
On Deniable Authentication against Malicious Verifiers

Rune Fiedler Roman Langrehr

Work done at:

Now at:

2025-08-06



Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 2 / 19



Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 3 / 19



Deniable authentication [DDN91, DNS98, DG05]

Alice Bob

Judge

Bob is convinced by the authenticity of Alice’s message.

Bob cannot convince anyone else of the authenticity of Alice’s message.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 4 / 19



Deniable authentication [DDN91, DNS98, DG05]

Alice Bob Judge

Bob is convinced by the authenticity of Alice’s message.
Bob cannot convince anyone else of the authenticity of Alice’s message.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 4 / 19



Designated verifier signatures (DVS) [JSI96]

Alice
(pkA, skA)

Bob
(pkB, skB)

≈c
Alice and Bob can produce identically looking signatures.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 5 / 19



Designated verifier signatures (DVS) [JSI96]

Alice
(pkA, skA)

Bob
(pkB, skB)

≈c
Alice and Bob can produce identically looking signatures.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 5 / 19



Designated verifier signatures (DVS) [JSI96]

Alice
(pkA, skA)

Bob
(pkB, skB)

≈c
Alice and Bob can produce identically looking signatures.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 5 / 19



Designated verifier signatures (DVS) [JSI96]

Alice
(pkA, skA)

Bob
(pkB, skB)

≈c
Alice and Bob can produce identically looking signatures.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 5 / 19



Designated verifier signatures (DVS) [JSI96]

Alice
(pkA, skA)

Bob
(pkB, skB)

≈c
Alice and Bob can produce identically looking signatures.

This assumes that Bob generates
his public/secret key pair honestly.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 5 / 19



Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 6 / 19



Our contributions

1 A model for deniable authentication against malicious verifiers for DVS

2 Undeniability of Signal’s initial handshake protocols (X3DH and PQXDH) in a similar
model for key exchange

Break (Extended) Knowledge of Diffie–Hellman (E)KDH assumption

3 A construction of DVS in the ROM based on NIZKs
4 An impossibility for DVS in the standard model assuming indistinguishability obfuscation

(iO) exists (concrete attack)

Shows uninstantiatability of the ROM construction

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 7 / 19



Our contributions

1 A model for deniable authentication against malicious verifiers for DVS
2 Undeniability of Signal’s initial handshake protocols (X3DH and PQXDH) in a similar

model for key exchange

Break (Extended) Knowledge of Diffie–Hellman (E)KDH assumption
3 A construction of DVS in the ROM based on NIZKs
4 An impossibility for DVS in the standard model assuming indistinguishability obfuscation

(iO) exists (concrete attack)

Shows uninstantiatability of the ROM construction

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 7 / 19



Our contributions

1 A model for deniable authentication against malicious verifiers for DVS
2 Undeniability of Signal’s initial handshake protocols (X3DH and PQXDH) in a similar

model for key exchange
Break (Extended) Knowledge of Diffie–Hellman (E)KDH assumption

3 A construction of DVS in the ROM based on NIZKs
4 An impossibility for DVS in the standard model assuming indistinguishability obfuscation

(iO) exists (concrete attack)

Shows uninstantiatability of the ROM construction

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 7 / 19



Our contributions

1 A model for deniable authentication against malicious verifiers for DVS
2 Undeniability of Signal’s initial handshake protocols (X3DH and PQXDH) in a similar

model for key exchange
Break (Extended) Knowledge of Diffie–Hellman (E)KDH assumption

3 A construction of DVS in the ROM based on NIZKs

4 An impossibility for DVS in the standard model assuming indistinguishability obfuscation
(iO) exists (concrete attack)

Shows uninstantiatability of the ROM construction

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 7 / 19



Our contributions

1 A model for deniable authentication against malicious verifiers for DVS
2 Undeniability of Signal’s initial handshake protocols (X3DH and PQXDH) in a similar

model for key exchange
Break (Extended) Knowledge of Diffie–Hellman (E)KDH assumption

