Tightly Secure Inner-Product Functional Encryption Revisited: Compact, Lattice-based, and More

Shuai Han¹, **Hongxu Yi**², Shengli Liu¹, Dawu Gu¹

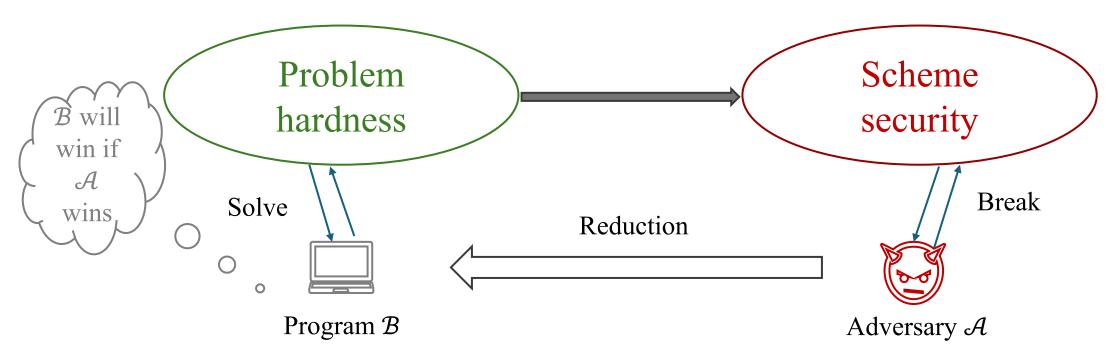
¹ Shanghai Jiao Tong University

² Shandong University

Crypto 2025, Santa Barbara, USA

Tight Security

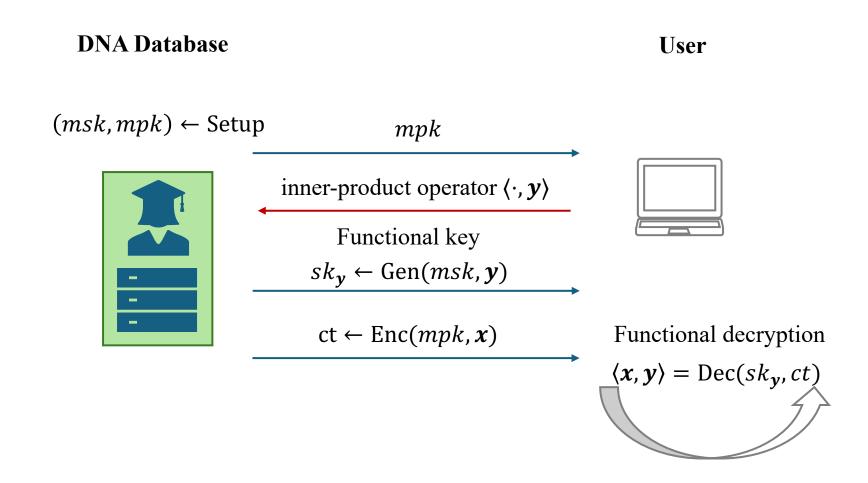
Provable security of a cryptographic Scheme based on hard Problems.



Solving Problem in time $t_{\mathcal{B}}$ with advantage $\epsilon_{\mathcal{B}}$ Breaking Scheme in time $t_{\mathcal{A}}$ with advantage $\epsilon_{\mathcal{A}}$

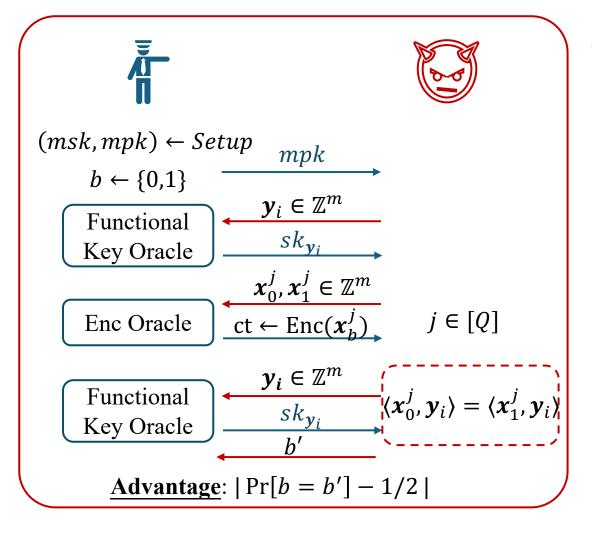
Security Loss
$$\ell$$
:
$$\frac{t_{\mathcal{B}}}{\epsilon_{\mathcal{B}}} \leq \frac{t_{\mathcal{A}}}{\epsilon_{\mathcal{A}}} \cdot \ell \xrightarrow[\ell = O(\epsilon_{\mathcal{A}}/\epsilon_{\mathcal{B}})]{} \text{Almost Tight: } \ell = \text{Poly}(\lambda)$$
Tight: $\ell = O(1)$

