MORE EFFICIENT ISOGENY PROOFS OF KNOWLEDGE VIA CANONICAL MODULAR POLYNOMIALS Joint work with Thomas den Hollander, Sören Kleine, Marzio Mula & Daniel Slamanig Sebastian A. Spindler • August 18th, 2025 With a zero-knowledge proof of knowledge! ## With a zero-knowledge proof of knowledge! **Multiple applications**: Multi-party protocols (honest behavior control, trustless setup), signature schemes, ... We want four properties from a zero-knowledge proof of knowledge: Completeness: If Preston knows a secret, he should be able to convince Veronica - Completeness: If Preston knows a secret, he should be able to convince Veronica - Knowledge Soundness: Preston cannot deceive Veronica if he doesn't know a secret - Completeness: If Preston knows a secret, he should be able to convince Veronica - Knowledge Soundness: Preston cannot deceive Veronica if he doesn't know a secret - Zero-Knowledge: Veronica should not learn Preston's secret - Completeness: If Preston knows a secret, he should be able to convince Veronica - Knowledge Soundness: Preston cannot deceive Veronica if he doesn't know a secret - Zero-Knowledge: Veronica should not learn Preston's secret - Non-Interactivity: Preston can produce a proof without Veronica, and Veronica can verify it without Preston Knowledge of secret should be special Knowledge of secret should be special \rightsquigarrow Need hard problem! Knowledge of secret should be special → Need hard problem! #### **DEFINITION** Let $\ell \neq p$ be primes. Knowledge of secret should be special → Need hard problem! #### DEFINITION Let $\ell \neq p$ be primes. The **supersingular isogeny graph** $G_{\ell}(p)$ is the connected directed multigraph with: Knowledge of secret should be special → Need hard problem! #### **DEFINITION** Let $\ell \neq p$ be primes. The **supersingular isogeny graph** $G_{\ell}(p)$ is the connected directed multigraph with: • Vertices: j-invariants $j(E) \in \mathbb{F}_{p^2}$ of supersingular curves Knowledge of secret should be special → Need hard problem! #### **DEFINITION** Let $\ell \neq p$ be primes. The **supersingular isogeny graph** $G_{\ell}(p)$ is the connected directed multigraph with: - Vertices: j-invariants $j(E) \in \mathbb{F}_{p^2}$ of supersingular curves - Edges j(E) o j(E') correspond* to ℓ -isogenies E o E' ^{*}Up to some notion of equivalence Knowledge of secret should be special → Need hard problem! #### **DEFINITION** Let $\ell \neq p$ be primes. The **supersingular isogeny graph** $G_{\ell}(p)$ is the connected directed multigraph with: - Vertices: j-invariants $j(E) \in \mathbb{F}_{p^2}$ of supersingular curves - Edges j(E) o j(E') correspond* to ℓ -isogenies E o E' Our underlying hard problem: Finding a path between $j(E_0)$ and $j(E_1)$ in $G_{\ell}(p)$ is hard! ^{*}Up to some notion of equivalence Knowledge of secret should be special → Need hard problem! #### **DEFINITION** Let $\ell \neq p$ be primes. The **supersingular isogeny graph** $G_{\ell}(p)$ is the connected directed multigraph with: - Vertices: j-invariants $j(E) \in \mathbb{F}_{p^2}$ of supersingular curves - Edges j(E) o j(E') correspond* to ℓ -isogenies E o E' Our underlying hard problem: Finding a path between $j(E_0)$ and $j(E_1)$ in $G_{\ell}(p)$ is hard! (Parameter sizes: ℓ small, $p \approx 2^{2\lambda}$ for λ bits security) ^{*}Up to some notion of equivalence A rank-1 constraint system is of the form $$(\mathbf{A}) \begin{pmatrix} 1 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} \bullet (\mathbf{B}) \begin{pmatrix} 1 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} = (\mathbf{C}) \begin{pmatrix} 1 \\ w_1 \\ \vdots \\ w_n \end{pmatrix}$$ with statement matrices $\mathbf{A},\mathbf{B},\mathbf{C}\in\mathbb{F}^{m\times(1+n)}$ and witness vector $w=(1,w_1,\dots,w_n)$ A rank-1 constraint system is of the form $$(\mathbf{A}) \begin{pmatrix} 1 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} \bullet (\mathbf{B}) \begin{pmatrix} 1 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} = (\mathbf{C}) \begin{pmatrix} 1 \\ w_1 \\ \vdots \\ w_n \end{pmatrix}$$ with statement matrices $\mathbf{A},\mathbf{B},\mathbf{C}\in\mathbb{F}^{m\times(1+n)}$ and witness vector $w=(1,w_1,\dots,w_n)$ A rank-1 constraint system is of the form $$(\mathbf{A}) \begin{pmatrix} 1 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} \bullet (\mathbf{B}) \begin{pmatrix} 1 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} = (\mathbf{C}) \begin{pmatrix} 1 \\ w_1 \\ \vdots \\ w_n \end{pmatrix}$$ with statement matrices $A,B,C\in\mathbb{F}^{m\times(1+n)}$ and witness vector $w=(1,w_1,\dots,w_n)$ Can plug this into a zk-SNARK for R1CS (e.g. Aurora, Ligero) to obtain compact & efficient zero-knowledge proof of knowledge A rank-1 constraint system is of the form $$(\mathbf{A}) \begin{pmatrix} 1 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} \bullet (\mathbf{B}) \begin{pmatrix} 1 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} = (\mathbf{C}) \begin{pmatrix} 1 \\ w_1 \\ \vdots \\ w_n \end{pmatrix}$$ with statement matrices $A,B,C\in\mathbb{F}^{m\times(1+n)}$ and witness vector $w=(1,w_1,\dots,w_n)$ - Can plug this into a zk-SNARK for R1CS (e.g. Aurora, Ligero) to obtain compact & efficient zero-knowledge proof of knowledge - This approach was first pursued in [CLL23] #### **CANONICAL MODULAR POLYNOMIALS** Can we find small polynomials to represent ℓ -isogenies? #### CANONICAL MODULAR POLYNOMIALS Can we find small polynomials to represent ℓ -isogenies? Yes! But we have to restrict to $\ell \in \{2, 3, 5, 7, 13\}$ for technical reasons. ## Can we find small polynomials to represent ℓ -isogenies? Yes! But we have to restrict to $\ell \in \{2,3,5,7,13\}$ for technical reasons. $$\begin{split} &\Phi_2^c(X,j) = X^3 + 48X^2 + 768X + 4096 - X \cdot j, \\ &\Phi_3^c(X,j) = X^4 + 36X^3 + 270X^2 + 756X + 729 - X \cdot j, \\ &\Phi_5^c(X,j) = X^6 + 30X^5 + 315X^4 + 1300X^3 \\ &\quad + 1575X^2 + 750X + 125 - X \cdot j, \\ &\Phi_7^c(X,j) = X^8 + 28X^7 + 322X^6 + 1904X^5 + 5915X^4 \\ &\quad + 8624X^3 + 4018X^2 + 748X + 49 - X \cdot j, \\ &\Phi_{13}^c(X,j) = X^{14} + 26X^{13} + 325X^{12} + 2548X^{11} + 13832X^{10} \\ &\quad + 54340X^9 + 157118X^8 + 333580X^7 + 509366X^6 \\ &\quad + 534820X^5 + 354536X^4 + 124852X^3 \\ &\quad + 15145X^2 + 746X + 13 - X \cdot j. \end{split}$$ # Can we find small polynomials to represent ℓ-isogenies? Yes! But we have to restrict to $\ell \in \{2,3,5,7,13\}$ for technical reasons. $$\begin{split} &\Phi_2^c(X,j) = X^3 + 48X^2 + 768X + 4096 - X \cdot j, \\ &\Phi_3^c(X,j) = X^4 + 36X^3 + 270X^2 + 756X + 729 - X \cdot j, \\ &\Phi_5^c(X,j) = X^6 + 30X^5 + 315X^4 + 1300X^3 \\ &\quad + 1575X^2 + 750X + 125 - X \cdot j, \\ &\Phi_7^c(X,j) = X^8 + 28X^7 + 322X^6 + 1904X^5 + 5915X^4 \\ &\quad + 8624X^3 + 4018X^2 + 748X + 49 - X \cdot j, \\ &\Phi_{13}^c(X,j) = X^{14} + 26X^{13} + 325X^{12} + 2548X^{11} + 13832X^{10} \\ &\quad + 54340X^9 + 157118X^8 + 333580X^7 + 509366X^6 \\ &\quad + 534820X^5 + 354536X^4 + 124852X^3 \\ &\quad + 15145X^2 + 746X + 13 - X \cdot j. \end{split}$$ #### Can we find small polynomials to represent ℓ-isogenies? Yes! But we have to restrict to $\ell \in \{2,3,5,7,13\}$ for technical reasons. $$\begin{split} &\Phi_2^c(X,j) = X^3 + 48X^2 + 768X + 4096 - X \cdot j, \\ &\Phi_3^c(X,j) = X^4 + 36X^3 + 270X^2 + 756X + 729 - X \cdot j, \\ &\Phi_5^c(X,j) = X^6 + 30X^5 + 315X^4 + 1300X^3 \\ &\quad + 1575X^2 + 750X + 125 - X \cdot j, \\ &\Phi_7^c(X,j) = X^8 + 28X^7 + 322X^6 + 1904X^5 + 5915X^4 \\ &\quad + 8624X^3 + 4018X^2 + 748X + 49 - X \cdot j, \\ &\Phi_{13}^c(X,j) = X^{14} + 26X^{13} + 325X^{12} + 2548X^{11} + 13832X^{10} \\ &\quad + 54340X^9 + 157118X^8 + 333580X^7 + 509366X^6 \\ &\quad + 534820X^5 + 354536X^4 + 124852X^3 \\ &\quad + 15145X^2 + 746X + 13 - X \cdot j. \end{split}$$ # How to use Φ_{ℓ}^c ? Our main Results [dH+24] Motivated by the modular theory in the background, we proved: # How to use Φ_{ℓ}^{c} ? Our main Results [DH+24] Motivated by the modular theory in the background, we proved: #### **THEOREM** For $\ell \in \{2,3,5,7,13\}$ the edges $j_0 \to j_1$ in $G_\ell(p)$ correspond to the solutions of the system $$\Phi_\ell^c(X,j_0) = 0 = \Phi_\ell^c(\ell^s/X,j_1)$$ where $s = 12/(\ell - 1)$. ## How to use Φ_{ℓ}^{c} ? Our main Results [DH+24] Motivated by the modular theory in the background, we proved: #### **THEOREM** For $\ell \in \{2,3,5,7,13\}$ the edges $j_0 \to j_1$ in $G_\ell(p)$ correspond to the solutions of the system $$\Phi^c_\ell(X,j_0) = 0 = \Phi^c_\ell(\ell^s/X,j_1)$$ where $s = 12/(\ell - 1)$. #### **THEOREM** If $j_0\in\mathbb{F}_{\!p^2}$ is supersingular, then all roots of $\Phi^c_\ell(X,j_0)$ lie in $\mathbb{F}_{\!p^2}$. # How to use Φ_{ℓ}^{c} ? Our main Results [DH+24] Motivated by the modular theory in the background, we proved: #### **THEOREM** For $\ell \in \{2,3,5,7,13\}$ the edges $j_0 \to j_1$ in $G_\ell(p)$ correspond to the solutions of the system $$\Phi^c_\ell(X,j_0)=0=\Phi^c_\ell(\ell^s/X,j_1)$$ where $s = 12/(\ell - 1)$. #### **THEOREM** If $j_0\in\mathbb{F}_{\!p^2}$ is supersingular, then all roots of $\Phi^c_\ell(X,j_0)$ lie in $\mathbb{F}_{\!p^2}$. Why? Isogenies between supersingular curves can be defined over $\mathbb{F}_{\!p^2}!$ ### Our Approach: Canonical Modular Polynomial [DH+24] For each step $j_i \xrightarrow{f_i} j_{i+1}$ rephrase system $$\Phi^c_\ell(f_i,j_i) = 0 = \Phi^c_\ell(\ell^s/f_i,j_i)$$ as an R1CS. #### OUR APPROACH: CANONICAL MODULAR POLYNOMIAL [DH+24] For each step $j_i \xrightarrow{f_i} j_{i+1}$ rephrase system $$\Phi_\ell^c(f_i,j_i) = 0 = \Phi_\ell^c(\ell^s/f_i,j_i) \cdot \frac{f_i^{\ell+1}/\ell^s}{i}$$ as an R1CS. ### OUR APPROACH: CANONICAL MODULAR POLYNOMIAL [DH+24] For each step $j_i \xrightarrow{f_i} j_{i+1}$ rephrase system $$\Phi^c_\ell(f_i,j_i) = 0 = \Phi^c_\ell(\ell^s/f_i,j_i) \cdot \frac{f_i^{\ell+1}/\ell^s}{i}$$ as an R1CS. For $\ell=2$: $$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ f_i \\ f_i^2 \\ j_i - c_1' \\ j_{i+1} - c_1' \end{pmatrix} \bullet \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & c_2' & c_3' & -1 & 0 \\ 0 & c_3'' & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ f_i \\ f_i^2 \\ j_i - c_1' \\ j_{i+1} - c_1' \end{pmatrix}$$ $$= \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ -c_0' & 0 & 0 & 0 & 0 \\ -c_0'' & -c_1'' & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ f_i \\ f_i^2 \\ j_i - c_1' \\ j_{i+1} - c_1' \end{pmatrix}$$ | ℓ | Equations m | | Variables n | | Non-zero entries | | |--------|----------------|----------------|----------------|--------------------|------------------|-----------------| | | [CLL23] | Ours | [CLL23] | Ours | [CLL23] | Ours | | 2 | $4\lambda + 2$ | 3λ | $4\lambda + 3$ | $3\lambda + 1$ | $21\lambda + 6$ | 13λ | | 3 | | 2.524λ | | $2.524\lambda + 1$ | | 11.357λ | | 5 | | 2.584λ | | $2.584\lambda + 1$ | | 12.059λ | | 7 | | 2.493λ | | $2.493\lambda + 1$ | | 12.467λ | | 13 | | 2.702λ | | $2.702\lambda + 1$ | | 15.133λ | Table: Parameters of the R1CS where $\lambda = \log_2(\ell^k)$ | ℓ | Equations m | | Variables n | | Non-zero entries | | |--------|----------------|----------------|----------------|--------------------|------------------|-----------------| | | [CLL23] | Ours | [CLL23] | Ours | [CLL23] | Ours | | 2 | $4\lambda + 2$ | 3λ | $4\lambda + 3$ | $3\lambda + 1$ | $21\lambda + 6$ | 13λ | | 3 | | 2.524λ | | $2.524\lambda + 1$ | | 11.357λ | | 5 | | 2.584λ | | $2.584\lambda + 1$ | | 12.059λ | | 7 | | 2.493λ | | $2.493\lambda + 1$ | | 12.467λ | | 13 | | 2.702λ | | $2.702\lambda + 1$ | | 15.133λ | Table: Parameters of the R1CS where $\lambda = \log_2(\ell^k)$ | ℓ | Equations m | | Variables n | | Non-zero entries | | |--------|----------------|----------------|----------------|--------------------|------------------|-----------------| | | [CLL23] | Ours | [CLL23] | Ours | [CLL23] | Ours | | 2 | $4\lambda + 2$ | 3λ | $4\lambda + 3$ | $3\lambda + 1$ | $21\lambda + 6$ | 13λ | | 3 | | 2.524λ | | $2.524\lambda + 1$ | | 11.357λ | | 5 | | 2.584λ | | $2.584\lambda + 1$ | | 12.059λ | | 7 | | 2.493λ | | $2.493\lambda + 1$ | | 12.467λ | | 13 | | 2.702λ | | $2.702\lambda + 1$ | | 15.133λ | Table: Parameters of the R1CS where $\lambda = \log_2(\ell^k)$ | ℓ | Equations m | | Variables n | | Non-zero entries | | |--------|----------------|----------------|----------------|--------------------|------------------|-----------------| | | [CLL23] | Ours | [CLL23] | Ours | [CLL23] | Ours | | 2 | $4\lambda + 2$ | 3λ | $4\lambda + 3$ | $3\lambda + 1$ | $21\lambda + 6$ | 13λ | | 3 | | 2.524λ | | $2.524\lambda + 1$ | | 11.357λ | | 5 | | 2.584λ | | $2.584\lambda + 1$ | | 12.059λ | | 7 | | 2.493λ | | $2.493\lambda + 1$ | | 12.467λ | | 13 | | 2.702λ | | $2.702\lambda + 1$ | | 15.133λ | Table: Parameters of the R1CS where $\lambda = \log_2(\ell^k)$ | Field | | Auro | ra | Ligero | | | |--------------------|--------------------|---------|------|---------|------|--| | | | [CLL23] | Ours | [CLL23] | Ours | | | \mathbb{F}_{p^2} | Prover time (ms) | 934 | 669 | 587 | 420 | | | | Verifier time (ms) | 99 | 74 | 847 | 634 | | | | Proof size (kB) | 194 | 178 | 1849 | 1599 | | Table: Benchmarks for $\ell=2$ Can we use other modular polynomials to obtain smaller/more efficient proofs? Can we use other modular polynomials to - obtain smaller/more efficient proofs? - allow for a bigger range of primes ℓ? Can we use other modular polynomials to - obtain smaller/more efficient proofs? - allow for a bigger range of primes ℓ? Yes! Atkin modular polynomials, Weber modular polynomials, ... Can we use other modular polynomials to - obtain smaller/more efficient proofs? - allow for a bigger range of primes ℓ? Yes! Atkin modular polynomials, Weber modular polynomials, ... Other arithmetizations? # Thank you for your attention! [dH+24] T. den Hollander, S. Kleine, M. Mula, D. Slamanig, and S. A. Spindler. More Efficient Isogeny Proofs of Knowledge via Canonical Modular Polynomials. Cryptology ePrint Archive, Paper 2024/1738. 2024. To appear at CRYPTO 2025.