3 A construction of DVS in the ROM based on NIZKs
4 An impossibility for DVS in the standard model assuming indistinguishability obfuscation

(iO) exists (concrete attack)

Shows uninstantiatability of the ROM construction

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 7 / 19



Our contributions

1 A model for deniable authentication against malicious verifiers for DVS
2 Undeniability of Signal’s initial handshake protocols (X3DH and PQXDH) in a similar

model for key exchange
Break (Extended) Knowledge of Diffie–Hellman (E)KDH assumption

3 A construction of DVS in the ROM based on NIZKs
4 An impossibility for DVS in the standard model assuming indistinguishability obfuscation

(iO) exists (concrete attack)
Shows uninstantiatability of the ROM construction

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 7 / 19



Modelling deniability against malicious verifiers

Alice

(pkA, skA)

Bob

(pkB, skB)

≈c

Bob can produce signatures using a secret he is guaranteed to possess.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 8 / 19



Modelling deniability against malicious verifiers

Alice

(pkA, skA)

Bob

(pkB, ???)

≈c
Bob can produce signatures using a secret he is guaranteed to possess.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 8 / 19



Modelling deniability against malicious verifiers: First attempt

Alice

(pkA, skA)

Bob
pkB ← A(pp, pkA; r)

(pkB, r)

≈c
Bob can produce signatures using a the random coins used to generate his public key.

We make no assumption about how Bob generates his public key.
Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 9 / 19



Modelling deniability against malicious verifiers: First attempt

Alice

(pkA, skA)

Bob
pkB ← A(pp, pkA; r)

(pkB, r)

≈c
Bob can produce signatures using a the random coins used to generate his public key.

We make no assumption about how Bob generates his public key.

This assumes Bob is “isolated”
and samples everything himself.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 9 / 19



Is this realistic?

CD 83 40 FB 12 2F 79 6C 22 BE E9 20 0D 18 03 72 68 03 C6 40 49 2B 33 75 2B 47 0D FF D2 BA 2A 71 0D 24 3A AD C5 22 F1 B7 D7 0E B1 29 1A
9E 90 F8 8D 43 96 AA C4 A9 B3 BF 5D 55 25 B3 33 5D 3B D5 24 64 4E DD CA 82 7C 55 9A B1 C8 66 20 70 E7 9A FD 80 C6 34 61 2D CB E3 5A C2
36 C4 F7 71 E8 C2 07 77 01 C6 02 F3 A9 07 75 B2 75 31 14 A0 7D F0 6B F1 50 A0 73 5F B3 CC AA 99 CC F3 68 74 6E 03 D7 38 B5 FF DC A6 A9
9C 16 74 B9 9C FA 41 CD 1F 8E 1C 2C 49 6A 8E CC 88 76 CA 0A 5A D5 C5 ED E9 6E AE DB 8C 97 B9 76 39 3A E1 EA E9 C7 81 17 3E F8 41 FB 4C
D1 BB 53 C2 A0 70 17 95 8F DB D8 6F 2F F6 56 7A AA 3D 70 1D 07 ED 99 98 88 35 30 4C 6A 6B 4A 2A 11 84 01 BF 61 AA A5 C1 20 FF CD F4 26
0E EE 3F A3 B7 65 DC FE 89 35 9C 99 E5 7A 2F 9F D9 1D A6 B8 A6 09 2F D0 F3 B5 F0 A0 B8 15 D2 51 DC 8D 63 B8 2E BF D1 E9 67 DB 2A 2C 9B
95 DC D7 3C ED BE D2 87 53 4A 11 1D 99 2D 2B D1 E4 7E 18 7D B0 D1 70 9B A8 2B D5 93 74 F5 E4 7D AE 26 AB 75 C0 AA B6 2E 4E 15 80 29 2A
36 B3 A7 3D D6 07 6E AF A2 25 62 77 6B B5 EC A8 B5 76 70 BB E7 BA DE 37 91 89 83 05 DD DB DE 9D 12 35 1C 4C AC 96 06 92 A2 04 2A 6B DA
E7 1D 58 19 BD 5C 88 8A CE 56 D0 F6 8F 91 38 C4 70 8F 47 A0 5E 85 08 14 80 9E ED 32 48 0C 1D C0 BC AB 1C 79 CB E5 AC B4 65 01 B6 BB E0
F5 CB 48 37 3A C9 F6 8C CF 87 06 46 F8 AC 54 2D 47 37 9F 1B 84 B3 C9 00 FA 89 72 7D 04 0F C2 A3 3D 02 AF 22 8F 6F 4F EE BF 18 58 D9 E5
15 B7 56 FB E3 C5 BF 83 6E DC 05 97 52 F8 38 F0 7E E5 41 4F 50 5C 6E DA 98 BF CB A3 F6 75 E3 F8 DD 0C 2A 0B 64 47 5C 73 34 42 A5 B3 A9
FB 41 C1 87 DE 1B 9E 25 6D 2A 45 66 05 8F 2B FA 75