Inner-Product Functional Encryption (IPFE)

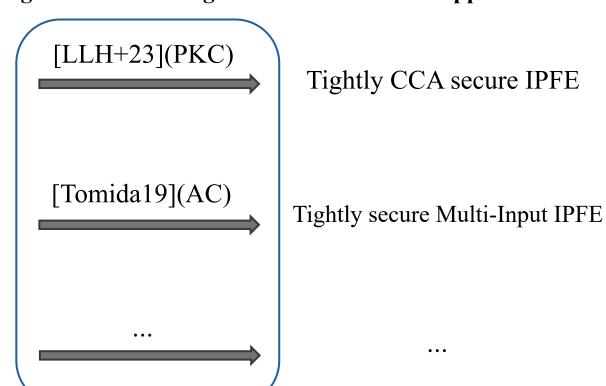


IND-CPA Security of IPFE and Its Applications

IND-CPA Security of IPFE



Tightness-Preserving Transform Direct Applications



On Achieving Tight CPA Security of IPFE

IPFE Scheme	mpk	msk	$ sk_y $	Ciphertext Expansion	Security Loss	Assumption	Tight Security
[ALS16](C)	$\approx m+1$	$\approx 2m$	≈ 2	$\approx 1 + \frac{2}{m}$	O(Q)	DDH/DCR/ LWE	×
[Tomida19](AC)	$m^2 + 2$	$2m^2$	2 <i>m</i>	3	0 (1)	DDH	$\sqrt{}$

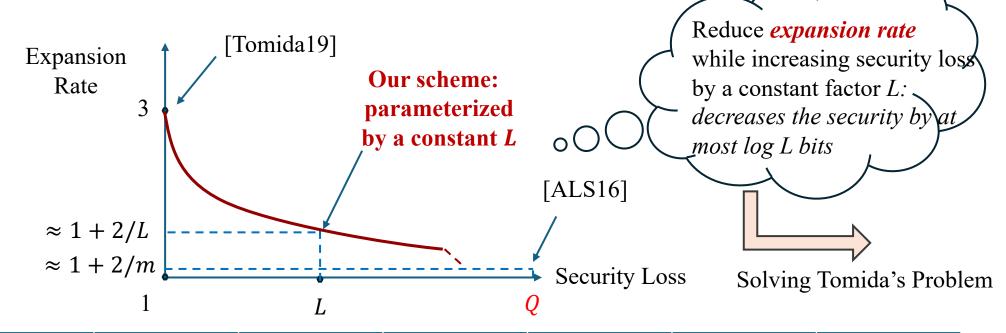
In reality, *Q* might be very huge, e.g., in the DNA analysis [Tomida19]:

$$m \approx 2^{13}$$
, $Q \approx 2^{27}$

Tomida's Problem: can we construct more compact tightly secure IPFE schemes?

Another Problem: can we build tightly secure IPFE based on other assumptions, such as LWE, DCR?

Contribution I: More Compact Tightly Secure IPFE

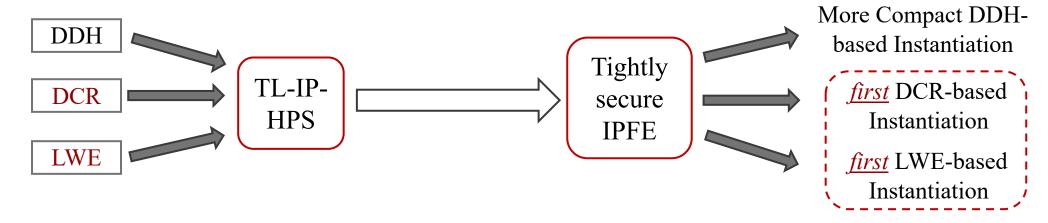


IPFE Scheme	mpk	msk	$ sk_y $	Ciphertext Expansion	Security Loss	Assumption	Tight Security
[Tomida19]	$m^2 + 2$	$2m^2$	2 <i>m</i>	3	O(1) = 3	DDH	$\sqrt{}$
Ours (L = 100)	$\frac{m^2}{100}+2$	$\frac{m^2}{50}$	$\frac{m}{50}$	1.02	0(1) = 300	DDH	$\sqrt{}$

