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• It is popular to generalize constructions and study their security.

The results are applied to many designs in general.

• The goal is to drive the lower and upper bounds of the 

construction to be distinguished from ideal 𝑛-bit SPRP. 

Security of Generic Block Cipher Construction
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𝐹1
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Key Alternating Ciphers (KACs) Feistel Ciphers

Studied at Eurocrypt 2024 by Naito-Sasaki-Sugawara This paper !!
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• It was proposed by Luby and 

Rackoff in 1986.

• The size of each branch is 𝑛 bits.

• Round functions are secret and 

independent in each round.

• Patarin proved that 4 rounds are 

SPRP up to 𝑂(2
1

2
𝑛 ) queries.

• Many other results are known …

Luby-Rackoff

𝐹1

𝐾1

𝐹2

𝐾2

𝐹𝑟

𝐾𝑟

𝑛𝑛
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• First analyzed by Piret in 2006.

• Motivated by the fact that practical 

designs mostly adopt permutations 

as round functions. 

• This direction was subsequently 

continued by Guo and Zhang [17] 

in 2021.

Luby-Rackoff with Pemutation
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Π2
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𝐾𝑟
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• First studied by Lampe and Seurin
in 2014.

• Motivated by the fact that practical 
designs mostly adopt round 
functions applying the key addition 
followed by a public function.

• Big change in security analysis 
since adversaries now can make 
primitive queries besides 
construction queries.

• proved that 6𝑡 rounds are SPRP up 

to 𝑂(2
𝑡

𝑡+1
𝑛) queries.

KAF-F: Feistel with Key Alternating Function

𝑛𝑛

𝑓1

𝐾1

𝑓2

𝐾2

𝑓𝑟
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• First studied by Bhattacharjee et al. 

in 2024.

• Motivated by the fact that practical 

designs mostly adopt a public 

permutation.

• It was proved that 5 rounds are 

SPRP up to 𝑂(2
2

3
𝑛) queries.

• We further show that if KAF-P is 

secure, so is whitening + key + 𝝅.

KAF-P: Feistel with Even-Mansour

𝑛𝑛

𝜋1

𝐾1𝐾1

𝜋2

𝐾2𝐾2

𝜋𝑟

𝐾𝑟𝐾𝑟
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KAF-P is Secure ⇒ Practical Designs are Secure

𝜋1
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𝑘4 𝑘4

𝜋5

𝑘5 𝑘5

𝜋6

𝑘6 𝑘6

(a): KAF-P
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′
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′
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′
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′
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𝑤𝑘3

𝑤𝑘2

𝑤𝑘4

(e): practical structure
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KAF-P is Secure ⇒ Practical Designs are Secure
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𝑘1 𝑘1
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𝑘2 𝑘2
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(a): KAF-P
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(b): linear key 

transformation
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𝑘1
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′
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′
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′
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′ ⊕𝑘3

′

𝑘5
′ ⊕𝑘6

′

(c): rename variables
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𝑥3 𝑥4
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′
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′
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𝑘3
′
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𝑘4
′
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′
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′

𝑘5
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′

(d): add 4 keys 𝑥1, 𝑥2, 𝑥3, 𝑥4
to strengthen the scheme
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′
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′
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′

𝜋6

𝑘6
′

𝑤𝑘1

𝑤𝑘3

𝑤𝑘2

𝑤𝑘4

(e): practical structure
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• Tightness: generic attacks matching the proven upper bound should be 

provided.

• Multi-user security: Adversaries make queries to multiple users having 

independently generated keys. This model captures more realistic cases.

• Single-primitive: Proofs are simpler if primitives are independently 

chosen in every round, while practical designs usually use only a single 

primitive for efficiency. 

• Correlated Subkeys: Proofs are simpler if all the subkeys are independent, 

while practical designs usually generate all the subkeys from a master key. 

Research Directions
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• We prove that 𝑟 rounds of KAF-P is secure up to 𝑂(2
𝑟−2

𝑟−1
𝑛) queries. 

tight, multi-user, single primitive, 𝑟 − 2 independent keys

Comparison of Results
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Impossible Differential Attacks

• The difference (Δ, 0) never propagates to 

difference (0, Δ) after 5 rounds.

• This property allows to distinguish 5 rounds 

with 𝑂(2𝑛) queries.

• This type of attacks will be inapplicable when 

𝑟 becomes large, since any differential 

propagation will be possible for a large 𝑟.