This is the product of two 2048 bit primes.

There is no algorithm to sample such a number without knowing the primes (as far as I
know)
But I don’t know the primes...
...because it is the public key of the iacr.org webserver.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 10 / 19



Is this realistic?

CD 83 40 FB 12 2F 79 6C 22 BE E9 20 0D 18 03 72 68 03 C6 40 49 2B 33 75 2B 47 0D FF D2 BA 2A 71 0D 24 3A AD C5 22 F1 B7 D7 0E B1 29 1A
9E 90 F8 8D 43 96 AA C4 A9 B3 BF 5D 55 25 B3 33 5D 3B D5 24 64 4E DD CA 82 7C 55 9A B1 C8 66 20 70 E7 9A FD 80 C6 34 61 2D CB E3 5A C2
36 C4 F7 71 E8 C2 07 77 01 C6 02 F3 A9 07 75 B2 75 31 14 A0 7D F0 6B F1 50 A0 73 5F B3 CC AA 99 CC F3 68 74 6E 03 D7 38 B5 FF DC A6 A9
9C 16 74 B9 9C FA 41 CD 1F 8E 1C 2C 49 6A 8E CC 88 76 CA 0A 5A D5 C5 ED E9 6E AE DB 8C 97 B9 76 39 3A E1 EA E9 C7 81 17 3E F8 41 FB 4C
D1 BB 53 C2 A0 70 17 95 8F DB D8 6F 2F F6 56 7A AA 3D 70 1D 07 ED 99 98 88 35 30 4C 6A 6B 4A 2A 11 84 01 BF 61 AA A5 C1 20 FF CD F4 26
0E EE 3F A3 B7 65 DC FE 89 35 9C 99 E5 7A 2F 9F D9 1D A6 B8 A6 09 2F D0 F3 B5 F0 A0 B8 15 D2 51 DC 8D 63 B8 2E BF D1 E9 67 DB 2A 2C 9B
95 DC D7 3C ED BE D2 87 53 4A 11 1D 99 2D 2B D1 E4 7E 18 7D B0 D1 70 9B A8 2B D5 93 74 F5 E4 7D AE 26 AB 75 C0 AA B6 2E 4E 15 80 29 2A
36 B3 A7 3D D6 07 6E AF A2 25 62 77 6B B5 EC A8 B5 76 70 BB E7 BA DE 37 91 89 83 05 DD DB DE 9D 12 35 1C 4C AC 96 06 92 A2 04 2A 6B DA
E7 1D 58 19 BD 5C 88 8A CE 56 D0 F6 8F 91 38 C4 70 8F 47 A0 5E 85 08 14 80 9E ED 32 48 0C 1D C0 BC AB 1C 79 CB E5 AC B4 65 01 B6 BB E0
F5 CB 48 37 3A C9 F6 8C CF 87 06 46 F8 AC 54 2D 47 37 9F 1B 84 B3 C9 00 FA 89 72 7D 04 0F C2 A3 3D 02 AF 22 8F 6F 4F EE BF 18 58 D9 E5
15 B7 56 FB E3 C5 BF 83 6E DC 05 97 52 F8 38 F0 7E E5 41 4F 50 5C 6E DA 98 BF CB A3 F6 75 E3 F8 DD 0C 2A 0B 64 47 5C 73 34 42 A5 B3 A9
FB 41 C1 87 DE 1B 9E 25 6D 2A 45 66 05 8F 2B FA 75

