How to Model Unitary Oracles

Mark Zhandry (NTT Research & Stanford University)

Q: What does it mean to “efficiently implement” a unitary?

First pass at formalization only recently, by [Bostanci-Efron-Metger-Poremba-Qian-Yuen’23]

Q: How should we model query access to efficient unitaries?

|W) 2> U |W) What about inverse, controlling, anything else?

Q: What does a black box unitary (e.g. for separations) look like?
/:/P
Primitive P =) Primitive Q

~ A

Adversary AforQ mwmmp Adversary B for P

Our thesis (subject to further scrutiny):

 Efficient implementation = small circuit that
implements U including global phase, ideally to within
exponentially-small error

Our thesis (subject to further scrutiny):

 Efficient implementation = small circuit that
implements U including global phase, ideally to within
exponentially-small error

* Black box constructions and reductions should allow
controlling CU, (controlled) inverses CU", as well as
conjugates CU™ and transposes CUT,

How to implement CU, U"

u=—-:H>"2 m) CU=—° Ut = Bl —

Common when using quantum sub-routines

 Gentle Measurements [Winter’99, Aaronson’04]

Hadamard Test [Aharonov-Jones-Landau’09]

* Phase estimation [Kitaev'95]

 Amplitude amplification where angle unknown [Brassard-Hgyer’97, Grover’98]
* Quantum state repair [Chiesa-Ma-Spooner-Z2'21]

Caveat: Global Phase

If Q is a quantum circuit, the unitary implemented
by controlling each gate is indeed CQ

BUT

We usually ignore overall phase when
implementing unitaries

Q=e®U - €Q=C(e®U)#CU

Inherent with existing notion of universality (defined ignoring global phase)

Caveat: Global Phase

If we want “efficient implementation” to facilitate
controlling, need to know global phase

(Q, 8) implementsU means U=e®Q

Fortunately, we generally know the phase 6

How to actually implement CU

R L

0 0’

(comes from implementing P(0))

How to implement CU, UY, U*, UT

P(6)

T @ @ @ T—
Al E _|A| E
- |B| - |B
U= cl m) CU c|
D D
:A*_ E*
Much less common * _ B*
. . 4 U =— 1.
in the literature C—
D*

CT

BT

Just because we can model U*, UT, should we?

This work: several results supporting that yes, we should

Black-box separations

We can implement CU, U', U%, UT in real world, so any oracle separation
including these is “closer” to reality

Thm (informal): Cannot construct quantum oracle U from any
classical oracle C, unless black-box unitary includes U*, U, UT
(with caveats; also note lack of controlling)

Note: this theorem gives necessary conditions, but no indication how to actually build U

Implication: cannot generically lift unitary oracle separations to
classical oracle separations unless this modelling is followed

Black-box reductions

Likewise, reductions utilizing a unitary adversary U
may make use of CU, UT, U™, UT

Thm (informal): Under certain (admittedly contrived) conditions,
can extend the length of 1-time pseudorandom state generators
by 1 qubit. Reduction inherently require U”

Public Random Unitary Model

Thm [Ma-Huang’25]:

CPFC = U

(with inverse queries)

C,C’ = random Cliffords
F=73, |x)(x] e2mfx/afor random (secret) function f
P =73, |p(x)){x] for random (secret) permutation p

Interesting question: can making F,P public allow us to construct public
random unitaries from random functions/permutations?

Note: PFC construction due to [Metger-Poremba-Sinha-Yuen’24]

Public Random Unitary Model

Necessary-seeming first step: can we build PRUs
from PRFs, such that PRU is secure against queries

to U, U, U", UT (*-security?)

Thm (this work): When g=2, CPFC’ is not *-secure

Is there anything beyond CU, U, U, UT?

(Anti-) Homomorphisms on Unitaries

CU, U are homomorphisms on unitaries

C(UV) = (CU)(CV) (UV)" = (U)(V')

(Anti-) Homomorphisms on Unitaries

CU, U are homomorphisms on unitaries

C(UV) = (CU)(CV) (UV)" = (U)(V')

UT, U" are anti-homomorphisms
(UV)" = (VT)(U") (UV)* = (VT)(UT)

All anti-homomorphisms are the inverse of some homomorphism

(Anti-) Homomorphisms on Unitaries

CU, U are homomorphisms on unitaries

C(UV) = (CU)(CV) (UV)" = (U)(V')
UT, U" are anti-homomorphisms

(UV)" = (VT)(U') (UV)" = (V)(U7)

All anti-homomorphisms are the inverse of some homomorphism

Can efficiently compute (anti-)homomorphisms by applying them gate-by-gate

Concrete question: what homomorphisms can be
efficiently computed? Is there anything except CU, U*?

Thm (this work): Let H be some continuous homomorphism. Then either:
* H(U) can be implemented by polynomially-many queries to CU or CU", or
* H has no efficient implementation for unitaries using even lﬂancilla qubit

[

Most interesting
unitaries use ancillas

Ancilla complexity

Thm (this work): Suppose PH & BPP. Then there is a family of quantum
circuits that can be computed efficiently with 2 ancillas, but not 0 ancillas

Idea: determinants are a homomorphism that works on circuits with 0 ancillas, but
not on circuits using ancillas

In particular, obtain a guantum complexity
separation from a purely classical separation

Thanks!

