

The Exact Multi-User Security of Key-Alternating Feistel Ciphers with a Single Permutation

Yusuke Naito

Yu Sasaki

Takeshi Sugawara

Mitsubishi Electric Corporation

NTT Social Informatics Laboratories, NIST Associate

The University of Electro-Communications

Security of Generic Block Cipher Construction

- It is popular to generalize constructions and study their security.
 - The results are applied to many designs in general.
- The goal is to drive the lower and upper bounds of the construction to be distinguished from ideal n-bit SPRP.

Key Alternating Ciphers (KACs)

Studied at Eurocrypt 2024 by Naito-Sasaki-Sugawara

Feistel Ciphers

This paper !!

Luby-Rackoff

- It was proposed by Luby and Rackoff in 1986.
- The size of each branch is *n* bits.
- Round functions are secret and independent in each round.
- Patarin proved that 4 rounds are SPRP up to $O(2^{\frac{1}{2}n})$ queries.
- Many other results are known ...

Luby-Rackoff with Pemutation

First analyzed by Piret in 2006.

 Motivated by the fact that practical designs mostly adopt permutations as round functions.

 This direction was subsequently continued by Guo and Zhang [17] in 2021.

KAF-F: Feistel with Key Alternating Function

- First studied by Lampe and Seurin in 2014.
- Motivated by the fact that practical designs mostly adopt round functions applying the key addition followed by a public function.
- Big change in security analysis since adversaries now can make primitive queries besides construction queries.
- proved that 6t rounds are SPRP up to $O(2^{\frac{t}{t+1}n})$ queries.

KAF-P: Feistel with Even-Mansour

- First studied by Bhattacharjee et al. in 2024.
- Motivated by the fact that practical designs mostly adopt a public permutation.
- It was proved that 5 rounds are SPRP up to $O(2^{\frac{2}{3}n})$ queries.

• We further show that if KAF-P is secure, so is **whitening** + **key** + π .

KAF-P is Secure ⇒ Practical Designs are Secure NTT (*)

(e): practical structure

KAF-P is Secure ⇒ Practical Designs are Secure NTT (*)

(e): practical structure

(d): add 4 keys x_1, x_2, x_3, x_4

to strengthen the scheme

(c): rename variables

Research Directions

- **Tightness**: generic attacks matching the proven upper bound should be provided.
- Multi-user security: Adversaries make queries to multiple users having independently generated keys. This model captures more realistic cases.
- **Single-primitive**: Proofs are simpler if primitives are independently chosen in every round, while practical designs usually use only a single primitive for efficiency.
- Correlated Subkeys: Proofs are simpler if all the subkeys are independent, while practical designs usually generate all the subkeys from a master key.

Comparison of Results

• We prove that r rounds of KAF-P is secure up to $O(2^{\frac{r-2}{r-1}n})$ queries. tight, multi-user, single primitive, r-2 independent keys

Table 1. Provable security bounds of Feistel ciphers with public primitives.

Reference	Type	Round	Bound (bits)	Tight- ness	Model	Single Primitive	Indep. Subkeys [†]
Lampe–Seurin [26]	KAF-F	12	$\frac{2}{3}n$		su	_	All
Lampe–Seurin [26]	KAF-F	6t	$\frac{t}{t+1}n$		$\mathbf{s}\mathbf{u}$		All
Guo-Wang [16]	KAF-F	4	$\frac{1}{2}n$	\checkmark	mu	\checkmark	1
Guo-Wang [16]	KAF-F	6	$\frac{2}{3}n$		mu		2
Bhattacharjee et al. [4]	KAF-P	5	$\frac{2}{3}n$		su	_	All
Ours	KAF-P [†]	r	$\frac{r-2}{r-1}n$	✓	mu	✓	r-2

[†]Our attack is also applicable to KAF-F.

Best Generic Attacks for 5 Rounds

NTT 🔘

Impossible Differential Attacks

- The difference $(\Delta, 0)$ never propagates to difference $(0, \Delta)$ after 5 rounds.
- This property allows to distinguish 5 rounds with $O(2^n)$ queries.

• This type of attacks will be inapplicable when r becomes large, since any differential propagation will be possible for a large r.

Target Constructions in our Attacks / Proofs

Attacks

 Attacks are better if it works even if all rounds use independent permutation and independent subkeys, moreover different keys for Even-Mansour construction.

Proofs

 Proofs are better if it works even if all rounds use the same permutation and the same key for the Even-Mansour construction.

New Attacks

Inapplicability of Related Works 1

Generic Attacks on *r***-round KAC**

- Make $O(2^{\frac{r}{r+1}n})$ construction queries.
- Make $O(2^{\frac{r}{r+1}n})$ primitive queries for each π_i .
- There should exist consistent queries.
- Subkeys are derived just computing XORs.

However, for Feistel, even if both queries match, XOR of Feistel construction protects subkeys.

Our Approach: Meet-in-the-Middle

- We first find a match between construction and primitive queries for all but the first and the last rounds; i.e. a consistent tuple $L_0||R_0,(V_2,W_2),(V_3,W_3),\ldots,(V_{r-1},W_{r-1}),L_r||R_r$
- To recover subkeys, we make it a pair with another construction query, and to trace differential propagation rather than values. (propagate with prob.1 over subkey XOR)
- Values after π_i for the query that is chosen to be a pair can be looked up by reusing primitive queries.

