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Setting up the ring
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The polynomial ring Ry, = Z [X]/(XN + 1)

xNi1= de ¢Z=1 mod py
d
--- Py
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Size of our exceptional set!
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Optimal performance/security:
lp.1=49,d=4

e Efficient HE computations

o RNS
e Soundness K

o Large exceptional set




Efficient arithmetic for
almost-fully-splitting rings:

e Incomplete NTTs!!
e Cost:

o d=2->~5%

o d=4->20%

[1] V. Lyubashevsky and G. Seiler, “NTTRU: Truly Fast NTRU Using NTT,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 180—-201, May 2019, doi: 10.13154/tches.v2019.i3.180-201.
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CKKS

e An approximate scheme:

e RLWE ciphertext:

(ag, a1) € R,

® RNS representation (with e.g. 3 components):

a a a a a a

01 02 03 1 12 13




CKKS a= |8y 8y |3y Ay | 842 | 943 + -

Addition b: b01 b02 b03 b11 b12 b13




CKKS a= |8y 8y |3y Ay | 842 | 943 + -

Addition b: b01 b02 b03 b11 b12 b13

Pure arithmetic!
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CKKS Level 1 a= |8y |89y |83 | |84 |35, a5;

MUItiplication b: b01 b02 b03 b11 b12 b13
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X
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Pre-multiply Ay, | gy | Aoz | | A4y | By | Qg
or X
Tensor product by | Byy | Pes | | 044 | By | by
d01 d02 d03 d11 d12 d13 d21 d22 d23




(ap, a1)®(bg, by)

(agbg, a1by + agby, a1by)

Pure arithmetic again!
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CKKS Level 1 a= |99 Qg |33 | |34 385|353
X
Multiplication b= by by | by | by by, | by
Pre-multiply Ay, | gy | Aoz | | A4y | By | Qg
or X
Tensor product by | Byy | Pes | | 044 | By | by
d01 d02 d03 d11 d12 d13 d21 d22 d23
Key switching or relinearization
e11 e12 e13 e01 e02 e03




Key Switching:

do| d1| do

eo = do + (evk, CRT ™ (ds))
ey = d + (evk, CRT~(dy))




Key Switching:

Not algebraic!

e = do + {(evk,

e; = dj + (evk,




We don’t verify:

do| d1| do

|
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Instead, we:

. Ask the prover to

provide w = CRT"(d.)

. Check:

a. dy — ORT(W) =0

b. [lwli|| < p;
Compute and check:
ep = doy + (evk, w)
e; = dj + (evk, w)
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. Ask the prover to
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. Check:

a.|dy — CRT(W) =0
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Instead, we:

. Ask the prover to
orovide w = CRT"(d.)

. Compute and check:

eg = do + (evk, w Range

el = di + (evk, w) proof over

R
q
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CKKS Level 1 a= |99 Qg |33 | |34 385|353

X
Multiplication b= by by | by | by by, | by
Pre-multiply Ay, | gy | Aoz | | A4y | By | Qg

or X
Tensor product by | Byy | Pes | | 044 | By | by
d01 d02 d03 d11 d12 d13 d21 d22 d23

Key switching or relinearization
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Rescaling:

Not algebraic!




Can be rewritten as Euclidean division

Rescaling:
J e; = ¢; - pr+ [eilp,

Prover inputs w(]U.O,’l: wrmd,i

”wquo,i“ < q/p
lwimaill < pr
€; = Wquo,i * Pl T Wrmd,




Can be rewritten as Euclidean division

e; = ¢; - P+ leilp,
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CKKS Level 1 a= |99 Qg |33 | |34 385|353
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Our CKKS a= |91 |32 %:; 841 | Q42| 843
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Proof-friendly CKKS vs CKKS

Proof-friendly CKKS CKKS
d=2 d=4 HEXL
CKKS multiplication 7.394ms 8.457ms 7.197ms

N = 16384
#RNS components (L) = 6




Proof-friendly CKKS in summary

e Carefully chosen ring setup
o High soundness for proof system
o Efficiency of computations
e Ring does not change
o Proof system works on same ring
e Noise analysis

o Easier to prove bounds on ciphertexts



Proof of AC satisfiability




Prover’s non-deterministic inputs

Arithmetization Wk Wimd,0 Wrmd,1 Wquo,0 Wquo,1

i L




Prover’s non-deterministic inputs

Arithmetization Wk Wimd,0 Wrmd,1 Wquo,0 Wquo,1
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GKR-style proof system for AC
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AC

e Custom gates (bdcon, rescon, ...)

e Flattened system of relations => constant depth 4 Custom

GKR
e Not affected by recent FS attacks
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Proving ranges

e Prove that vector v of m elements in Rq has coeffs bounded by B (e.gB =q,)

e Can be seen as a look-up argument
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Problem:
T, is HUGE

- 2300 xN_— 2300 x 32768




Solution for integers:
Decompose B (e.g. Lasso!)

Problem:
T, is HUGE

- 2300 xN_— 2300 x 32768

[1] S. Setty, J. Thaler, and R. Wahby, “Unlocking the Lookup Singularity with Lasso,” in Advances in Cryptology — EUROCRYPT 2024



Solution for integers:
Decompose B (e.g. Lasso!)

Solution for

polynomials: Problem:
Decompose Rq TB is HUGE

- 2300 xN_— 2300 x 32768

[1] S. Setty, J. Thaler, and R. Wahby, “Unlocking the Lookup Singularity with Lasso,” in Advances in Cryptology — EUROCRYPT 2024



The polynomial commitment
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Polynomial Commitment

Need to commit to elements in R4[ X7, . . ., X| where

R~F  x--xTF
9= Tp; Py

e Reduce MV PCoverR_to MV PC over IFp4
(;

e Small-ish fields => Brakedown (field-agnostic)

° sz_L has N/2 roots of unity. Can we use them?
(4



Piecewise Reed-Solomon code
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Piecewise Reed-Solomon code
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Piecewise Reed-Solomon code
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Conclusions




To summarize

e First practical VC for CKKS
o  Technique extend to FV/BGV

e Description of problem in a modular way (arithmetization)
o AC satisfiability + range checks

e Design of proof-friendly CKKS

e Design of custom GKR to prove AC over rings
e Design of range proofs for polynomial rings

e Improved Brakedown for medium-sized fields

e |Implemented all building blocks
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