
MORE EFFICIENT ISOGENY PROOFS OF KNOWLEDGE VIA CANONICAL
MODULAR POLYNOMIALS

Joint work with Thomas den Hollander,
Sören Kleine, Marzio Mula & Daniel Slamanig

Sebastian A. Spindler August 18th, 2025



THE SCENARIO

Preston Veronica

I know a secret! Tell me the secret!No Then I don’t believe youLet me prove it to you! How?

With a zero-knowledge proof of knowledge!

Multiple applications: Multi-party protocols (honest behavior control,
trustless setup), signature schemes, …

2 / 12



THE SCENARIO

Preston Veronica

I know a secret!

Tell me the secret!No Then I don’t believe youLet me prove it to you! How?

With a zero-knowledge proof of knowledge!

Multiple applications: Multi-party protocols (honest behavior control,
trustless setup), signature schemes, …

2 / 12



THE SCENARIO

Preston Veronica

I know a secret! Tell me the secret!

No Then I don’t believe youLet me prove it to you! How?

With a zero-knowledge proof of knowledge!

Multiple applications: Multi-party protocols (honest behavior control,
trustless setup), signature schemes, …

2 / 12



THE SCENARIO

Preston Veronica

I know a secret!

Tell me the secret!No

Then I don’t believe youLet me prove it to you! How?

With a zero-knowledge proof of knowledge!

Multiple applications: Multi-party protocols (honest behavior control,
trustless setup), signature schemes, …

2 / 12



THE SCENARIO

Preston Veronica

I know a secret! Tell me the secret!

No Then I don’t believe you

Let me prove it to you! How?

With a zero-knowledge proof of knowledge!

Multiple applications: Multi-party protocols (honest behavior control,
trustless setup), signature schemes, …

2 / 12



THE SCENARIO

Preston Veronica

I know a secret! Tell me the secret!No Then I don’t believe youLet me prove it to you! How?

With a zero-knowledge proof of knowledge!

Multiple applications: Multi-party protocols (honest behavior control,
trustless setup), signature schemes, …

2 / 12



THE SCENARIO

Preston Veronica

I know a secret! Tell me the secret!No Then I don’t believe you

Let me prove it to you!

How?

With a zero-knowledge proof of knowledge!

Multiple applications: Multi-party protocols (honest behavior control,
trustless setup), signature schemes, …

2 / 12



THE SCENARIO

Preston Veronica

I know a secret! Tell me the secret!No Then I don’t believe you

Let me prove it to you! How?

With a zero-knowledge proof of knowledge!

Multiple applications: Multi-party protocols (honest behavior control,
trustless setup), signature schemes, …

2 / 12



THE SCENARIO

Preston Veronica

I know a secret! Tell me the secret!No Then I don’t believe you

Let me prove it to you! How?

With a zero-knowledge proof of knowledge!

Multiple applications: Multi-party protocols (honest behavior control,
trustless setup), signature schemes, …

2 / 12



THE SCENARIO

Preston Veronica

I know a secret! Tell me the secret!No Then I don’t believe you

Let me prove it to you! How?

With a zero-knowledge proof of knowledge!

Multiple applications: Multi-party protocols (honest behavior control,
trustless setup), signature schemes, …

2 / 12



GENERAL ZK-PROOFS OF KNOWLEDGE

Wewant four properties from a zero-knowledge proof of knowledge:

Completeness: If Preston knows a secret, he should be able to
convince Veronica

Knowledge Soundness: Preston cannot deceive Veronica if he
doesn’t know a secret

Zero-Knowledge: Veronica should not learn Preston’s secret

Non-Interactivity: Preston can produce a proof without
Veronica, and Veronica can verify it without Preston

3 / 12



GENERAL ZK-PROOFS OF KNOWLEDGE

Wewant four properties from a zero-knowledge proof of knowledge:

Completeness: If Preston knows a secret, he should be able to
convince Veronica

Knowledge Soundness: Preston cannot deceive Veronica if he
doesn’t know a secret

Zero-Knowledge: Veronica should not learn Preston’s secret

Non-Interactivity: Preston can produce a proof without
Veronica, and Veronica can verify it without Preston

3 / 12



GENERAL ZK-PROOFS OF KNOWLEDGE

Wewant four properties from a zero-knowledge proof of knowledge:

Completeness: If Preston knows a secret, he should be able to
convince Veronica

Knowledge Soundness: Preston cannot deceive Veronica if he
doesn’t know a secret

Zero-Knowledge: Veronica should not learn Preston’s secret

Non-Interactivity: Preston can produce a proof without
Veronica, and Veronica can verify it without Preston