Our technique: Compact design & Economic proof strategy

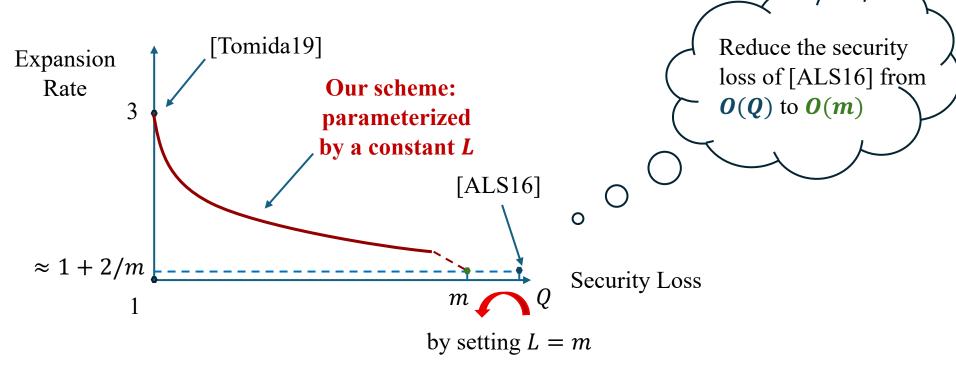
Contribution II: Tightly Secure IPFE from DCR/LWE

A unified framework from a new technical tool called
Two-Leveled Inner-Product Hash Proof System (TL-IP-HPS)



IPFE Scheme	mpk	msk	$ sk_y $	Ciphertext Expansion	Security Loss	Assumption	Tight Security
[Tomida19]	$m^2 + 2$	$2m^2$	2 <i>m</i>	3	0(1)	DDH	$\sqrt{}$
Ours $(L = 100)$	$\frac{m^2}{100}+1$	$\frac{m^2}{100}$	$\frac{m}{100}$	1.01	0 (1) = 300	DCR	$\sqrt{}$
Ours $(L = 100)$	$\frac{m}{100}+1$	$\frac{m}{100}$	$\frac{m}{100}$	$1+\frac{l}{100}$	$O(\lambda^2) = 100\lambda^2$	LWE	$\sqrt{}$

Byproduct: Tighter security for ALS Scheme

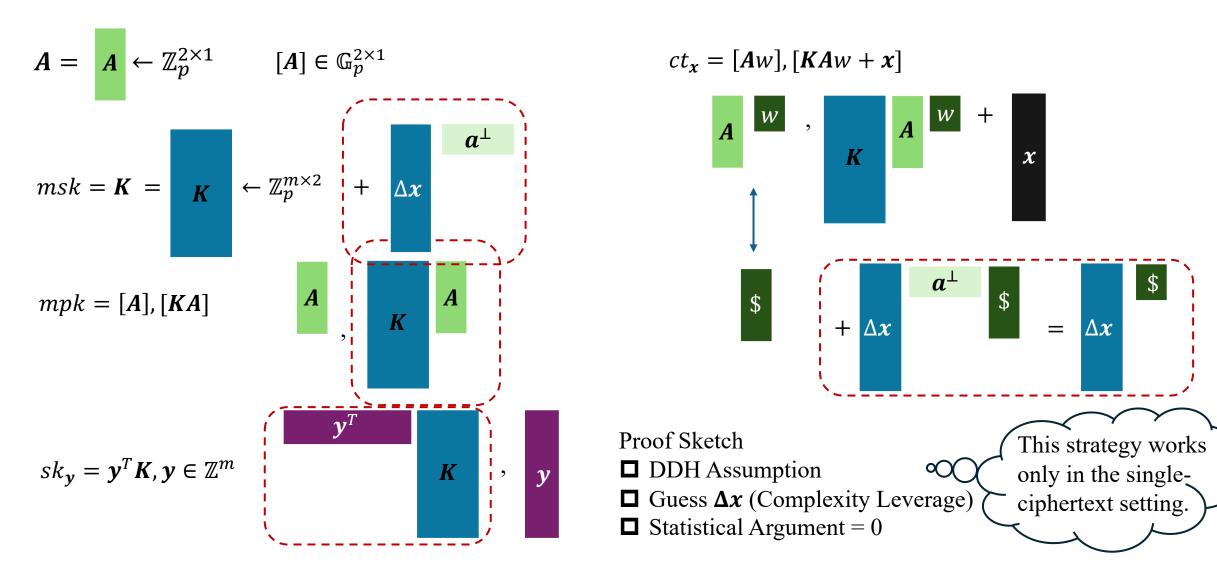


IPFE Scheme	mpk	msk	$ sk_y $	Ciphertext Expansion	Security Loss	Assumption
[ALS16]	$\approx m+1$	$\approx 2m$	≈ 2	$1+\frac{2}{m}$	O(m)	DDH/DCR

