Compiled Nonlocal Games from any Trapdoor Claw-Free Function

Kaniuar Bacho^{1,2}, Alexander Kulpe¹, Giulio Malavolta³, Simon Schmidt¹, Michael Walter¹

¹Ruhr University Bochum ²University of Edinburgh ³Bocconi University

Compiled Nonlocal Game

Compiler should preserve properties of the nonlocal game

Compiled Nonlocal Game

Compiled Nonlocal Game

CHSH Game (Clauser-Horne-Shimony-Holt)

- Questions & answers: $x, y, a, b \in \{0,1\}$
- No communication between A and B
- Winning condition: $a \oplus b = x \cdot y$

\boldsymbol{x}	y	winning condition
0	0	a = b
0	1	a = b
1	0	a = b
1	1	$a \neq b$

CHSH Game (Clauser-Horne-Shimony-Holt)

- Questions & answers: $x, y, a, b \in \{0,1\}$
- No communication between A and B
- Winning condition: $a \oplus b = x \cdot y$

$$\omega_c(\mathcal{G}) := \max_{\text{for classical players}} \max_{t \in \mathcal{G}} |\mathcal{G}|$$

$$\omega_q(\mathcal{G}) := \max_{\text{for } \otimes \text{ quantum players}} \max_{g} \omega_g(\mathcal{G})$$

x	y	winning condition
0	0	a = b
0	1	a = b
1	0	a = b
1	1	$a \neq b$

V				P
				
	←			
		:		

CHSH Game (Clauser-Horne-Shimony-Holt)

- Questions & answers: $x, y, a, b \in \{0,1\}$
- No communication between A and B
- Winning condition: $a \oplus b = x \cdot y$

$$\omega_c(\mathcal{G}) := \max_{\text{for classical players}} \max_{c} |\omega_c(\mathcal{G})| = \max_$$

$$\omega_q(\mathcal{G}) := \max_{\text{for } \otimes \text{ quantum players}} \max_{q \in \mathcal{G}} |\mathcal{G}| = \max_{q \in \mathcal{G}| = \infty_{q \in \mathcal{G}} |\mathcal{G}| = \max_{q \in \mathcal{G}| = \infty_{q \in \mathcal{G}|$$

$$\omega_c(\mathcal{G}_{\mathsf{CHSH}}) = 75\%$$

$$\omega_q(\mathcal{G}_{\mathsf{CHSH}}) = rac{1}{2} + rac{1}{2\sqrt{2}} pprox 85\%$$

Compiler should preserve properties of the nonlocal game

KLVY Compiler

 Kalai, Lombardi, Vaikuntanathan, and Yang [KLVY21] compiler from Quantum Fully Homomorphic Encryption

KLVY Compiler

Quantum Completeness ([KLVY23])

$$\omega_q(\mathcal{G}_{\mathsf{comp}}) \geq \omega_q(\mathcal{G})$$

Classical Soundness ([KLVY23])

$$\omega_c(\mathcal{G}_{\mathsf{comp}}) \leq \omega_c(\mathcal{G})$$

KLVY Compiler

Quantum ompleteness ([KLVY23])

Compiled Nonlocal Game

KLVY Compiler

Quantum ompleteness ([KLVY23])

 Quantum Soundness ([NZ23, KMPSW24]):

$$\omega_q(\mathcal{G}_{\mathsf{comp}}) \leq \omega_{qc}(\mathcal{G})$$
 + Rigidity

Compiled Nonlocal Game

KLVY Compiler

Quantum empleteness ([KLVY23])

$$\omega_c$$
 \mathcal{S}_{comp}

Our Compiler

 Idea 1: Replace QFHE with interactive blind classical delegation of any quantum computation

Our Compiler

 Idea 1: Replace QFHE with interactive blind classical delegation of any quantum computation

Idea 2:

Blind classical delegation

=

Modification of universal blind quantum computation (UBQC) [BFK09] in the measurement-based quantum computation (MBQC) model

十

Blind remote state preparation (blind RSP)

Assumption: V can prepare single qubits in the state

$$|+_{\theta}\rangle := \frac{1}{\sqrt{2}}(|0\rangle + e^{i\theta}|1\rangle),$$

(X, Y)-plane Bloch sphere

where $\theta \in \Theta := \{k \cdot \pi/4 \mid k = 0, \dots, 7\}$ is uniformly random.

Assumption: V can prepare single qubits in the state

$$|+_{\theta}\rangle := \frac{1}{\sqrt{2}}(|0\rangle + e^{i\theta}|1\rangle),$$

(X, Y)-plane Bloch sphere

where $\theta \in \Theta := \{k \cdot \pi/4 \mid k = 0, \dots, 7\}$ is uniformly random.

HBQC protocol:

V(classical description of U)

Outputs: a_i, b_i

Outputs: $(U' \otimes I) | \psi \rangle$

$$U' := \left(X^{a_1} Z^{b_1} \otimes \ldots \otimes X^{a_n} Z^{b_n}\right) U$$

Assumption: V can prepare single qubits in the state

$$|+_{\theta}\rangle := \frac{1}{\sqrt{2}}(|0\rangle + e^{i\theta}|1\rangle),$$

(X, Y)-plane Bloch sphere

where $\theta \in \Theta := \{k \cdot \pi/4 \mid k = 0, \dots, 7\}$ is uniformly random.

HBQC protocol:

V(classical description of U)

 $\mathsf{P}(\ket{\psi})$

: :

Outputs: a_i, b_i

Outputs: $(U' \otimes I) | \psi \rangle$

$$U' := \left(X^{a_1}Z^{b_1} \otimes \ldots \otimes X^{a_n}Z^{b_n}\right)U$$

- Security: Prover gains no information about U and a_i,b_i
- Security holds unconditionally (no computational assumptions!)