This is the product of two 2048 bit primes.
There is no algorithm to sample such a number without knowing the primes (as far as I
know)

But I don’t know the primes...
...because it is the public key of the iacr.org webserver.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 10 / 19



Is this realistic?

CD 83 40 FB 12 2F 79 6C 22 BE E9 20 0D 18 03 72 68 03 C6 40 49 2B 33 75 2B 47 0D FF D2 BA 2A 71 0D 24 3A AD C5 22 F1 B7 D7 0E B1 29 1A
9E 90 F8 8D 43 96 AA C4 A9 B3 BF 5D 55 25 B3 33 5D 3B D5 24 64 4E DD CA 82 7C 55 9A B1 C8 66 20 70 E7 9A FD 80 C6 34 61 2D CB E3 5A C2
36 C4 F7 71 E8 C2 07 77 01 C6 02 F3 A9 07 75 B2 75 31 14 A0 7D F0 6B F1 50 A0 73 5F B3 CC AA 99 CC F3 68 74 6E 03 D7 38 B5 FF DC A6 A9
9C 16 74 B9 9C FA 41 CD 1F 8E 1C 2C 49 6A 8E CC 88 76 CA 0A 5A D5 C5 ED E9 6E AE DB 8C 97 B9 76 39 3A E1 EA E9 C7 81 17 3E F8 41 FB 4C
D1 BB 53 C2 A0 70 17 95 8F DB D8 6F 2F F6 56 7A AA 3D 70 1D 07 ED 99 98 88 35 30 4C 6A 6B 4A 2A 11 84 01 BF 61 AA A5 C1 20 FF CD F4 26
0E EE 3F A3 B7 65 DC FE 89 35 9C 99 E5 7A 2F 9F D9 1D A6 B8 A6 09 2F D0 F3 B5 F0 A0 B8 15 D2 51 DC 8D 63 B8 2E BF D1 E9 67 DB 2A 2C 9B
95 DC D7 3C ED BE D2 87 53 4A 11 1D 99 2D 2B D1 E4 7E 18 7D B0 D1 70 9B A8 2B D5 93 74 F5 E4 7D AE 26 AB 75 C0 AA B6 2E 4E 15 80 29 2A
36 B3 A7 3D D6 07 6E AF A2 25 62 77 6B B5 EC A8 B5 76 70 BB E7 BA DE 37 91 89 83 05 DD DB DE 9D 12 35 1C 4C AC 96 06 92 A2 04 2A 6B DA
E7 1D 58 19 BD 5C 88 8A CE 56 D0 F6 8F 91 38 C4 70 8F 47 A0 5E 85 08 14 80 9E ED 32 48 0C 1D C0 BC AB 1C 79 CB E5 AC B4 65 01 B6 BB E0
F5 CB 48 37 3A C9 F6 8C CF 87 06 46 F8 AC 54 2D 47 37 9F 1B 84 B3 C9 00 FA 89 72 7D 04 0F C2 A3 3D 02 AF 22 8F 6F 4F EE BF 18 58 D9 E5
15 B7 56 FB E3 C5 BF 83 6E DC 05 97 52 F8 38 F0 7E E5 41 4F 50 5C 6E DA 98 BF CB A3 F6 75 E3 F8 DD 0C 2A 0B 64 47 5C 73 34 42 A5 B3 A9
FB 41 C1 87 DE 1B 9E 25 6D 2A 45 66 05 8F 2B FA 75

This is the product of two 2048 bit primes.
There is no algorithm to sample such a number without knowing the primes (as far as I
know)
But I don’t know the primes...