Our parameterized scheme builds a bridge between [ALS16] and [Tomida19]

Recap: Classic IPFE Construction Paradigm

Recap: ALS Scheme, Single-Challenge Ciphertext



Recap: Tomida Scheme*, Multi-Challenge Ciphertexts

$$A \leftarrow \mathbb{Z}_p^{2 \times 1}$$
 Multiple Copies

 $msk = K_1, K_2, \dots, K_m$
 $mpk = [A], [K_1A], [K_2A], \dots, [K_mA]$
 $sk_y = y^T K_1, y^T K_2, \dots, y^T K_m, y \in \mathbb{Z}^m$

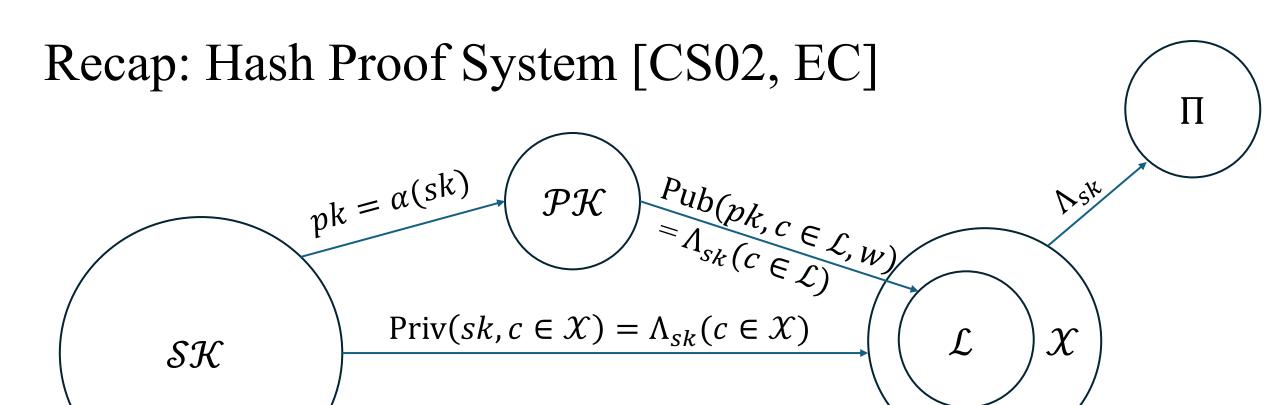
$$ct_{x} = \begin{bmatrix} [Aw_{1}], [Aw_{2}], \cdots [Aw_{m}], \\ [K_{1}Aw_{1}] + [K_{2}Aw_{2}] + \cdots + [K_{m}Aw_{m}] + [x^{*}] \end{bmatrix}$$

- ☐ High ciphertext expansion
- \square Large msk and mpk
- □ DDH-based

Can we reduce the ciphertext size & generalize it to other assumptions?

^{*}an equivalent form with [Tomida19]

Technique Tool: Two-Leveled Inner-Product Hash Proof System



Our New Tool: Two-Leveled Inner-Product HPS $pk = \alpha(sk)$ NSK \mathcal{PK} \mathbb{Z}^m Inner product $Priv(sk, c \in \mathcal{X}) = \Lambda_{sk}(c \in \mathcal{X})$ \mathcal{X} SK $|FPriv(fk_{y,c} \in X)|$ = $(y, \Lambda_{sk}(c \in X))$ $f_{k_{\boldsymbol{y}}} = \mu(sk, \boldsymbol{y})$ $\mathcal{F}\mathcal{K}$ such as $\Pi = \mathcal{G}^m$

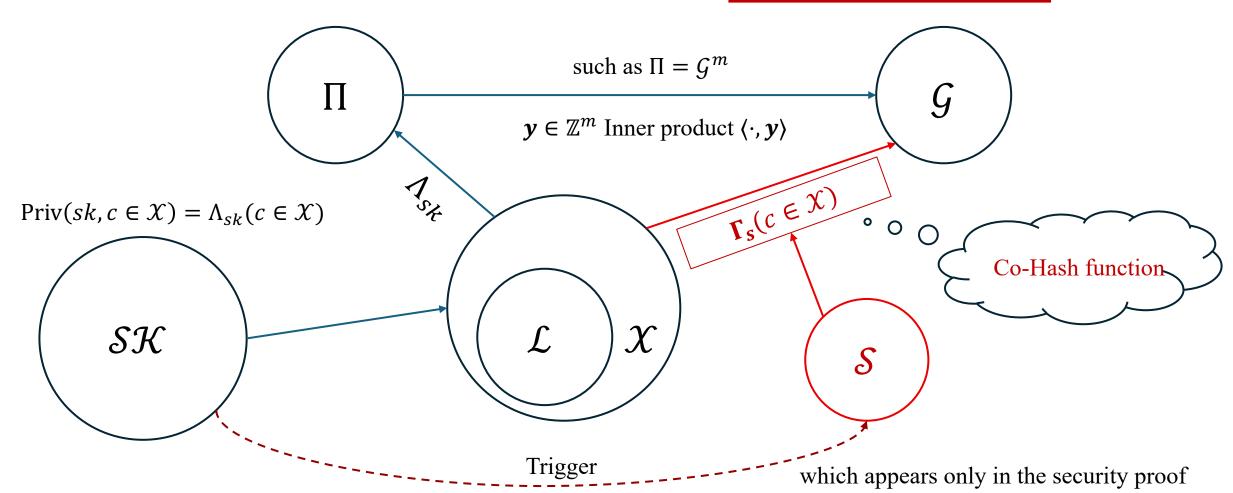
Inner-Product HPS:

