
How to Model Unitary Oracles
Mark Zhandry (NTT Research & Stanford University)

Q: What does it mean to “efficiently implement” a unitary?
First pass at formalization only recently, by [Bostanci-Efron-Metger-Poremba-Qian-Yuen’23]

Q: How should we model query access to efficient unitaries?
|Ψ⟩ à U |Ψ⟩ What about inverse, controlling, anything else?

Q: What does a black box unitary (e.g. for separations) look like?

Primitive P Primitive Q
P

Adversary A for Q Adversary B for P
A

Our thesis (subject to further scrutiny):

• Efficient implementation = small circuit that
implements U including global phase, ideally to within
exponentially-small error

Our thesis (subject to further scrutiny):

• Efficient implementation = small circuit that
implements U including global phase, ideally to within
exponentially-small error

• Black box construc>ons and reduc>ons should allow
controlling CU, (controlled) inverses CU†, as well as
conjugates CU* and transposes CUT,

How to implement CU, U†

A
B

C

E

D
U =

A
B

C

E

D

CU =
A†

B†

C†

E†

D†

U† =

Common when using quantum sub-routines
• Gentle Measurements [Winter’99, Aaronson’04]
• Hadamard Test [Aharonov-Jones-Landau’09]
• Phase estimation [Kitaev’95]
• Amplitude amplification where angle unknown [Brassard-Høyer’97, Grover’98]
• Quantum state repair [Chiesa-Ma-Spooner-Z’21]
• …

Caveat: Global Phase

If Q is a quantum circuit, the unitary implemented
by controlling each gate is indeed CQ

BUT

We usually ignore overall phase when
implemen>ng unitaries

Q = eiθ U à CQ=C(eiθ U) ≠ CU

Inherent with existing notion of universality (defined ignoring global phase)

If we want “efficient implementation” to facilitate
controlling, need to know global phase

(Q, θ) implements U means U = eiθ Q

Fortunately, we generally know the phase θ

Caveat: Global Phase

How to actually implement CU

θ

P(θ)

θ’
(comes from implementing P(θ))

How to implement CU, U†, U*, UT

A*

B*

C*

E*

D*

U* =
AT

BT

CT

ET

DT

UT =

CU =
A†

B†

C†

E†

D†

U† =
A

B
C

E

D
U =

Much less common
in the literature

A
B

C

E

D

P(θ)

Just because we can model U*, UT, should we?

This work: several results suppor:ng that yes, we should

Black-box separations

We can implement CU, U†, U*, UT in real world, so any oracle separa>on
including these is “closer” to reality

Thm (informal): Cannot construct quantum oracle U from any
classical oracle C, unless black-box unitary includes U†, U*, UT
(with caveats; also note lack of controlling)

Note: this theorem gives necessary conditions, but no indication how to actually build U

Implication: cannot generically lift unitary oracle separations to
classical oracle separations unless this modelling is followed

Black-box reductions

Likewise, reductions utilizing a unitary adversary U
may make use of CU, U†, U*, UT

Thm (informal): Under certain (admiQedly contrived) condi>ons,
can extend the length of 1->me pseudorandom state generators
by 1 qubit. Reduc>on inherently require U*

Public Random Unitary Model

Thm [Ma-Huang’25]:

C P F C’ U≈

C,C’ = random Cliffords
F = ∑x |x⟩⟨x| ei 2 π f(x) / q for random (secret) function f
P = ∑x |p(x)⟩⟨x| for random (secret) permutation p

(with inverse queries)

Note: PFC construcLon due to [Metger-Poremba-Sinha-Yuen’24]

Interesting question: can making F,P public allow us to construct public
random unitaries from random functions/permutations?

Public Random Unitary Model

Necessary-seeming first step: can we build PRUs
from PRFs, such that PRU is secure against queries

to U, U†, U*, UT (*-security?)

Thm (this work): When q=2, CPFC’ is not *-secure

Is there anything beyond CU, U†, U*, UT?

(Anti-) Homomorphisms on Unitaries

CU, U* are homomorphisms on unitaries

C(UV) = (CU)(CV) (UV)* = (U*)(V*)

(An>-) Homomorphisms on Unitaries

CU, U* are homomorphisms on unitaries

C(UV) = (CU)(CV) (UV)* = (U*)(V*)

UT, U† are anti-homomorphisms
(UV)T = (VT)(UT) (UV)† = (V†)(U†)

All anti-homomorphisms are the inverse of some homomorphism

(An>-) Homomorphisms on Unitaries

CU, U* are homomorphisms on unitaries

C(UV) = (CU)(CV) (UV)* = (U*)(V*)

UT, U† are anti-homomorphisms
(UV)T = (VT)(UT) (UV)† = (V†)(U†)

All anti-homomorphisms are the inverse of some homomorphism

Can efficiently compute (an>-)homomorphisms by applying them gate-by-gate

Concrete question: what homomorphisms can be
efficiently computed? Is there anything except CU, U* ?

Thm (this work): Let H be some continuous homomorphism. Then either:
• H(U) can be implemented by polynomially-many queries to CU or CU*, or
• H has no efficient implementation for unitaries using even 1 ancilla qubit

Most interesting
unitaries use ancillas

Ancilla complexity

Thm (this work): Suppose PH ⊆ ̸BPP. Then there is a family of quantum
circuits that can be computed efficiently with 2 ancillas, but not 0 ancillas

In par<cular, obtain a quantum complexity
separa<on from a purely classical separa<on

Idea: determinants are a homomorphism that works on circuits with 0 ancillas, but
not on circuits using ancillas

Thanks!

