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With a zero-knowledge proof of knowledge!

Multiple applications: Multi-party protocols (honest behavior control,
trustless setup), signature schemes, ...
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We want four properties from a zero-knowledge proof of knowledge:

Completeness: If Preston knows a secret, he should be able to
convince Veronica

Knowledge Soundness: Preston cannot deceive Veronica if he
doesn’t know a secret

Zero-Knowledge: Veronica should not learn Preston’s secret

Non-Interactivity: Preston can produce a proof without
Veronica, and Veronica can verify it without Preston
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WHAT TO PROVE? ISOGENIES!

Knowledge of secret should be special «» Need hard problem!

DEFINITION

Let ¢ + p be primes. The supersingular isogeny graph G,(p) is the
connected directed multigraph with:

« Vertices: j-invariants j(E) € T2 of supersingular curves
« Edges j(E) — j(E’) correspond* to (-isogenies E — E’
Our underlying hard problem:
Finding a path between j(E,) and j(E,) in G,(p) is hard!

(Parameter sizes: £ small, p ~ 22> for X bits security)

“Up to some notion of equivalence
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GENERIC MACHINERY: R1CS-BASED ZK-SNARKS

¢ Arank-1 constraint system is of the form
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with statement matrices A, B, C € F*(1+7) and witness vector
w=(1,w,...,w,)
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¢ Arank-1 constraint system is of the form

1 1 1
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with statement matrices A, B, C € F*(1+7) and witness vector
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obtain compact & efficient zero-knowledge proof of knowledge

/12



GENERIC MACHINERY: R1CS-BASED ZK-SNARKS

¢ Arank-1 constraint system is of the form

1 1 1

211 3 mn
n n n

with statement matrices A, B, C € F*(1+7) and witness vector
w=(1,w,...,w,)

» Can plug this into a zk-SNARK for R1CS (e.g. Aurora, Ligero) to
obtain compact & efficient zero-knowledge proof of knowledge

e This approach was first pursued in [CLL23]
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Can we find small polynomials to represent ¢-isogenies?

Yes! But we have to restrictto ¢ € {2, 3,5, 7, 13} for technical reasons.

OS(X,j) = X3+ 48X? + 768X + 4096 — X - j,
P(X,7) = X* +36X3 +270X? + 756X + 729 — X - j,
O(X,7) = X6 +30X° + 315X* + 1300X3
+1575X% + 750X + 125 — X - 7,
PL(X,j) = X® +28X7 4 322X6 +1904X° + 5915.X*
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Can we find small polynomials to represent ¢-isogenies?

Yes! But we have to restrict to ¢ € {2,3,5,7, 13} for technical reasons.

OS(X,5) = X3 + 48X? + 768X + 4096 — X - j,
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How TO USE ®;? OUR MAIN RESULTS [DH+24]

Motivated by the modular theory in the background, we proved:

THEOREM

Fort € {2,3,5,7,13} the edges j, — j, in Gy(p) correspond to the
solutions of the system

7 (X, 4o) =0 =97 (£°/X, jy)
wheres = 12/(¢ —1).

THEOREM
If jo € I,z is supersingular, then all roots of ®7 (X, jg) lie in 2.

Why? Isogenies between supersingular curves can be defined over [ . !

3/12



OUR APPROACH: CANONICAL MODULAR POLYNOMIAL [DH+24]

fi
For each step j; — j,,, rephrase system
q’f(fi»ji) =0= ‘I)ec(es/fiajﬂ

as an R1CS.
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OUR APPROACH: CANONICAL MODULAR POLYNOMIAL [DH+24]
Ji
For each step j; — j,,, rephrase system
(I)ec(fivji) =0= (I)Ec(es/fiaji) : ff,“l/[?s

as an R1CS. For /¢ = 2:

1 1
1 fi 1 fz
(1 ) [ ( ) 7
1 7; — €1 cg’ —1 j; — ¢}
Jiy1— €l Ji1—Ch
1
1 fi
= (C(/) ) fzz
—cf ! Ji— ¢
Jit1 ci
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SOME STATS [DH+24]

l Equations m Variables n Non-zero entries
[CLL23] | Ours | [CLL23] Ours [CLL23] Ours
2| AN+2 3\ 4N+ 3 3A+1 21A+6 13X
3 2.524)\ 2524\ +1 11.357\
5 2.584)\ 2584\ + 1 12.059)\
7 2.493)\ 2493\ +1 12.467 )\
13 2.702) 27021 + 1 15.133)\

Table: Parameters of the R1CS where A = log, (%)
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l Equations m Variables n Non-zero entries
[CLL23] | Ours | [CLL23] Ours [CLL23] Ours
2| AN+2 3\ 4N+ 3 3A+1 21A+6 13X
3 2.524)\ 2524\ +1 11.357\
5 2.584)\ 2584\ + 1 12.059)\
7 2.493)\ 2493\ +1 12.467 )\
13 2.702) 27021 + 1 15.133)\
Table: Parameters of the R1CS where A = log, (%)
Field Aurora Ligero
[CLL23] | Ours | [CLL23] | Ours
F,. | Provertime (ms) 934 | 669 587 | 420
Verifier time (ms) 99 74 847 | 634
Proof size (kB) 194 | 178 1849 | 1599

Table: Benchmarks for ¢ = 2
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FUTURE WORK (IN PROGRESS)

Can we use other modular polynomials to
« obtain smaller/more efficient proofs?
+ allow for a bigger range of primes ¢?
Yes! Atkin modular polynomials, Weber modular polynomials, ...

e Other arithmetizations?
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More Efficient Isogeny Proofs of Knowledge via
Canonical Modular Polynomials.
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