HBQC protocol:

V(description of U)

$$\ket{+_{ heta_{x,y}}}\ket{+_{ heta_{x,y}}}\ket{+_{ heta_{x,y}}}$$

 ${\cal V}$ computes the updated measurement angle

P transmits the result

HBQC protocol:

V(description of U)

$$\ket{+_{ heta_{x,y}}}$$
 $\ket{+_{ heta_{x,y}}}$ $\ket{+_{ heta_{x,y}}}$

 ${\cal V}$ computes the updated measurement angle

P transmits the result

HBQC protocol:

V(description of U)

V computes the updated measurement angle

P transmits the result

 Blind RSP = Classical client delegates preparation of single-qubit states to quantum server without revealing information about the state

$$\left\{ \left| +_{\theta} \right\rangle := \frac{1}{\sqrt{2}} \left(\left| 0 \right\rangle + e^{i\theta \frac{\pi}{4}} \left| 1 \right\rangle \right), \theta \in \left\{ 0, \dots, 7 \right\} \right\}$$

 Blind RSP = Classical client delegates preparation of single-qubit states to quantum server without revealing information about the state

$$\left\{ \left| +_{\theta} \right\rangle := \frac{1}{\sqrt{2}} \left(\left| 0 \right\rangle + e^{i\theta \frac{\pi}{4}} \left| 1 \right\rangle \right), \theta \in \left\{ 0, \dots, 7 \right\} \right\}$$

- Assumption: Existence of a post-quantum secure trapdoor claw-free function (TCF)
- TCF:
 - 1. Family of injective function pairs $(f_0, f_1): X \to Y$ with same image
 - 2. Claw-freeness: Infeasible to find a claw (x_0, x_1) s.t. $f_0(x_0) = f_1(x_1)$
 - 3. Given trapdoor and $y \in Y$ in the image, possible to efficiently invert to obtain a claw (x_0, x_1) s.t. $f_0(x_0) = f_1(x_1) = y$.

Subroutine parameterized by *n* and state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ held by the prover:

$$V(n)$$
 $((f_0, f_1), \operatorname{td}) \leftarrow \operatorname{Gen}(1^{\lambda})$
 $n, (f_0, f_1)$
 $(x_0, x_1) \leftarrow \operatorname{Invert}(\operatorname{td}, y)$
 $r_0, r_1 \leftarrow \$ \{0, 1\}^{\operatorname{poly}(\lambda)}$
 (r_0, r_1)
 \longrightarrow
 $b := d \cdot (x_0 \oplus x_1)$

 $\theta := x_0 r_0 + x_1 r_1$

$$P(|\psi\rangle)$$

Compute claw state $\alpha \ket{0,x_0} + \beta \ket{1,x_1}$ with $f_0(x_0) = f_1(x_1) = y$

- 1. Compute $\alpha |0, x_0, -x_0 r_0\rangle + \beta |1, x_1, x_1 r_1\rangle$
- 2. Apply QFT_n to last register and measure; abort if outcome $\neq 1$. $\alpha |0, x_0\rangle + \omega_n^{x_0 r_0 + x_1 r_1} \beta |1, x_1\rangle$
- 3. Measure last register in Hadamard basis with outcome $d \in \{0,1\}^{p(\lambda)}$. $\alpha |0\rangle + \beta(-1)^{d \cdot (x_0 \oplus x_1)} \omega_n^{x_0 r_0 + x_1 r_1} |1\rangle$

Blind RSP Protocol: Use the subroutine three times:

- Subroutine with n=2 and $|+\rangle$. Let (b_1, θ_1) be the output of V, and $|\psi_1\rangle$ the output state of P.
- Subroutine with n=4 and $|\psi_1\rangle$. Let (b_2,θ_2) be the output of V, and $|\psi_2\rangle$ the output state of P.
- Subroutine with n=8 and $|\psi_2\rangle$. Let (b_3,θ_3) be the output of V, and $|\psi_3\rangle$ the output state of P.

The prover P holds the final state

$$|\psi_3
angle=rac{1}{\sqrt{2}}(|0
angle+(-1)^b\omega_8^ heta\,|1
angle)$$

The verifier V holds

$$b:=b_1\oplus b_2\oplus b_3$$
 and $\theta:=4\theta_1+2\theta_2+\theta_3\mod 8$.

• Security: From the prover's point of view, heta is uniformly random

Summary

- HBQC = generalized UBQC protocol [BFK09]
- TCF \Rightarrow blind RSP for $\left\{ |+_{\theta}\rangle := \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\theta \frac{\pi}{4}} |1\rangle \right), \theta \in \{0, \dots, 7\} \right\}$
- HBQC + blind RSP ⇒ classical blind delegation of QC
- New compiler from classical blind delegation of QC, satisfying
 - 1. Quantum Completeness
 - 2. Quantum Soundness
- Extending Mahadev's result from
 'specific TCF from LWE ⇒ CVQC' to 'any TCF ⇒ CVQC'

Summary

- HBQC = generalized UBQC protocol [BFK09]
- TCF \Rightarrow blind RSP for $\left\{ |+_{\theta}\rangle := \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\theta \frac{\pi}{4}} |1\rangle \right), \theta \in \{0,\dots,7\} \right\}$
- HBQC + blind RSP ⇒ classical blind delegation of QC
- New compiler from classical blind delegation of QC, satisfying
 - 1. Quantum Completeness
 - 2. Quantum Soundness
- Extending Mahadev's result from
 'specific TCF from LWE ⇒ CVQC' to 'any TCF ⇒ CVQC'

Thank you for your attention!