3 / 12



GENERAL ZK-PROOFS OF KNOWLEDGE

Wewant four properties from a zero-knowledge proof of knowledge:

Completeness: If Preston knows a secret, he should be able to
convince Veronica

Knowledge Soundness: Preston cannot deceive Veronica if he
doesn’t know a secret

Zero-Knowledge: Veronica should not learn Preston’s secret

Non-Interactivity: Preston can produce a proof without
Veronica, and Veronica can verify it without Preston

3 / 12



GENERAL ZK-PROOFS OF KNOWLEDGE

Wewant four properties from a zero-knowledge proof of knowledge:

Completeness: If Preston knows a secret, he should be able to
convince Veronica

Knowledge Soundness: Preston cannot deceive Veronica if he
doesn’t know a secret

Zero-Knowledge: Veronica should not learn Preston’s secret

Non-Interactivity: Preston can produce a proof without
Veronica, and Veronica can verify it without Preston

3 / 12



WHAT TO PROVE? ISOGENIES!

Knowledge of secret should be special

⇝ Need hard problem!

DEFINITION
Let ℓ ≠ 𝑝 be primes. The supersingular isogeny graph 𝐺ℓ(𝑝) is the
connected directed multigraph with:

Vertices: 𝑗-invariants 𝑗(𝐸) ∈ F𝑝2 of supersingular curves
Edges 𝑗(𝐸) → 𝑗(𝐸′) correspond to ℓ-isogenies 𝐸 → 𝐸′

Our underlying hard problem:

Finding a path between 𝑗(𝐸0) and 𝑗(𝐸1) in 𝐺ℓ(𝑝) is hard!

(Parameter sizes: ℓ small, 𝑝 ≈ 22𝜆 for 𝜆 bits security)

4 / 12



WHAT TO PROVE? ISOGENIES!

Knowledge of secret should be special ⇝ Need hard problem!

DEFINITION
Let ℓ ≠ 𝑝 be primes. The supersingular isogeny graph 𝐺ℓ(𝑝) is the
connected directed multigraph with:

Vertices: 𝑗-invariants 𝑗(𝐸) ∈ F𝑝2 of supersingular curves
Edges 𝑗(𝐸) → 𝑗(𝐸′) correspond to ℓ-isogenies 𝐸 → 𝐸′

Our underlying hard problem:

Finding a path between 𝑗(𝐸0) and 𝑗(𝐸1) in 𝐺ℓ(𝑝) is hard!

(Parameter sizes: ℓ small, 𝑝 ≈ 22𝜆 for 𝜆 bits security)

4 / 12



WHAT TO PROVE? ISOGENIES!

Knowledge of secret should be special ⇝ Need hard problem!

DEFINITION
Let ℓ ≠ 𝑝 be primes.

The supersingular isogeny graph 𝐺ℓ(𝑝) is the
connected directed multigraph with:

Vertices: 𝑗-invariants 𝑗(𝐸) ∈ F𝑝2 of supersingular curves
Edges 𝑗(𝐸) → 𝑗(𝐸′) correspond to ℓ-isogenies 𝐸 → 𝐸′

Our underlying hard problem:

Finding a path between 𝑗(𝐸0) and 𝑗(𝐸1) in 𝐺ℓ(𝑝) is hard!

(Parameter sizes: ℓ small, 𝑝 ≈ 22𝜆 for 𝜆 bits security)

4 / 12



WHAT TO PROVE? ISOGENIES!

Knowledge of secret should be special ⇝ Need hard problem!

DEFINITION
Let ℓ ≠ 𝑝 be primes. The supersingular isogeny graph 𝐺ℓ(𝑝) is the
connected directed multigraph with:

Vertices: 𝑗-invariants 𝑗(𝐸) ∈ F𝑝2 of supersingular curves
Edges 𝑗(𝐸) → 𝑗(𝐸′) correspond to ℓ-isogenies 𝐸 → 𝐸′

Our underlying hard problem:

Finding a path between 𝑗(𝐸0) and 𝑗(𝐸1) in 𝐺ℓ(𝑝) is hard!

(Parameter sizes: ℓ small, 𝑝 ≈ 22𝜆 for 𝜆 bits security)

4 / 12



WHAT TO PROVE? ISOGENIES!

Knowledge of secret should be special ⇝ Need hard problem!