...because it is the public key of the iacr.org webserver.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 10 / 19



Is this realistic?

CD 83 40 FB 12 2F 79 6C 22 BE E9 20 0D 18 03 72 68 03 C6 40 49 2B 33 75 2B 47 0D FF D2 BA 2A 71 0D 24 3A AD C5 22 F1 B7 D7 0E B1 29 1A
9E 90 F8 8D 43 96 AA C4 A9 B3 BF 5D 55 25 B3 33 5D 3B D5 24 64 4E DD CA 82 7C 55 9A B1 C8 66 20 70 E7 9A FD 80 C6 34 61 2D CB E3 5A C2
36 C4 F7 71 E8 C2 07 77 01 C6 02 F3 A9 07 75 B2 75 31 14 A0 7D F0 6B F1 50 A0 73 5F B3 CC AA 99 CC F3 68 74 6E 03 D7 38 B5 FF DC A6 A9
9C 16 74 B9 9C FA 41 CD 1F 8E 1C 2C 49 6A 8E CC 88 76 CA 0A 5A D5 C5 ED E9 6E AE DB 8C 97 B9 76 39 3A E1 EA E9 C7 81 17 3E F8 41 FB 4C
D1 BB 53 C2 A0 70 17 95 8F DB D8 6F 2F F6 56 7A AA 3D 70 1D 07 ED 99 98 88 35 30 4C 6A 6B 4A 2A 11 84 01 BF 61 AA A5 C1 20 FF CD F4 26
0E EE 3F A3 B7 65 DC FE 89 35 9C 99 E5 7A 2F 9F D9 1D A6 B8 A6 09 2F D0 F3 B5 F0 A0 B8 15 D2 51 DC 8D 63 B8 2E BF D1 E9 67 DB 2A 2C 9B
95 DC D7 3C ED BE D2 87 53 4A 11 1D 99 2D 2B D1 E4 7E 18 7D B0 D1 70 9B A8 2B D5 93 74 F5 E4 7D AE 26 AB 75 C0 AA B6 2E 4E 15 80 29 2A
36 B3 A7 3D D6 07 6E AF A2 25 62 77 6B B5 EC A8 B5 76 70 BB E7 BA DE 37 91 89 83 05 DD DB DE 9D 12 35 1C 4C AC 96 06 92 A2 04 2A 6B DA
E7 1D 58 19 BD 5C 88 8A CE 56 D0 F6 8F 91 38 C4 70 8F 47 A0 5E 85 08 14 80 9E ED 32 48 0C 1D C0 BC AB 1C 79 CB E5 AC B4 65 01 B6 BB E0
F5 CB 48 37 3A C9 F6 8C CF 87 06 46 F8 AC 54 2D 47 37 9F 1B 84 B3 C9 00 FA 89 72 7D 04 0F C2 A3 3D 02 AF 22 8F 6F 4F EE BF 18 58 D9 E5
15 B7 56 FB E3 C5 BF 83 6E DC 05 97 52 F8 38 F0 7E E5 41 4F 50 5C 6E DA 98 BF CB A3 F6 75 E3 F8 DD 0C 2A 0B 64 47 5C 73 34 42 A5 B3 A9
FB 41 C1 87 DE 1B 9E 25 6D 2A 45 66 05 8F 2B FA 75

This is the product of two 2048 bit primes.
There is no algorithm to sample such a number without knowing the primes (as far as I
know)
But I don’t know the primes...
...because it is the public key of the iacr.org webserver.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 10 / 19



Fixing the definition

We have to model everything Bob might know without generating it himself:

Auxiliary input: Everything independent of the scheme’s public parameters pp.
Public keys of other verifiers
Public keys of senders
Valid signatures (for other messages or for other users)
...