Functional key,

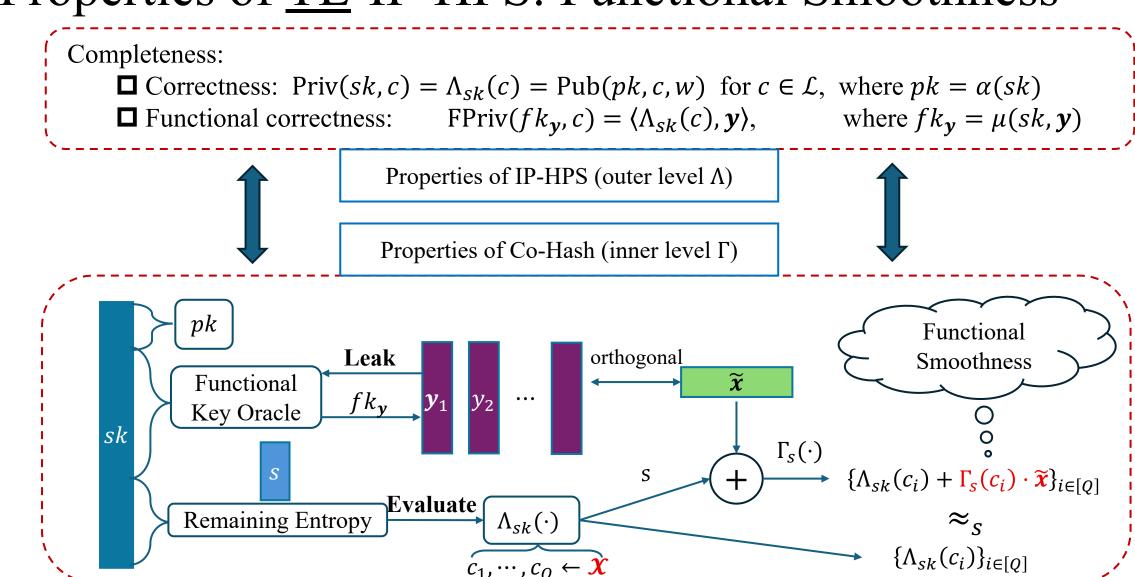
Functional private evaluation

Our New Tool: <u>Two-Leveled</u> Inner-Product HPS

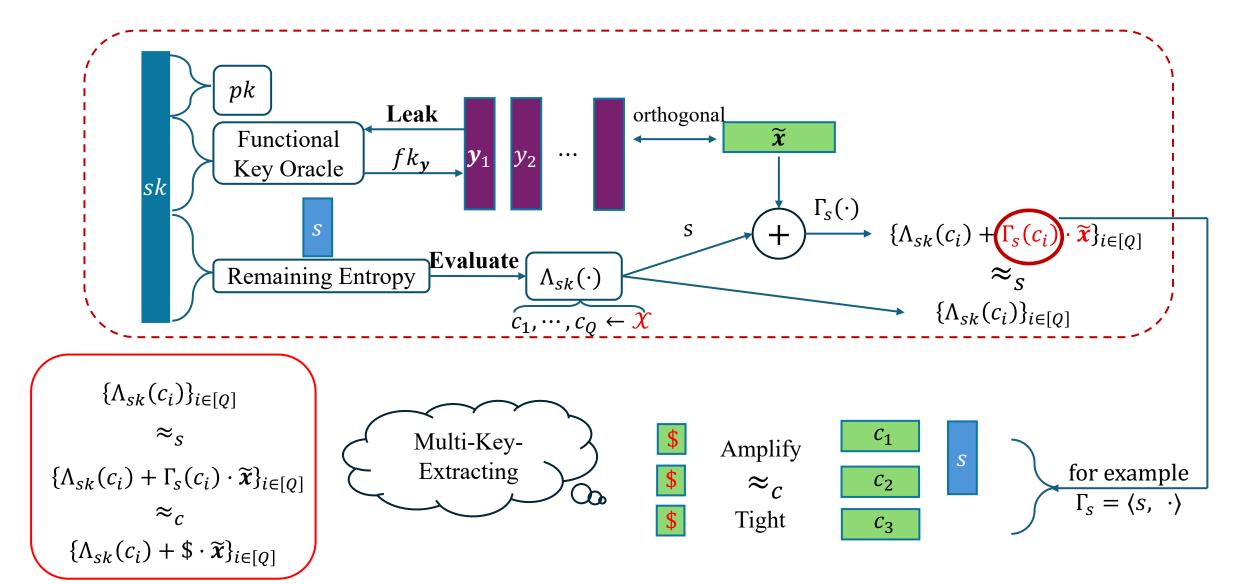
The outer IP-HPS Λ is associated with an inner co-Hash function Γ