DEFINITION
Let ℓ ≠ 𝑝 be primes. The supersingular isogeny graph 𝐺ℓ(𝑝) is the
connected directed multigraph with:

Vertices: 𝑗-invariants 𝑗(𝐸) ∈ F𝑝2 of supersingular curves

Edges 𝑗(𝐸) → 𝑗(𝐸′) correspond to ℓ-isogenies 𝐸 → 𝐸′

Our underlying hard problem:

Finding a path between 𝑗(𝐸0) and 𝑗(𝐸1) in 𝐺ℓ(𝑝) is hard!

(Parameter sizes: ℓ small, 𝑝 ≈ 22𝜆 for 𝜆 bits security)

4 / 12



WHAT TO PROVE? ISOGENIES!

Knowledge of secret should be special ⇝ Need hard problem!

DEFINITION
Let ℓ ≠ 𝑝 be primes. The supersingular isogeny graph 𝐺ℓ(𝑝) is the
connected directed multigraph with:

Vertices: 𝑗-invariants 𝑗(𝐸) ∈ F𝑝2 of supersingular curves
Edges 𝑗(𝐸) → 𝑗(𝐸′) correspond* to ℓ-isogenies 𝐸 → 𝐸′

Our underlying hard problem:

Finding a path between 𝑗(𝐸0) and 𝑗(𝐸1) in 𝐺ℓ(𝑝) is hard!

(Parameter sizes: ℓ small, 𝑝 ≈ 22𝜆 for 𝜆 bits security)

*Up to some notion of equivalence
4 / 12



WHAT TO PROVE? ISOGENIES!

Knowledge of secret should be special ⇝ Need hard problem!

DEFINITION
Let ℓ ≠ 𝑝 be primes. The supersingular isogeny graph 𝐺ℓ(𝑝) is the
connected directed multigraph with:

Vertices: 𝑗-invariants 𝑗(𝐸) ∈ F𝑝2 of supersingular curves
Edges 𝑗(𝐸) → 𝑗(𝐸′) correspond* to ℓ-isogenies 𝐸 → 𝐸′

Our underlying hard problem:

Finding a path between 𝑗(𝐸0) and 𝑗(𝐸1) in 𝐺ℓ(𝑝) is hard!

(Parameter sizes: ℓ small, 𝑝 ≈ 22𝜆 for 𝜆 bits security)

*Up to some notion of equivalence
4 / 12



WHAT TO PROVE? ISOGENIES!

Knowledge of secret should be special ⇝ Need hard problem!

DEFINITION
Let ℓ ≠ 𝑝 be primes. The supersingular isogeny graph 𝐺ℓ(𝑝) is the
connected directed multigraph with:

Vertices: 𝑗-invariants 𝑗(𝐸) ∈ F𝑝2 of supersingular curves
Edges 𝑗(𝐸) → 𝑗(𝐸′) correspond* to ℓ-isogenies 𝐸 → 𝐸′

Our underlying hard problem:

Finding a path between 𝑗(𝐸0) and 𝑗(𝐸1) in 𝐺ℓ(𝑝) is hard!

(Parameter sizes: ℓ small, 𝑝 ≈ 22𝜆 for 𝜆 bits security)

*Up to some notion of equivalence
4 / 12



THE ISOGENY SCENARIO

Preston Veronica

I know a path between
𝑗(𝐸0) and 𝑗(𝐸1) in 𝐺ℓ(𝑝)! Prove it!How?

5 / 12



THE ISOGENY SCENARIO

Preston Veronica

I know a path between
𝑗(𝐸0) and 𝑗(𝐸1) in 𝐺ℓ(𝑝)!

Prove it!How?

5 / 12



THE ISOGENY SCENARIO

Preston Veronica

I know a path between
𝑗(𝐸0) and 𝑗(𝐸1) in 𝐺ℓ(𝑝)! Prove it!

How?

5 / 12



THE ISOGENY SCENARIO

Preston Veronica

I know a path between
𝑗(𝐸0) and 𝑗(𝐸1) in 𝐺ℓ(𝑝)!

Prove it!How?

5 / 12



GENERIC MACHINERY: R1CS-BASED ZK-SNARKS

A rank-1 constraint system is of the form

(A)
⎛⎜⎜⎜⎜
⎝

1
𝑤1
⋮

𝑤𝑛

⎞⎟⎟⎟⎟
⎠

• (B)
⎛⎜⎜⎜⎜
⎝

1
𝑤1
⋮

𝑤𝑛

⎞⎟⎟⎟⎟
⎠

= (C)
⎛⎜⎜⎜⎜
⎝

1
𝑤1
⋮

𝑤𝑛

⎞⎟⎟⎟⎟
⎠

with statement matrices A, B, C ∈ F𝑚×(1+𝑛) and witness vector
𝑤 = (1, 𝑤1, … , 𝑤𝑛)