These are given to Bob as input or oracle access.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 11 / 19



Fixing the definition

We have to model everything Bob might know without generating it himself:
Auxiliary input: Everything independent of the scheme’s public parameters pp.

Public keys of other verifiers
Public keys of senders
Valid signatures (for other messages or for other users)
...

These are given to Bob as input or oracle access.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 11 / 19



Fixing the definition

We have to model everything Bob might know without generating it himself:
Auxiliary input: Everything independent of the scheme’s public parameters pp.
Public keys of other verifiers

Public keys of senders
Valid signatures (for other messages or for other users)
...

These are given to Bob as input or oracle access.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 11 / 19



Fixing the definition

We have to model everything Bob might know without generating it himself:
Auxiliary input: Everything independent of the scheme’s public parameters pp.
Public keys of other verifiers
Public keys of senders

Valid signatures (for other messages or for other users)
...

These are given to Bob as input or oracle access.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 11 / 19



Fixing the definition

We have to model everything Bob might know without generating it himself:
Auxiliary input: Everything independent of the scheme’s public parameters pp.
Public keys of other verifiers
Public keys of senders
Valid signatures (for other messages or for other users)

...
These are given to Bob as input or oracle access.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 11 / 19



Fixing the definition

We have to model everything Bob might know without generating it himself:
Auxiliary input: Everything independent of the scheme’s public parameters pp.
Public keys of other verifiers
Public keys of senders
Valid signatures (for other messages or for other users)
...

These are given to Bob as input or oracle access.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 11 / 19



Fixing the definition

We have to model everything Bob might know without generating it himself:
Auxiliary input: Everything independent of the scheme’s public parameters pp.
Public keys of other verifiers
Public keys of senders
Valid signatures (for other messages or for other users)
...

These are given to Bob as input or oracle access.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 11 / 19



Fixing the definition

We have to model everything Bob might know without generating it himself:
Auxiliary input: Everything independent of the scheme’s public parameters pp.
Public keys of other verifiers
Public keys of senders
Valid signatures (for other messages or for other users)
...

These are given to Bob as input or oracle access.

Ignored here for simplicity.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 11 / 19



Malicious source hiding

A DVS is malicious source hiding iff
∀ Adversaries A (Bob, generates pkB)

∃ Extractor E (forges signatures, same inputs/random tape as Bob)
∀ Distinguisher D (Judge)
∀ aux ∈ {0, 1}∗ (given to A and E)

D cannot distinguish real (Alice’s) signatures
from faked (E ’s) signatures.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 12 / 19



Malicious source hiding

A DVS is malicious source hiding iff
∀ Adversaries A (Bob, generates pkB)
∃ Extractor E (forges signatures, same inputs/random tape as Bob)

∀ Distinguisher D (Judge)
∀ aux ∈ {0, 1}∗ (given to A and E)

D cannot distinguish real (Alice’s) signatures
from faked (E ’s) signatures.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 12 / 19



Malicious source hiding

A DVS is malicious source hiding iff
∀ Adversaries A (Bob, generates pkB)
∃ Extractor E (forges signatures, same inputs/random tape as Bob)
∀ Distinguisher D (Judge)

∀ aux ∈ {0, 1}∗ (given to A and E)

D cannot distinguish real (Alice’s) signatures
from faked (E ’s) signatures.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 12 / 19



Malicious source hiding

A DVS is malicious source hiding iff
∀ Adversaries A (Bob, generates pkB)
∃ Extractor E (forges signatures, same inputs/random tape as Bob)
∀ Distinguisher D (Judge)
∀ aux ∈ {0, 1}∗ (given to A and E)

D cannot distinguish real (Alice’s) signatures
from faked (E ’s) signatures.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 12 / 19



