# How to Model Unitary Oracles

Mark Zhandry (NTT Research & Stanford University)

### Q: What does it mean to "efficiently implement" a unitary?

First pass at formalization only recently, by [Bostanci-Efron-Metger-Poremba-Qian-Yuen'23]

Q: How should we model query access to efficient unitaries?

 $|\Psi\rangle \rightarrow U |\Psi\rangle$  What about inverse, controlling, anything else?

Q: What does a black box unitary (e.g. for separations) look like?

Primitive P Primitive Q A

Adversary A for Q Adversary B for P

#### Our thesis (subject to further scrutiny):

 Efficient implementation = small circuit that implements U including global phase, ideally to within exponentially-small error

#### Our thesis (subject to further scrutiny):

- Efficient implementation = small circuit that implements U including global phase, ideally to within exponentially-small error
- Black box constructions and reductions should allow controlling CU, (controlled) inverses CU<sup>†</sup>, as well as conjugates CU<sup>\*</sup> and transposes CU<sup>†</sup>,

## How to implement **CU**, **U**<sup>†</sup>



#### Common when using quantum sub-routines

- Gentle Measurements [Winter'99, Aaronson'04]
- Hadamard Test [Aharonov-Jones-Landau'09]
- Phase estimation [Kitaev'95]
- Amplitude amplification where angle unknown [Brassard-Høyer'97, Grover'98]
- Quantum state repair [Chiesa-Ma-Spooner-Z'21]

• ...

Caveat: Global Phase

If **Q** is a quantum circuit, the unitary implemented by controlling each gate is indeed **CQ** 

**BUT** 

We usually ignore overall phase when implementing unitaries

$$Q = e^{i\theta} U \rightarrow CQ = C(e^{i\theta} U) \neq CU$$

Inherent with existing notion of universality (defined ignoring global phase)

Caveat: Global Phase

If we want "efficient implementation" to facilitate controlling, need to know global phase

 $(Q, \theta)$  implements U means  $U = e^{i\theta} Q$ 

Fortunately, we generally know the phase **0** 

## How to actually implement **CU**



## How to implement CU, U<sup>†</sup>, U<sup>\*</sup>, U<sup>T</sup>





Just because we can model **U**\*, **U**<sup>T</sup>, should we?

This work: several results supporting that yes, we should

## Black-box separations

We can implement CU,  $U^{\dagger}$ ,  $U^{\dagger}$ ,  $U^{\dagger}$  in real world, so any oracle separation including these is "closer" to reality

Thm (informal): Cannot construct quantum oracle U from any classical oracle C, unless black-box unitary includes  $U^{\dagger}$ ,  $U^{\dagger}$ ,  $U^{\dagger}$  (with caveats; also note lack of controlling)

Note: this theorem gives necessary conditions, but no indication how to actually build **U** 

Implication: cannot generically lift unitary oracle separations to classical oracle separations unless this modelling is followed

#### Black-box reductions

Likewise, reductions utilizing a unitary adversary **U** may make use of **CU**, **U**<sup>†</sup>, **U**<sup>\*</sup>, **U**<sup>T</sup>

**Thm (informal)**: Under certain (admittedly contrived) conditions, can extend the length of 1-time pseudorandom state generators by 1 qubit. Reduction inherently require  $\mathbf{U}^*$ 

## Public Random Unitary Model

```
Thm [Ma-Huang'25]:  C\ P\ F\ C' \approx U_{\text{(with inverse queries)}}   C,C' = \text{random Cliffords}   F = \sum_{x} |x\rangle\langle x| \ e^{i\ 2\ \pi\ f(x)\ /\ q} \ \text{for random (secret) function } \mathbf{f}   P = \sum_{x} |p(x)\rangle\langle x| \ \text{for random (secret) permutation } \mathbf{p}
```

Interesting question: can making **F,P** public allow us to construct public random unitaries from random functions/permutations?

## Public Random Unitary Model

Necessary-seeming first step: can we build PRUs from PRFs, such that PRU is secure against queries to  $\mathbf{U}$ ,  $\mathbf{U}^{\dagger}$ ,  $\mathbf{U}^{\dagger}$  (\*-security?)

Thm (this work): When q=2, CPFC' is not \*-secure

Is there anything beyond CU, U<sup>†</sup>, U<sup>\*</sup>, U<sup>T</sup>?

(Anti-) Homomorphisms on Unitaries

**CU, U**\* are *homomorphisms* on unitaries

$$C(UV) = (CU)(CV)$$
  $(UV)^* = (U^*)(V^*)$ 

(Anti-) Homomorphisms on Unitaries

**CU, U**\* are *homomorphisms* on unitaries

$$C(UV) = (CU)(CV)$$
  $(UV)^* = (U^*)(V^*)$ 

U<sup>T</sup>, U<sup>†</sup> are anti-homomorphisms

$$(UV)^{T} = (V^{T})(U^{T})$$
  $(UV)^{\dagger} = (V^{\dagger})(U^{\dagger})$ 

All anti-homomorphisms are the inverse of some homomorphism

(Anti-) Homomorphisms on Unitaries

**CU, U**\* are *homomorphisms* on unitaries

$$C(UV) = (CU)(CV)$$
  $(UV)^* = (U^*)(V^*)$ 

U<sup>T</sup>, U<sup>†</sup> are anti-homomorphisms

$$(UV)^{T} = (V^{T})(U^{T})$$
  $(UV)^{\dagger} = (V^{\dagger})(U^{\dagger})$ 

All anti-homomorphisms are the inverse of some homomorphism

Can efficiently compute (anti-)homomorphisms by applying them gate-by-gate

# Concrete question: what homomorphisms can be efficiently computed? Is there anything except **CU**, **U**\*?

**Thm** (this work): Let **H** be some *continuous* homomorphism. Then either:

- H(U) can be implemented by polynomially-many queries to CU or CU\*, or
- **H** has no efficient implementation for unitaries using even 1 ancilla qubit

Most interesting unitaries use ancillas

# Ancilla complexity

**Thm** (this work): Suppose **PH** ⊈ **BPP**. Then there is a family of quantum circuits that can be computed efficiently with 2 ancillas, but not 0 ancillas

Idea: determinants are a homomorphism that works on circuits with 0 ancillas, but not on circuits using ancillas

In particular, obtain a *quantum* complexity separation from a purely classical separation

## Thanks!