Can plug this into a zk-SNARK for R1CS (e.g. Aurora, Ligero) to
obtain compact & efficient zero-knowledge proof of knowledge

This approach was first pursued in [CLL23]

6 / 12



GENERIC MACHINERY: R1CS-BASED ZK-SNARKS

A rank-1 constraint system is of the form

(A)
⎛⎜⎜⎜⎜
⎝

1
𝑤1
⋮

𝑤𝑛

⎞⎟⎟⎟⎟
⎠

• (B)
⎛⎜⎜⎜⎜
⎝

1
𝑤1
⋮

𝑤𝑛

⎞⎟⎟⎟⎟
⎠

= (C)
⎛⎜⎜⎜⎜
⎝

1
𝑤1
⋮

𝑤𝑛

⎞⎟⎟⎟⎟
⎠

with statement matrices A, B, C ∈ F𝑚×(1+𝑛) and witness vector
𝑤 = (1, 𝑤1, … , 𝑤𝑛)

Can plug this into a zk-SNARK for R1CS (e.g. Aurora, Ligero) to
obtain compact & efficient zero-knowledge proof of knowledge

This approach was first pursued in [CLL23]

6 / 12



GENERIC MACHINERY: R1CS-BASED ZK-SNARKS

A rank-1 constraint system is of the form

(A)
⎛⎜⎜⎜⎜
⎝

1
𝑤1
⋮

𝑤𝑛

⎞⎟⎟⎟⎟
⎠

• (B)
⎛⎜⎜⎜⎜
⎝

1
𝑤1
⋮

𝑤𝑛

⎞⎟⎟⎟⎟
⎠

= (C)
⎛⎜⎜⎜⎜
⎝

1
𝑤1
⋮

𝑤𝑛

⎞⎟⎟⎟⎟
⎠

with statement matrices A, B, C ∈ F𝑚×(1+𝑛) and witness vector
𝑤 = (1, 𝑤1, … , 𝑤𝑛)

Can plug this into a zk-SNARK for R1CS (e.g. Aurora, Ligero) to
obtain compact & efficient zero-knowledge proof of knowledge

This approach was first pursued in [CLL23]

6 / 12



GENERIC MACHINERY: R1CS-BASED ZK-SNARKS

A rank-1 constraint system is of the form

(A)
⎛⎜⎜⎜⎜
⎝

1
𝑤1
⋮

𝑤𝑛

⎞⎟⎟⎟⎟
⎠

• (B)
⎛⎜⎜⎜⎜
⎝

1
𝑤1
⋮

𝑤𝑛

⎞⎟⎟⎟⎟
⎠

= (C)
⎛⎜⎜⎜⎜
⎝

1
𝑤1
⋮

𝑤𝑛

⎞⎟⎟⎟⎟
⎠

with statement matrices A, B, C ∈ F𝑚×(1+𝑛) and witness vector
𝑤 = (1, 𝑤1, … , 𝑤𝑛)

Can plug this into a zk-SNARK for R1CS (e.g. Aurora, Ligero) to
obtain compact & efficient zero-knowledge proof of knowledge

This approach was first pursued in [CLL23]

6 / 12



CANONICAL MODULAR POLYNOMIALS

Can we find small polynomials to represent ℓ-isogenies?

Yes! But we have to restrict to ℓ ∈ {2, 3, 5, 7, 13} for technical reasons.

Φ𝑐
2 (𝑋, 𝑗) = −,

Φ𝑐
3 (𝑋, 𝑗) = −,

Φ𝑐
5 (𝑋, 𝑗) =

−,
Φ𝑐

7 (𝑋, 𝑗) =
−,

Φ𝑐
13(𝑋, 𝑗) =

− .

7 / 12



CANONICAL MODULAR POLYNOMIALS

Can we find small polynomials to represent ℓ-isogenies?

Yes! But we have to restrict to ℓ ∈ {2, 3, 5, 7, 13} for technical reasons.

Φ𝑐
2 (𝑋, 𝑗) = −,

Φ𝑐
3 (𝑋, 𝑗) = −,

Φ𝑐
5 (𝑋, 𝑗) =

−,
Φ𝑐

7 (𝑋, 𝑗) =
−,

Φ𝑐
13(𝑋, 𝑗) =

− .

7 / 12



CANONICAL MODULAR POLYNOMIALS

Can we find small polynomials to represent ℓ-isogenies?

Yes! But we have to restrict to ℓ ∈ {2, 3, 5, 7, 13} for technical reasons.