Properties of <u>TL</u>-IP-HPS: Functional Smoothness



Properties of TL-IP-HPS: Multi-Key-Extracting

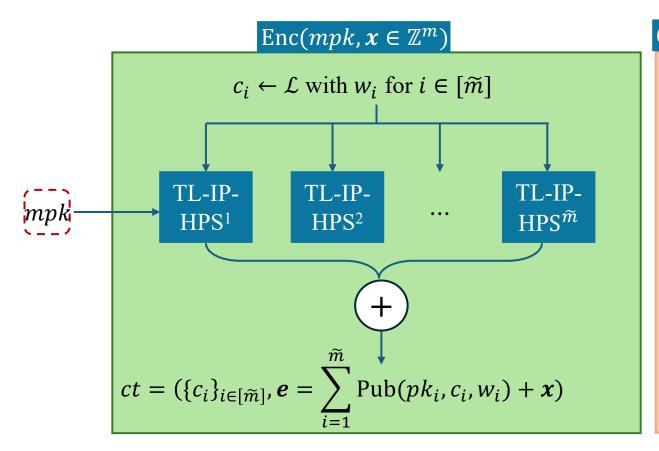


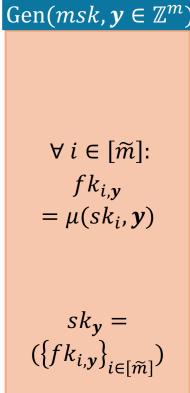
Generic Construction of Tightly Secure IPFE from TL-IP-HPS

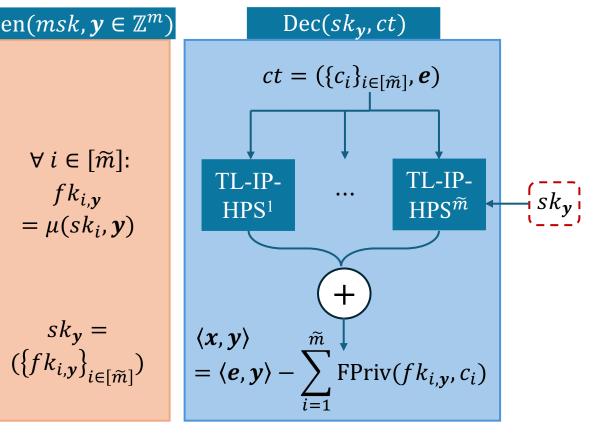
Generic Construction

Parameterized by a chosen constant L, we construct tightly secure IPFE from $\widetilde{m} = \frac{m}{L}$ copies of TL-IP-HPS:

- \square $pp \leftarrow Setup$







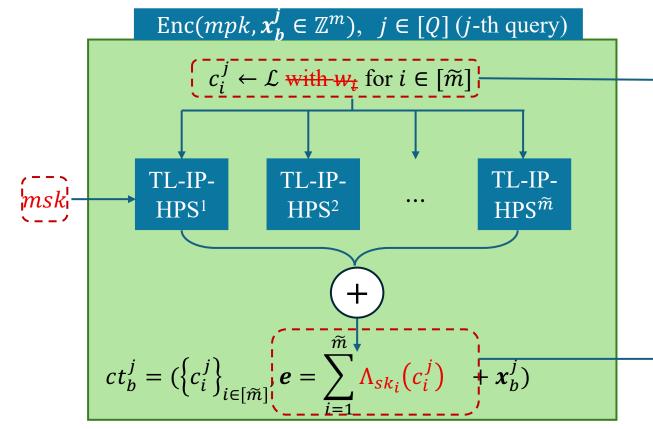
Proof Strategy I: Trigger co-Hash via Functional Smoothness