Best Generic Attacks for 5 Rounds

𝜋1

𝐾1𝐾1

Δ 0

0 Δ

𝜋2

𝐾2𝐾2

𝜋3

𝐾3𝐾3

𝜋4

𝐾4𝐾4

𝜋5

𝐾5𝐾5

Δ

Δ

0

0

Δ

Δ

Δ 0

≠ 0

≠ 0

≠ 0
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Attacks

• Attacks are better if it works even if all rounds use independent 

permutation and independent subkeys, moreover different keys for 

Even-Mansour construction.

Proofs

• Proofs are better if it works even if all rounds use the same 

permutation and the same key for the Even-Mansour construction.

Target Constructions in our Attacks / Proofs

𝜋𝑖
𝐾𝑖𝐾𝑖

′

𝜋
𝐾𝑖𝐾𝑖
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New Attacks
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Generic Attacks on 𝒓-round KAC

• Make 𝑂(2
𝑟

𝑟+1
𝑛) construction queries.

• Make 𝑂(2
𝑟

𝑟+1
𝑛) primitive queries for each 𝜋𝑖.

• There should exist consistent queries.

• Subkeys are derived just computing XORs.

However, for Feistel, even if both queries match, XOR of 

Feistel construction protects subkeys.

Inapplicability of Related Works 1

𝜋1

𝐾0

𝜋2

𝐾1

𝜋𝑟

𝐾𝑟−1

𝑃

2
𝑟

𝑟+1𝑛 2
𝑟

𝑟+1𝑛 2
𝑟

𝑟+1𝑛

2
𝑟

𝑟+1𝑛

𝐾𝑟

𝐶
𝜋1

𝐾1𝐾1
′

𝜋2

𝐾2𝐾2
′

𝜋𝑟

𝐾𝑟𝐾𝑟
′

𝑀𝐿 𝑀𝑅

𝐶𝐿 𝐶𝑅



15

• We first find a match between construction and 

primitive queries for all but the first and the last 

rounds; i.e. a consistent tuple 

𝐿0| 𝑅0, 𝑉2,𝑊2 , 𝑉3,𝑊3 , . . . , 𝑉𝑟−1,𝑊𝑟−1 , 𝐿𝑟 |𝑅𝑟

• To recover subkeys, we make it a pair with another 

construction query, and to trace differential 

propagation rather than values. (propagate with 

prob.1 over subkey XOR) 

• Values after 𝜋𝑖 for the query that is chosen to be a 

pair can be looked up by reusing primitive queries.

Our Approach: Meet-in-the-Middle
𝐿0 𝑅0

𝜋1
𝐾1𝐾1

′

𝜋2
𝐾2𝐾2

′

𝜋3
𝐾3𝐾3

′

𝜋4
𝐾4𝐾4

′

𝜋5
𝐾5𝐾5

′

𝑉2𝑊2

𝑉3𝑊3

𝑉4𝑊4

𝐿5 𝑅5

Figures are for 5 rounds.
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• Definition of Set 𝕊1: 

MSB: 𝑛 −
𝑟−2

𝑟−1
𝑛 bits are constant (𝑐𝑖)

LSB:         
𝑟−2

𝑟−1
𝑛 bits take all values 

• Definition of Set 𝕊2: 

MSB:      
𝑟−2

𝑟−1
𝑛 bits take all values

LSB: 𝑛 −
𝑟−2

𝑟−1
𝑛 bits are constant (𝑐)

• Construction Queries
– Query 𝑟 − 2 sets of  𝕊1

• Primitive Queries
– Query 𝕊2 for all but the first and the last rounds.

By taking any combination of construction and 
primitive queries, a match is expected.

Query Strategy
𝐿0 𝑅0

𝜋1
𝐾1𝐾1

′

𝜋2
𝐾2𝐾2

′

𝜋3
𝐾3𝐾3

′

𝜋4
𝐾4𝐾4

′

𝜋5
𝐾5𝐾5

′

𝑉2𝑊2

𝑉3𝑊3

𝑉4𝑊4

𝐿5 𝑅5

∈ 𝕊1 fixed

∈ 𝕊2

|𝕊2|

|𝕊2|

𝑐4 ∗
𝑐3 ∗
𝑐2 ∗
𝑐1 ∗

∗ 𝑐
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• For all 𝐿0| 𝑅0, 𝑉2,𝑊2 , . . . , 𝑉𝑟−1,𝑊𝑟−1 , 𝐿𝑟 |𝑅𝑟, 

make a pair with 𝐿0
′ | 𝑅0

′ , 𝐿𝑟
′ |𝑅𝑟

′ .

1. 1st Round: Δ0 is simply computed.