Φ𝑐
2 (𝑋, 𝑗) = 𝑋3 + 48𝑋2 + 768𝑋 + 4096 − 𝑋 ⋅ 𝑗,

Φ𝑐
3 (𝑋, 𝑗) = 𝑋4 + 36𝑋3 + 270𝑋2 + 756𝑋 + 729 − 𝑋 ⋅ 𝑗,

Φ𝑐
5 (𝑋, 𝑗) = 𝑋6 + 30𝑋5 + 315𝑋4 + 1300𝑋3

+ 1575𝑋2 + 750𝑋 + 125 − 𝑋 ⋅ 𝑗,
Φ𝑐

7 (𝑋, 𝑗) = 𝑋8 + 28𝑋7 + 322𝑋6 + 1904𝑋5 + 5915𝑋4

+ 8624𝑋3 + 4018𝑋2 + 748𝑋 + 49 − 𝑋 ⋅ 𝑗,
Φ𝑐

13(𝑋, 𝑗) = 𝑋14 + 26𝑋13 + 325𝑋12 + 2548𝑋11 + 13832𝑋10

+ 54340𝑋9 + 157118𝑋8 + 333580𝑋7 + 509366𝑋6

+ 534820𝑋5 + 354536𝑋4 + 124852𝑋3

+ 15145𝑋2 + 746𝑋 + 13 − 𝑋 ⋅ 𝑗.

7 / 12



CANONICAL MODULAR POLYNOMIALS

Can we find small polynomials to represent ℓ-isogenies?

Yes! But we have to restrict to ℓ ∈ {2, 3, 5, 7, 13} for technical reasons.

Φ𝑐
2 (𝑋, 𝑗) = 𝑋3 + 48𝑋2 + 768𝑋 + 4096 − 𝑋 ⋅ 𝑗,

Φ𝑐
3 (𝑋, 𝑗) = 𝑋4 + 36𝑋3 + 270𝑋2 + 756𝑋 + 729 − 𝑋 ⋅ 𝑗,

Φ𝑐
5 (𝑋, 𝑗) = 𝑋6 + 30𝑋5 + 315𝑋4 + 1300𝑋3

+ 1575𝑋2 + 750𝑋 + 125 − 𝑋 ⋅ 𝑗,
Φ𝑐

7 (𝑋, 𝑗) = 𝑋8 + 28𝑋7 + 322𝑋6 + 1904𝑋5 + 5915𝑋4

+ 8624𝑋3 + 4018𝑋2 + 748𝑋 + 49 − 𝑋 ⋅ 𝑗,
Φ𝑐

13(𝑋, 𝑗) = 𝑋14 + 26𝑋13 + 325𝑋12 + 2548𝑋11 + 13832𝑋10

+ 54340𝑋9 + 157118𝑋8 + 333580𝑋7 + 509366𝑋6

+ 534820𝑋5 + 354536𝑋4 + 124852𝑋3

+ 15145𝑋2 + 746𝑋 + 13 − 𝑋 ⋅ 𝑗.

7 / 12



CANONICAL MODULAR POLYNOMIALS

Can we find small polynomials to represent ℓ-isogenies?

Yes! But we have to restrict to ℓ ∈ {2, 3, 5, 7, 13} for technical reasons.

Φ𝑐
2 (𝑋, 𝑗) = 𝑋3 + 48𝑋2 + 768𝑋 + 4096 − 𝑋 ⋅ 𝑗,

Φ𝑐
3 (𝑋, 𝑗) = 𝑋4 + 36𝑋3 + 270𝑋2 + 756𝑋 + 729 − 𝑋 ⋅ 𝑗,

Φ𝑐
5 (𝑋, 𝑗) = 𝑋6 + 30𝑋5 + 315𝑋4 + 1300𝑋3

+ 1575𝑋2 + 750𝑋 + 125 − 𝑋 ⋅ 𝑗,
Φ𝑐

7 (𝑋, 𝑗) = 𝑋8 + 28𝑋7 + 322𝑋6 + 1904𝑋5 + 5915𝑋4

+ 8624𝑋3 + 4018𝑋2 + 748𝑋 + 49 − 𝑋 ⋅ 𝑗,
Φ𝑐

13(𝑋, 𝑗) = 𝑋14 + 26𝑋13 + 325𝑋12 + 2548𝑋11 + 13832𝑋10

+ 54340𝑋9 + 157118𝑋8 + 333580𝑋7 + 509366𝑋6

+ 534820𝑋5 + 354536𝑋4 + 124852𝑋3

+ 15145𝑋2 + 746𝑋 + 13 − 𝑋 ⋅ 𝑗.