Security analysis:

- \square Game 1: switch from public evaluation to private evaluation (Pub $(pk_i, c_i, w_i) \rightarrow \Lambda_{sk_i}(c_i)$)
- \square Game 2: adaptively trigger co-Hash according to the queries of $O_{enc}(x_0^J, x_1^J)$
 - ☐ ① Do preparation by switching language adaptively
 - □ ② Adaptively trigger co-hash functions

Fact: Let $V_i = \operatorname{span}(\{\Delta x_i\}_{i \in [i]})$ then $x_0^j + V = x_1^j + V$ where $\Delta x_i = x_1^i - x_0^i$

Smoothness



Let
$$d(j) = \dim(\operatorname{span}(\{\Delta x_i\}_{i \in [j]}))$$

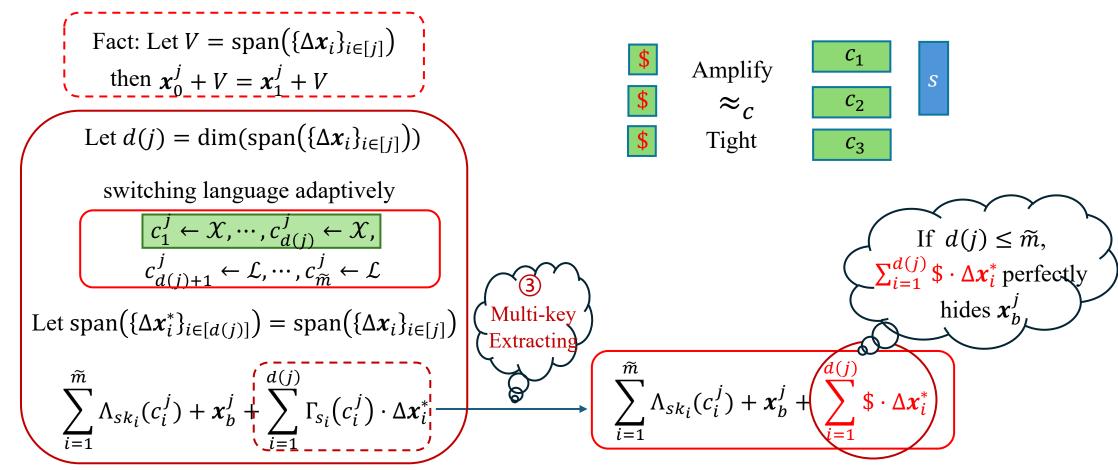
switching language adaptively

$$\begin{bmatrix} c_j^j \leftarrow \mathcal{X}, \cdots, c_{d(j)}^j \leftarrow \mathcal{X}, \\ c_{d(j)+1}^j \leftarrow \mathcal{L}, \cdots, c_{\widetilde{m}}^j \leftarrow \mathcal{L} \end{bmatrix}$$
Let $\operatorname{span}(\{\Delta x_i^*\}_{i \in [d(j)]}) = \operatorname{span}(\{\Delta x_i\}_{i \in [j]})$
i.e. basis till j -th query/ V_j

$$\sum_{i=1}^{\widetilde{m}} \Lambda_{sk_i}(c_i^j) + x_b^j + \sum_{i=1}^{d(j)} \Gamma_{s_i}(c_i^j) \cdot \Delta x_i^*$$
Smoothness

Proof Strategy II: Amplification via Multi-Key Extraction

☐ Game 3: further amplify co-Hash functions to uniformly random values!



Problem: what if $d(j) > \widetilde{m}$?

Proof Strategy III: Iterative Language Switching

Problem: what if $d(j) > \widetilde{m}$? Suppose $\underline{k} \cdot \widetilde{m} \le d(j) < (k+1) \cdot \widetilde{m}$ for some \underline{k}

First round of language switching via Proof Strategy I & II

$$\sum_{i=1}^{\widetilde{m}} \Lambda_{sk_i}(c_i^j) + x_b^j \left(+ \sum_{i=1}^{m} \$ \cdot \Delta x_i^* \right)$$