2. 2nd Round: 𝑉2
′ is computed 𝑉2 ⊕Δ0. 𝑉2

′ exists in 

primitive queries, so it’s possible to look up 𝑊2
′. 

Then, Δ2 = W2 ⊕𝑊2
′ can be computed.

3. 3rd to 𝑟-1 rounds: 𝑉𝑖
′ is computed 𝑉𝑖 ⊕Δ𝑖−1. If 

𝑉𝑖
′ exists in primitive queries, then look up 𝑊𝑖

′

and compute Δ𝑖 = W𝑖 ⊕𝑊𝑖
′.

4. Last round: Check the correctness of the pair 

by matching the left-half of the ciphertext.

Distinguished Procedure
Δ0 0

𝜋1
𝐾1𝐾1

′

𝜋2
𝐾2𝐾2

′

𝜋3
𝐾3𝐾3

′

𝜋4
𝐾4

𝐾4
′

𝜋5
𝐾5𝐾5

′

Δ00

Δ2Δ0

Δ0 ⊕Δ3Δ2

Δ2 ⊕Δ4Δ0 ⊕Δ3

Δ2 ⊕Δ4 ∗

𝑉2
𝑉2 ⊕Δ0

𝑊2

𝑊2 ⊕Δ2

𝑉3
𝑉3 ⊕Δ2

𝑊3

𝑊3 ⊕Δ3

𝑉4
𝑉4 ⊕Δ0 ⊕Δ3

𝑊4

𝑊4 ⊕Δ4

𝐿0
𝐿0 ⊕Δ0

𝐿5
𝐿5 ⊕Δ2 ⊕Δ4

∗∗

∈ 𝑥 ∗ ∗ 0

𝑥 = 𝑐1 ⊕ 𝑐𝑗 , 𝑗 ∈ [1 − 4]

Green represents differences.
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New Proofs
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Proof with Resampling Method

 Tight mu-bound: 
𝑟−2

𝑟−1
𝑛 bits 

for KAF-P with a single permutation.

 Proof Methods:

• Patarin's coefficient-H technique.

• Resampling method with new procedures for KAF-P. 

 Resampling method for any 𝑟

• Introduced for Key Alternating Cipher at EUROCRYPT2024.

• Define dummy internal values for each (M,C)

by forward and backward sampling steps in the ideal word.

1. Perform a forward sampling.

2. Perform an inverse sampling 
if a collision occurs for some internal value.

M

⊕ ⊕
K1

⊕
K1

⊕ ⊕
K2

⊕
K2

⊕ ⊕
K3

⊕
K3

⊕ ⊕
K4

⊕
K4

⊕ ⊕
K5

⊕
K5

⊕ ⊕
K6

⊕
K6

⊕ ⊕
K7

⊕
K7

⊕ ⊕
K8

⊕
K8

⊕ ⊕
K9

⊕
K9

C



20

Proof with Resampling Method

 Tight mu-bound: 
𝑟−2

𝑟−1
𝑛 bits 

for KAF-P with a single permutation.

 Proof Methods:

• Patarin's coefficient-H technique.

• Resampling method with new procedures for KAF-P. 

 Resampling method for any 𝑟

• Introduced for Key Alternating Cipher at EUROCRYPT2024.

• Define dummy internal values for each (M,C)

by forward and backward sampling steps in the ideal word.

1. Perform a forward sampling.

2. Perform an inverse sampling 
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⊕K0

⊕K1

⊕K2

M

C

⊕K3

⊕K4

⊕K5

⊕K6

⊕K7
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Proof with Resampling Method

 Tight mu-bound: 
𝑟−2

𝑟−1
𝑛 bits 

for KAF-P with a single permutation.

 Proof Methods:

• Patarin's coefficient-H technique.

• Resampling method with new procedures for KAF-P. 

 Resampling method for any 𝑟
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• Define dummy internal values for each (M,C)

by forward and backward sampling steps in the ideal word.

1. Perform a forward sampling.

2. Perform an inverse sampling 
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⊕K0

⊕K1

⊕K2

M

C

⊕K3

⊕K4

⊕K5

⊕K6

⊕K7

①
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Proof with Resampling Method

 Tight mu-bound: 
𝑟−2

𝑟−1
𝑛 bits 

for KAF-P with a single permutation.

 Proof Methods:

• Patarin's coefficient-H technique.

• Resampling method with new procedures for KAF-P. 

 Resampling method for any 𝑟

• Introduced for Key Alternating Cipher at EUROCRYPT2024.

• Define dummy internal values for each (M,C)

by forward and backward sampling steps in the ideal word.