7 / 12



HOW TO USE Φ𝑐
ℓ ? OUR MAIN RESULTS [DH+24]

Motivated by the modular theory in the background, we proved:

THEOREM
For ℓ ∈ {2, 3, 5, 7, 13} the edges 𝑗0 → 𝑗1 in 𝐺ℓ(𝑝) correspond to the
solutions of the system

Φ𝑐
ℓ (𝑋, 𝑗0) = 0 = Φ𝑐

ℓ (ℓ𝑠/𝑋, 𝑗1)

where 𝑠 = 12/(ℓ − 1).

THEOREM
If 𝑗0 ∈ F𝑝2 is supersingular, then all roots of Φ𝑐

ℓ (𝑋, 𝑗0) lie inF𝑝2 .

Why? Isogenies between supersingular curves can be defined overF𝑝2 !

8 / 12



HOW TO USE Φ𝑐
ℓ ? OUR MAIN RESULTS [DH+24]

Motivated by the modular theory in the background, we proved:

THEOREM
For ℓ ∈ {2, 3, 5, 7, 13} the edges 𝑗0 → 𝑗1 in 𝐺ℓ(𝑝) correspond to the
solutions of the system

Φ𝑐
ℓ (𝑋, 𝑗0) = 0 = Φ𝑐

ℓ (ℓ𝑠/𝑋, 𝑗1)

where 𝑠 = 12/(ℓ − 1).

THEOREM
If 𝑗0 ∈ F𝑝2 is supersingular, then all roots of Φ𝑐

ℓ (𝑋, 𝑗0) lie inF𝑝2 .

Why? Isogenies between supersingular curves can be defined overF𝑝2 !

8 / 12



HOW TO USE Φ𝑐
ℓ ? OUR MAIN RESULTS [DH+24]

Motivated by the modular theory in the background, we proved:

THEOREM
For ℓ ∈ {2, 3, 5, 7, 13} the edges 𝑗0 → 𝑗1 in 𝐺ℓ(𝑝) correspond to the
solutions of the system

Φ𝑐
ℓ (𝑋, 𝑗0) = 0 = Φ𝑐

ℓ (ℓ𝑠/𝑋, 𝑗1)

where 𝑠 = 12/(ℓ − 1).

THEOREM
If 𝑗0 ∈ F𝑝2 is supersingular, then all roots of Φ𝑐

ℓ (𝑋, 𝑗0) lie inF𝑝2 .

Why? Isogenies between supersingular curves can be defined overF𝑝2 !

8 / 12



HOW TO USE Φ𝑐
ℓ ? OUR MAIN RESULTS [DH+24]

Motivated by the modular theory in the background, we proved:

THEOREM
For ℓ ∈ {2, 3, 5, 7, 13} the edges 𝑗0 → 𝑗1 in 𝐺ℓ(𝑝) correspond to the
solutions of the system

Φ𝑐
ℓ (𝑋, 𝑗0) = 0 = Φ𝑐

ℓ (ℓ𝑠/𝑋, 𝑗1)

where 𝑠 = 12/(ℓ − 1).

THEOREM
If 𝑗0 ∈ F𝑝2 is supersingular, then all roots of Φ𝑐

ℓ (𝑋, 𝑗0) lie inF𝑝2 .

Why? Isogenies between supersingular curves can be defined overF𝑝2 !

8 / 12



OUR APPROACH: CANONICAL MODULAR POLYNOMIAL [DH+24]

For each step 𝑗𝑖
𝑓𝑖
−→ 𝑗𝑖+1 rephrase system

Φ𝑐
ℓ (𝑓𝑖, 𝑗𝑖) = 0 = Φ𝑐

ℓ (ℓ𝑠/𝑓𝑖, 𝑗𝑖)

⋅ 𝑓ℓ+1
𝑖 /ℓ𝑠

as an R1CS.