Second round of language switching via Proof Strategy I & II

•

(k + 1)-th round of language switching via Proof Strategy I & II

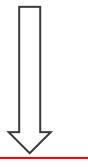
$$\frac{\overline{c_1^j \leftarrow \mathcal{X}, \cdots, \cdots, c_{\widetilde{m}}^j \leftarrow \mathcal{X}}}{\sum_{i=1}^{\widetilde{m}} \Lambda_{sk_i}(c_i^j) + x_b^j + \sum_{i=1}^{\widetilde{m}} \$ \cdot \Delta x_i^* \left(+ \sum_{i=1}^{\widetilde{m}} \$ \cdot \Delta x_{\widetilde{m}+i}^* \right)}$$

$$\sum_{i=1}^{\widetilde{m}} \Lambda_{sk_i}(c_i^j) + x_b^j + \sum_{i=1}^{\widetilde{m}} \$ \cdot \Delta x_i^* + \sum_{i=1}^{\widetilde{m}} \$ \cdot \Delta x_{\widetilde{m}+i}^* + \dots + \sum_{i=1}^{\widetilde{d}(j)-k\cdot\widetilde{m}} \$ \cdot \Delta x_{\widetilde{k}\cdot\widetilde{m}+i}^* + \dots + \sum_{i=1}^{\widetilde{d}(j)-k\cdot\widetilde{m}} \$ \cdot \Delta x_{\widetilde{k}\cdot\widetilde{m}+i}^* + \dots + \sum_{i=1}^{\widetilde{d}(j)-k\cdot\widetilde{m}} \$ \cdot \Delta x_i^* \text{ to hide } x_b^j$$
After $k+1$ iterations, we extract enough entropy
$$\sum_{i=1}^{d(j)} \$ \cdot \Delta x_i^* \text{ to hide } x_b^j$$

Instantiation from LWE

Probabilistic TL-IP-HPS (following [HLW+23, C])

LWE assumption does not result in exact evaluation. Need **adapting** TL-IP-HPS to allow for **approximate evaluation**.



Probabilistic TL-IP-HPS

Correctness:

Pub(pk, c, w) = Priv(sk, c)

Functional correctness

Deterministic algorithms co-Hash, Priv, Pub

Functional smoothness

Statistical evaluation Ind:

 $Pub(pk, c, w) \approx_s Priv(sk, c)$

Functional correctness

Probabilistic algorithms

co-Hash, Priv, Pub

Functional smoothness

TL-IP-HPS from LWE

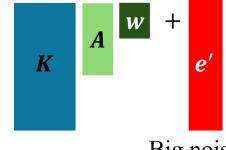
•
$$A = \begin{bmatrix} A \\ C \end{bmatrix} \leftarrow \mathbb{Z}_q^{l \times n}$$
 • $sk = K = \begin{bmatrix} K \\ C \end{bmatrix} \leftarrow \chi_K^{m \times l}$

•
$$pk = (A, P := KA)$$

•
$$fk_y = y^T K, y \in \mathbb{Z}^m$$

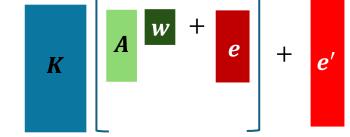
$$c = Aw + e$$

• Pub(pk, c, w) = Pw + e'



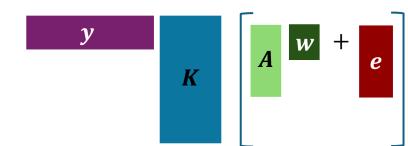
Big noise (smudging)

•
$$Priv(sk, c) = Kc + e'$$



• FPriv
$$(fk_y, c)$$

= $(y^T K) \cdot c$



- > Statistical evaluation Ind: due to smudging
- > Functional Correctness
- Functional Smoothness: fine-grained statistical analysis of discrete Gaussians
- Multi-key-extracting: tight reductions from LWE to Multi-instance LWE

Conclusion

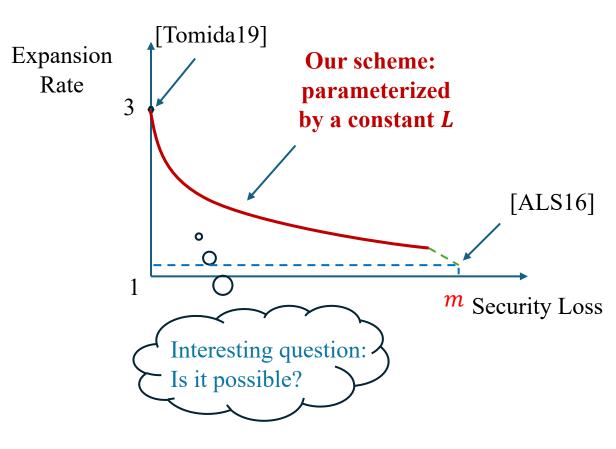
■ A unified framework for tightly secure IPFE from TL-IP-HPS:

Compact design & Economic proof strategy

More compact tightly secure DDH-based IPFE:

Solving Tomida's problem

- the <u>first</u> tightly secure DCR-based IPFE
- the <u>first</u> tightly secure LWE-based IPFE
- ■Byproduct: tighter security loss for [ALS16]



Thanks! Questions?

Email: tcs.hongxu.yi@gmail.com