Query Strategy

• Definition of Set \mathbb{S}_1 :

MSB:
$$n - \frac{r-2}{r-1}n$$
 bits are constant (c_i)

LSB:
$$\frac{r-2}{r-1}n$$
 bits take all values

Definition of Set \$\mathbb{S}_2\$:

MSB:
$$\frac{r-2}{r-1}n$$
 bits take all values

LSB:
$$n - \frac{r-1}{r-1}n$$
 bits are constant (c)

- Construction Queries
 - Query r-2 sets of \mathbb{S}_1
- Primitive Queries
 - Query S_2 for all but the first and the last rounds.

By taking any combination of construction and primitive queries, a match is expected.

Distinguished Procedure

- For all $L_0||R_0, (V_2, W_2), \dots, (V_{r-1}, W_{r-1}), L_r||R_r,$ make a pair with $L_0'||R_0', L_r'||R_r'.$
- 1. 1st Round: Δ_0 is simply computed.
- 2. 2^{nd} Round: V_2' is computed $V_2 \oplus \Delta_0$. V_2' exists in primitive queries, so it's possible to look up W_2' . Then, $\Delta_2 = W_2 \oplus W_2'$ can be computed.
- 3. 3^{rd} to r-1 rounds: V'_i is computed $V_i \oplus \Delta_{i-1}$. If V'_i exists in primitive queries, then look up W'_i and compute $\Delta_i = W_i \oplus W'_i$.
- 4. Last round: Check the correctness of the pair by matching the left-half of the ciphertext.

New Proofs

- Tight mu-bound: $\frac{r-2}{r-1}n$ bits for KAF-P with a single permutation.
- Proof Methods:
 - Patarin's coefficient-H technique.
 - Resampling method with new procedures for KAF-P.
- Resampling method for any r
 - Introduced for Key Alternating Cipher at EUROCRYPT2024.
 - Define dummy internal values for each (M,C) by forward and backward sampling steps in the ideal word.
 - 1. Perform a forward sampling.
 - Perform an inverse sampling if a collision occurs for some internal value.

- Tight mu-bound: $\frac{r-2}{r-1}n$ bits for KAF-P with a single permutation.
- Proof Methods:
 - Patarin's coefficient-H technique.
 - Resampling method with new procedures for KAF-P.
- Resampling method for any r
 - Introduced for Key Alternating Cipher at EUROCRYPT2024.
 - Define dummy internal values for each (M,C) by forward and backward sampling steps in the ideal word.
 - 1. Perform a forward sampling.
 - 2. Perform an inverse sampling if a collision occurs for some internal value.

- Tight mu-bound: $\frac{r-2}{r-1}n$ bits for KAF-P with a single permutation.
- Proof Methods:
 - Patarin's coefficient-H technique.
 - Resampling method with new procedures for KAF-P.
- Resampling method for any r
 - Introduced for Key Alternating Cipher at EUROCRYPT2024.
 - Define dummy internal values for each (M,C) by forward and backward sampling steps in the ideal word.
 - 1. Perform a forward sampling.
 - Perform an inverse sampling if a collision occurs for some internal value.

- Tight mu-bound: $\frac{r-2}{r-1}n$ bits for KAF-P with a single permutation.
- Proof Methods:
 - Patarin's coefficient-H technique.
 - Resampling method with new procedures for KAF-P.
- Resampling method for any r
 - Introduced for Key Alternating Cipher at EUROCRYPT2024.
 - Define dummy internal values for each (M,C) by forward and backward sampling steps in the ideal word.
 - 1. Perform a forward sampling.
 - 2. Perform an inverse sampling if a collision occurs for some internal value.

- Tight mu-bound: $\frac{r-2}{r-1}n$ bits for KAF-P with a single permutation.
- Proof Methods:
 - Patarin's coefficient-H technique.
 - Resampling method with new procedures for KAF-P.
- Resampling method for any r
 - Introduced for Key Alternating Cipher at EUROCRYPT2024.
 - Define dummy internal values for each (M,C) by forward and backward sampling steps in the ideal word.
 - 1. Perform a forward sampling.
 - Perform an inverse sampling if a collision occurs for some internal value.

Resampling Method for KAF-P

NTT (

- Update the resampling method for KAF-P with a single permutation.
- Differences between KAC and KAF-P.
 - KAC: r-1 internal values define all internal values.
 - KAF-P: r-2 internal values define all internal values.
- Collision events for failures of the resampling method.
 - KAC: 1
 - KAF-P: 3
- We give a new resampling algorithm for KAF-P with the three collision events
 - \Rightarrow Tight mu-bound for KAF-P: $\frac{r-2}{r-1}n$ bits.

Resampling Method for KAF-P

- Update the resampling method for KAF-P with a single permutation.
- Differences between KAC and KAF-P.
 - KAC: r-1 internal values define all internal values.
 - KAF-P: r-2 internal values define all internal values.
- Collision events for failures of the resampling method.
 - KAC: 1
 - KAF-P: 3
- We give a new resampling algorithm for KAF-P with the three collision events
 - \Rightarrow Tight mu-bound for KAF-P: $\frac{r-2}{r-1}n$ bits.

Conclusion

- Provable tight security bound of Feistel KAF-P ciphers
 - in the multi-user (mu) setting
 - a single primitive across all rounds
 - -r-2 correlated subkeys for r rounds
- By applying the resampling method to Feistel KAF-P ciphers, security is proven to be $O(2^{\frac{r-2}{r-1}n})$ for r rounds.
- We also provide a new matching attack by information-theoretic variant of the meet-in-the-middle attack.

Thank you for your attention!!