For ℓ = 2:

(
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0

)
⎛⎜⎜⎜⎜
⎝

1
𝑓𝑖
𝑓2

𝑖
𝑗𝑖 − 𝑐′

1
𝑗𝑖+1 − 𝑐′

1

⎞⎟⎟⎟⎟
⎠

• (
0 1 0 0 0
0 𝑐′

2 𝑐′
3 −1 0

0 𝑐″
3 0 0 −1

)
⎛⎜⎜⎜⎜
⎝

1
𝑓𝑖
𝑓2

𝑖
𝑗𝑖 − 𝑐′

1
𝑗𝑖+1 − 𝑐′

1

⎞⎟⎟⎟⎟
⎠

= (
0 0 1 0 0

−𝑐′
0 0 0 0 0

−𝑐″
0 −𝑐″

1 0 0 0
)

⎛⎜⎜⎜⎜
⎝

1
𝑓𝑖
𝑓2

𝑖
𝑗𝑖 − 𝑐′

1
𝑗𝑖+1 − 𝑐′

1

⎞⎟⎟⎟⎟
⎠

9 / 12



OUR APPROACH: CANONICAL MODULAR POLYNOMIAL [DH+24]

For each step 𝑗𝑖
𝑓𝑖
−→ 𝑗𝑖+1 rephrase system

Φ𝑐
ℓ (𝑓𝑖, 𝑗𝑖) = 0 = Φ𝑐

ℓ (ℓ𝑠/𝑓𝑖, 𝑗𝑖) ⋅ 𝑓ℓ+1
𝑖 /ℓ𝑠

as an R1CS.

For ℓ = 2:

(
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0

)
⎛⎜⎜⎜⎜
⎝

1
𝑓𝑖
𝑓2

𝑖
𝑗𝑖 − 𝑐′

1
𝑗𝑖+1 − 𝑐′

1

⎞⎟⎟⎟⎟
⎠

• (
0 1 0 0 0
0 𝑐′

2 𝑐′
3 −1 0

0 𝑐″
3 0 0 −1

)
⎛⎜⎜⎜⎜
⎝

1
𝑓𝑖
𝑓2

𝑖
𝑗𝑖 − 𝑐′

1
𝑗𝑖+1 − 𝑐′

1

⎞⎟⎟⎟⎟
⎠

= (
0 0 1 0 0

−𝑐′
0 0 0 0 0

−𝑐″
0 −𝑐″

1 0 0 0
)

⎛⎜⎜⎜⎜
⎝

1
𝑓𝑖
𝑓2

𝑖
𝑗𝑖 − 𝑐′

1
𝑗𝑖+1 − 𝑐′

1

⎞⎟⎟⎟⎟
⎠

9 / 12



OUR APPROACH: CANONICAL MODULAR POLYNOMIAL [DH+24]

For each step 𝑗𝑖
𝑓𝑖
−→ 𝑗𝑖+1 rephrase system

Φ𝑐
ℓ (𝑓𝑖, 𝑗𝑖) = 0 = Φ𝑐

ℓ (ℓ𝑠/𝑓𝑖, 𝑗𝑖) ⋅ 𝑓ℓ+1
𝑖 /ℓ𝑠

as an R1CS. For ℓ = 2:

(
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0

)
⎛⎜⎜⎜⎜
⎝

1
𝑓𝑖
𝑓2

𝑖
𝑗𝑖 − 𝑐′

1
𝑗𝑖+1 − 𝑐′

1

⎞⎟⎟⎟⎟
⎠

• (
0 1 0 0 0
0 𝑐′

2 𝑐′
3 −1 0

0 𝑐″
3 0 0 −1

)
⎛⎜⎜⎜⎜
⎝

1
𝑓𝑖
𝑓2

𝑖
𝑗𝑖 − 𝑐′

1
𝑗𝑖+1 − 𝑐′

1

⎞⎟⎟⎟⎟
⎠

= (
0 0 1 0 0

−𝑐′
0 0 0 0 0

−𝑐″
0 −𝑐″

1 0 0 0
)

⎛⎜⎜⎜⎜
⎝

1
𝑓𝑖
𝑓2

𝑖
𝑗𝑖 − 𝑐′

1
𝑗𝑖+1 − 𝑐′

1

⎞⎟⎟⎟⎟
⎠

9 / 12



SOME STATS [DH+24]

ℓ Equations 𝑚 Variables 𝑛 Non-zero entries
[CLL23] Ours [CLL23] Ours [CLL23] Ours

2 4𝜆 + 2 3𝜆 4𝜆 + 3 3𝜆 + 1 21𝜆 + 6 13𝜆
3 2.524𝜆 2.524𝜆 + 1 11.357𝜆
5 2.584𝜆 2.584𝜆 + 1 12.059𝜆
7 2.493𝜆 2.493𝜆 + 1 12.467𝜆

13 2.702𝜆 2.702𝜆 + 1 15.133𝜆

Table: Parameters of the R1CS where 𝜆 = log2(ℓ𝑘)

Field Aurora Ligero
[CLL23] Ours [CLL23] Ours

F𝑝2 Prover time (ms) 934 669 587 420
Verifier time (ms) 99 74 847 634
Proof size (kB) 194 178 1849 1599