1. Perform a forward sampling.

2. Perform an inverse sampling 
if a collision occurs for some internal value.

⊕K0

⊕K1

⊕K2

M

C

⊕K3

⊕K4

⊕K5

⊕K6

⊕K7

①

previously 
defined

inconsistent

collision

≠
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Proof with Resampling Method

 Tight mu-bound: 
𝑟−2

𝑟−1
𝑛 bits 

for KAF-P with a single permutation.

 Proof Methods:

• Patarin's coefficient-H technique.

• Resampling method with new procedures for KAF-P. 

 Resampling method for any 𝑟

• Introduced for Key Alternating Cipher at EUROCRYPT2024.

• Define dummy internal values for each (M,C)

by forward and backward sampling steps in the ideal word.

1. Perform a forward sampling.

2. Perform an inverse sampling 
if a collision occurs for some internal value.

⊕K0

⊕K1

⊕K2

M

C

⊕K3

⊕K4

⊕K5

⊕K6

⊕K7 ②
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Resampling Method for KAF-P

 Update the resampling method 
for KAF-P with a single permutation.

 Differences between KAC and KAF-P.

• KAC: 𝑟 − 1 internal values define all internal values.

• KAF-P: 𝑟 − 2 internal values define all internal 
values. 

 Collision events for failures of the resampling method.

• KAC: 1

• KAF-P: 3

 We give a new resampling algorithm for KAF-P 
with the three collision events

⇒ Tight mu-bound for KAF-P: 
𝑟−2

𝑟−1
𝑛 bits.

⊕K0

⊕K1

⊕K2

M

C

⊕K3

⊕K4

⊕K5

⊕K6

⊕K7

M

⊕ ⊕
K1

⊕
K1

⊕ ⊕
K2

⊕
K2

⊕ ⊕
K3

⊕
K3

⊕ ⊕
K4

⊕
K4

⊕ ⊕
K5

⊕
K5

⊕ ⊕
K6

⊕
K6

⊕ ⊕
K7

⊕
K7

⊕ ⊕
K8

⊕
K8

⊕ ⊕
K9

⊕
K9

C
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Resampling Method for KAF-P

 Update the resampling method 
for KAF-P with a single permutation.

 Differences between KAC and KAF-P.

• KAC: 𝑟 − 1 internal values define all internal values.

• KAF-P: 𝑟 − 2 internal values define all internal values. 

 Collision events for failures of the resampling method.

• KAC: 1

• KAF-P: 3

 We give a new resampling algorithm for KAF-P 
with the three collision events

⇒ Tight mu-bound for KAF-P: 
𝑟−2

𝑟−1
𝑛 bits.

M

⊕ ⊕
K1

⊕
K1

⊕ ⊕
K2

⊕
K2

⊕ ⊕
K3

⊕
K3

⊕ ⊕
K4

⊕
K4

⊕ ⊕
K5

⊕
K5

⊕ ⊕
K6

⊕
K6

⊕ ⊕
K7

⊕
K7

⊕ ⊕
K8

⊕
K8

⊕ ⊕
K9

⊕
K9

C

≠

M

⊕ ⊕
K1

⊕
K1

⊕ ⊕
K2

⊕
K2

⊕ ⊕
K3

⊕
K3

⊕ ⊕
K4

⊕
K4

⊕ ⊕
K5

⊕
K5

⊕ ⊕
K6

⊕
K6

⊕ ⊕
K7

⊕
K7

⊕ ⊕
K8

⊕
K8

⊕ ⊕
K9

⊕
K9

C

M

⊕ ⊕
K1

⊕
K1

⊕ ⊕
K2

⊕
K2

⊕ ⊕
K3

⊕
K3

⊕ ⊕
K4

⊕
K4

⊕ ⊕
K5

⊕
K5

⊕ ⊕
K6

⊕
K6

⊕ ⊕
K7

⊕
K7

⊕ ⊕
K8

⊕
K8

⊕ ⊕
K9

⊕
K9

C

≠

≠
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• Provable tight security bound of Feistel KAF-P ciphers 

– in the multi-user (mu) setting

– a single primitive across all rounds 

– 𝑟 − 2 correlated subkeys for 𝑟 rounds

• By applying the resampling method to Feistel KAF-P ciphers, 

security is proven to be 𝑂(2
𝑟−2

𝑟−1
𝑛) for 𝑟 rounds.

• We also provide a new matching attack by information-theoretic 

variant of the meet-in-the-middle attack.

Conclusion

Thank you for your attention!!


