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Q: What does it mean to “efficiently implement” a unitary?
First pass at formalization only recently, by [Bostanci-Efron-Metger-Poremba-Qian-Yuen’23]



Q: How should we model query access to efficient unitaries?
|Ψ⟩ à U |Ψ⟩ What about inverse, controlling, anything else?



Q: What does a black box unitary (e.g. for separations) look like?

Primitive P Primitive Q
P

Adversary A for Q Adversary B for P
A



Our thesis (subject to further scrutiny):

• Efficient implementation = small circuit that 
implements U including global phase, ideally to within 
exponentially-small error



Our thesis (subject to further scrutiny):

• Efficient implementation = small circuit that 
implements U including global phase, ideally to within 
exponentially-small error

• Black box construc>ons and reduc>ons should allow 
controlling CU, (controlled) inverses CU†, as well as 
conjugates CU* and transposes CUT,



How to implement CU, U†
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Common when using quantum sub-routines
• Gentle Measurements [Winter’99, Aaronson’04]
• Hadamard Test [Aharonov-Jones-Landau’09]
• Phase estimation [Kitaev’95]
• Amplitude amplification where angle unknown [Brassard-Høyer’97, Grover’98]
• Quantum state repair [Chiesa-Ma-Spooner-Z’21]
• …



Caveat: Global Phase

If Q is a quantum circuit, the unitary implemented 
by controlling each gate is indeed CQ

BUT

We usually ignore overall phase when 
implemen>ng unitaries

Q = eiθ U à CQ=C(eiθ U) ≠ CU

Inherent with existing notion of universality (defined ignoring global phase)



If we want “efficient implementation” to facilitate 
controlling, need to know global phase

(Q, θ) implements U      means       U = eiθ Q

Fortunately, we generally know the phase θ 

Caveat: Global Phase



How to actually implement CU
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How to implement CU, U†, U*, UT
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Much less common 
in the literature
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Just because we can model U*, UT, should we?

This work: several results suppor:ng that yes, we should



Black-box separations

We can implement CU, U†, U*, UT in real world, so any oracle separa>on 
including these is “closer” to reality

Thm (informal): Cannot construct quantum oracle U from any 
classical oracle C, unless black-box unitary includes U†, U*, UT   
(with caveats; also note lack of controlling)

Note: this theorem gives necessary conditions, but no indication how to actually build U

Implication: cannot generically lift unitary oracle separations to 
classical oracle separations unless this modelling is followed



Black-box reductions

Likewise, reductions utilizing a unitary adversary U 
may make use of CU, U†, U*, UT 

Thm (informal): Under certain (admiQedly contrived) condi>ons, 
can extend the length of 1->me pseudorandom state generators 
by 1 qubit. Reduc>on inherently require U*



Public Random Unitary Model

Thm [Ma-Huang’25]:

C P F C’ U≈

C,C’ = random Cliffords
F = ∑x |x⟩⟨x| ei 2 π f(x) / q for random (secret) function f
P = ∑x |p(x)⟩⟨x| for random (secret) permutation p

(with inverse queries)

Note: PFC construcLon due to [Metger-Poremba-Sinha-Yuen’24]

Interesting question: can making F,P public allow us to construct public 
random unitaries from random functions/permutations?



Public Random Unitary Model

Necessary-seeming first step: can we build PRUs 
from PRFs, such that PRU is secure against queries 

to U, U†, U*, UT (*-security?)

Thm (this work): When q=2, CPFC’ is not *-secure



Is there anything beyond CU, U†, U*, UT?



(Anti-) Homomorphisms on Unitaries 

CU, U* are homomorphisms on unitaries

C(UV) = (CU)(CV) (UV)* = (U*)(V*)
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UT, U† are anti-homomorphisms
(UV)T = (VT)(UT) (UV)† = (V†)(U†)

All anti-homomorphisms are the inverse of some homomorphism



(An>-) Homomorphisms on Unitaries 

CU, U* are homomorphisms on unitaries

C(UV) = (CU)(CV) (UV)* = (U*)(V*)

UT, U† are anti-homomorphisms
(UV)T = (VT)(UT) (UV)† = (V†)(U†)

All anti-homomorphisms are the inverse of some homomorphism

Can efficiently compute (an>-)homomorphisms by applying them gate-by-gate



Concrete question: what homomorphisms can be 
efficiently computed? Is there anything except CU, U* ?

Thm (this work): Let H be some continuous homomorphism. Then either:
• H(U) can be implemented by polynomially-many queries to CU or CU*, or
• H has no efficient implementation for unitaries using even 1 ancilla qubit

Most interesting 
unitaries use ancillas



Ancilla complexity



Thm (this work): Suppose PH ⊆ ̸BPP. Then there is a family of quantum 
circuits that can be computed efficiently with 2 ancillas, but not 0 ancillas

In par<cular, obtain a quantum complexity 
separa<on from a purely classical separa<on

Idea: determinants are a homomorphism that works on circuits with 0 ancillas, but 
not on circuits using ancillas



Thanks!


