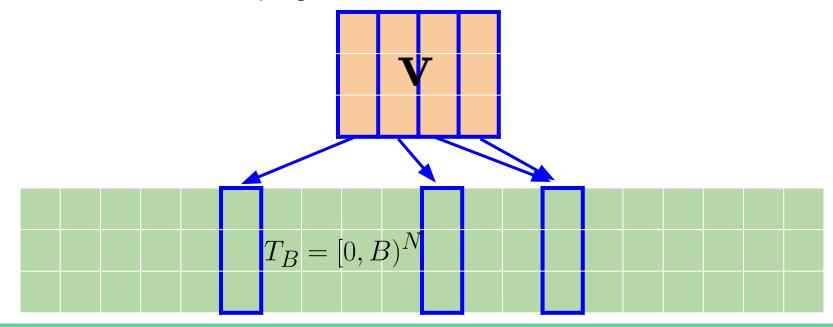
Custom GKR

Range checks

Range proof over R_q

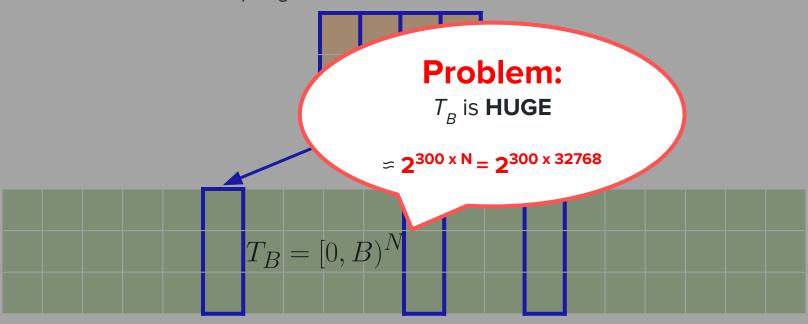
Proving ranges

- Prove that vector \mathbf{v} of m elements in R_q has coeffs bounded by B (e.g B = q_I)
- Can be seen as a look-up argument



Proving ranges

- Prove that vector \mathbf{v} of m elements in R_q has coeffs bounded by B (e.g B = q_l)
- Can be seen as a look-up argument



Praving ranges

Solution for integers:

Decompose B (e.g. Lasso^[1])

n R_q has coeffs bounded by B (e.g B = q_I)

Problem:

 T_R is **HUGE**

$$\approx$$
 2^{300 x N} = 2^{300 x 32768}

$$T_B = [0, B)^N$$

[1] S. Setty, J. Thaler, and R. Wahby, "Unlocking the Lookup Singularity with Lasso," in Advances in Cryptology – EUROCRYPT 2024

Proving ranges

Solution for integers:

Decompose B (e.g. Lasso^[1])

Solution for polynomials:

Decompose R_a

n R_q has coeffs bounded by B (e.g B = q_I)

t

Problem:

 T_B is **HUGE**

$$\approx$$
 2^{300 x N} = 2^{300 x 32768}

 $T_B = [0, B)^N$

The polynomial commitment

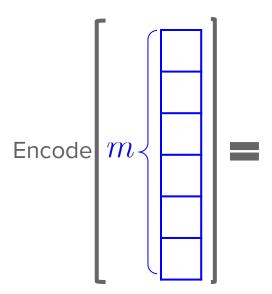
Polynomial Commitment Scheme

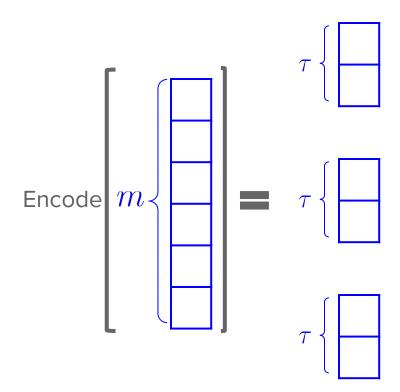
Polynomial Commitment

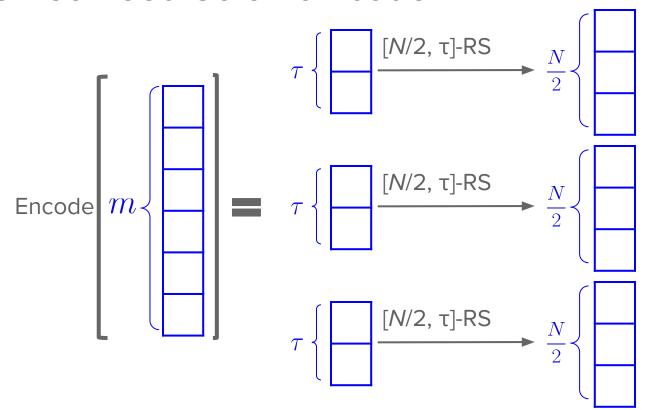
Need to commit to elements in $R_q[X_1,\ldots,X_\ell]$ where

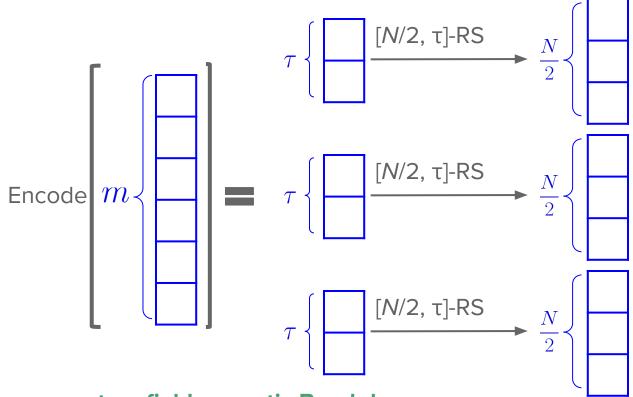
$$R_q \cong \mathbb{F}_{p_0^4} \times \cdots \times \mathbb{F}_{p_L^4}$$

- ullet Reduce MV PC over R_q to MV PC over $\mathbb{F}_{p_i^4}$
- Small-ish fields => Brakedown (field-agnostic)
- $\mathbb{F}_{p_i^4}$ has N/2 roots of unity. Can we use them?









x10 improvement on field-agnostic Breakdown

Conclusions

To summarize

- First practical VC for CKKS
 - Technique extend to FV/BGV
- Description of problem in a modular way (arithmetization)
 - AC satisfiability + range checks
- Design of proof-friendly CKKS
- Design of custom GKR to prove AC over rings
- Design of range proofs for polynomial rings
- Improved Brakedown for medium-sized fields
- Implemented all building blocks

Thank you!

Norwegian University of Science and Technology

This work is supported by the PICOCRYPT project that has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant agreement No. 101001283), partially supported by projects PRODIGY (TED2021-132464B- 100) and ESPADA (PID2022-142290OB-100) funded by MCIN/AEI/10.13039/501100011033/. This work is part of the grant JDC2023-050791-I, funded by MCIN/AEI/10.13039/501100011033 and the ESF+. This work is also supported by the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union's Horizon Europe research and innovation programme in the scope of the CONFIDENTIAL6G project under Grant Agreement 101096435. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Images used in this presentation

User faces: "Plump Interface Duotone Icons" by Streamline, Creative Commons
 Attribution 4.0 International, available at
 https://iconduck.com/sets/plump-interface-duotone-icons