Table: Benchmarks for ℓ = 2

10 / 12



SOME STATS [DH+24]

ℓ Equations 𝑚 Variables 𝑛 Non-zero entries
[CLL23] Ours [CLL23] Ours [CLL23] Ours

2 4𝜆 + 2 3𝜆 4𝜆 + 3 3𝜆 + 1 21𝜆 + 6 13𝜆
3 2.524𝜆 2.524𝜆 + 1 11.357𝜆
5 2.584𝜆 2.584𝜆 + 1 12.059𝜆
7 2.493𝜆 2.493𝜆 + 1 12.467𝜆

13 2.702𝜆 2.702𝜆 + 1 15.133𝜆

Table: Parameters of the R1CS where 𝜆 = log2(ℓ𝑘)

Field Aurora Ligero
[CLL23] Ours [CLL23] Ours

F𝑝2 Prover time (ms) 934 669 587 420
Verifier time (ms) 99 74 847 634
Proof size (kB) 194 178 1849 1599

Table: Benchmarks for ℓ = 2

10 / 12



SOME STATS [DH+24]

ℓ Equations 𝑚 Variables 𝑛 Non-zero entries
[CLL23] Ours [CLL23] Ours [CLL23] Ours

2 4𝜆 + 2 3𝜆 4𝜆 + 3 3𝜆 + 1 21𝜆 + 6 13𝜆
3 2.524𝜆 2.524𝜆 + 1 11.357𝜆
5 2.584𝜆 2.584𝜆 + 1 12.059𝜆
7 2.493𝜆 2.493𝜆 + 1 12.467𝜆

13 2.702𝜆 2.702𝜆 + 1 15.133𝜆

Table: Parameters of the R1CS where 𝜆 = log2(ℓ𝑘)

Field Aurora Ligero
[CLL23] Ours [CLL23] Ours

F𝑝2 Prover time (ms) 934 669 587 420
Verifier time (ms) 99 74 847 634
Proof size (kB) 194 178 1849 1599

Table: Benchmarks for ℓ = 2

10 / 12



SOME STATS [DH+24]

ℓ Equations 𝑚 Variables 𝑛 Non-zero entries
[CLL23] Ours [CLL23] Ours [CLL23] Ours

2 4𝜆 + 2 3𝜆 4𝜆 + 3 3𝜆 + 1 21𝜆 + 6 13𝜆
3 2.524𝜆 2.524𝜆 + 1 11.357𝜆
5 2.584𝜆 2.584𝜆 + 1 12.059𝜆
7 2.493𝜆 2.493𝜆 + 1 12.467𝜆

13 2.702𝜆 2.702𝜆 + 1 15.133𝜆

Table: Parameters of the R1CS where 𝜆 = log2(ℓ𝑘)

Field Aurora Ligero
[CLL23] Ours [CLL23] Ours

F𝑝2 Prover time (ms) 934 669 587 420
Verifier time (ms) 99 74 847 634
Proof size (kB) 194 178 1849 1599

Table: Benchmarks for ℓ = 2

10 / 12



FUTURE WORK (IN PROGRESS)

Can we use other modular polynomials to

obtain smaller/more efficient proofs?

allow for a bigger range of primes ℓ?

Yes! Atkin modular polynomials, Weber modular polynomials, …

Other arithmetizations?

11 / 12



FUTURE WORK (IN PROGRESS)

Can we use other modular polynomials to

obtain smaller/more efficient proofs?

allow for a bigger range of primes ℓ?

Yes! Atkin modular polynomials, Weber modular polynomials, …

Other arithmetizations?

11 / 12



FUTURE WORK (IN PROGRESS)

Can we use other modular polynomials to

obtain smaller/more efficient proofs?

allow for a bigger range of primes ℓ?

Yes! Atkin modular polynomials, Weber modular polynomials, …

Other arithmetizations?

11 / 12



FUTURE WORK (IN PROGRESS)

Can we use other modular polynomials to

obtain smaller/more efficient proofs?

allow for a bigger range of primes ℓ?

Yes! Atkin modular polynomials, Weber modular polynomials, …

Other arithmetizations?

11 / 12



Thank you for your attention!

[dH+24] T. den Hollander, S. Kleine, M. Mula, D. Slamanig, and
S. A. Spindler.More Efficient Isogeny Proofs of Knowledge via
Canonical Modular Polynomials. Cryptology ePrint Archive,
Paper 2024/1738. 2024. To appear at CRYPTO 2025.

12 / 12

https://eprint.iacr.org/2024/1738

	References