Malicious source hiding

A DVS is malicious source hiding iff
∀ Adversaries A (Bob, generates pkB)
∃ Extractor E (forges signatures, same inputs/random tape as Bob)
∀ Distinguisher D (Judge)
∀ aux ∈ {0, 1}∗ (given to A and E)

D cannot distinguish real (Alice’s) signatures
from faked (E ’s) signatures.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 12 / 19



Non-solutions

Knowledge type assumptions (like knowledge of exponent assumption (KEA))

Most of them (like KEA) are not secure with auxiliary inputs assuming iO exists [BCPR14]
(E)KDH assumptions were designed to circumvent this problem...
...but we show that they are insecure against very simple auxiliary inputs (no iO needed)

Use NIZKPoKs to prove knowledge of secret keys (black-box extraction)

Extractor would need to know a trapdoor for the crs
In reality nobody knows this trapdoor

⇒ Unrealistic to assume that Bob knows it

Use NIZKPoKs to prove knowledge of secret keys (white-box extraction, used for SNARKs)

Cannot be secure with auxiliary inputs assuming iO exists [BCPR14]

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 13 / 19



Non-solutions

Knowledge type assumptions (like knowledge of exponent assumption (KEA))
Most of them (like KEA) are not secure with auxiliary inputs assuming iO exists [BCPR14]

(E)KDH assumptions were designed to circumvent this problem...
...but we show that they are insecure against very simple auxiliary inputs (no iO needed)

Use NIZKPoKs to prove knowledge of secret keys (black-box extraction)

Extractor would need to know a trapdoor for the crs
In reality nobody knows this trapdoor

⇒ Unrealistic to assume that Bob knows it

Use NIZKPoKs to prove knowledge of secret keys (white-box extraction, used for SNARKs)

Cannot be secure with auxiliary inputs assuming iO exists [BCPR14]

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 13 / 19



Non-solutions

Knowledge type assumptions (like knowledge of exponent assumption (KEA))
Most of them (like KEA) are not secure with auxiliary inputs assuming iO exists [BCPR14]
(E)KDH assumptions were designed to circumvent this problem...

...but we show that they are insecure against very simple auxiliary inputs (no iO needed)

Use NIZKPoKs to prove knowledge of secret keys (black-box extraction)

Extractor would need to know a trapdoor for the crs
In reality nobody knows this trapdoor

⇒ Unrealistic to assume that Bob knows it

Use NIZKPoKs to prove knowledge of secret keys (white-box extraction, used for SNARKs)

Cannot be secure with auxiliary inputs assuming iO exists [BCPR14]

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 13 / 19



Non-solutions

Knowledge type assumptions (like knowledge of exponent assumption (KEA))
Most of them (like KEA) are not secure with auxiliary inputs assuming iO exists [BCPR14]
(E)KDH assumptions were designed to circumvent this problem...
...but we show that they are insecure against very simple auxiliary inputs (no iO needed)

Use NIZKPoKs to prove knowledge of secret keys (black-box extraction)

Extractor would need to know a trapdoor for the crs
In reality nobody knows this trapdoor

⇒ Unrealistic to assume that Bob knows it

Use NIZKPoKs to prove knowledge of secret keys (white-box extraction, used for SNARKs)

Cannot be secure with auxiliary inputs assuming iO exists [BCPR14]

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 13 / 19



Non-solutions

Knowledge type assumptions (like knowledge of exponent assumption (KEA))
Most of them (like KEA) are not secure with auxiliary inputs assuming iO exists [BCPR14]
(E)KDH assumptions were designed to circumvent this problem...
...but we show that they are insecure against very simple auxiliary inputs (no iO needed)

Use NIZKPoKs to prove knowledge of secret keys (black-box extraction)

Extractor would need to know a trapdoor for the crs
In reality nobody knows this trapdoor

⇒ Unrealistic to assume that Bob knows it

Use NIZKPoKs to prove knowledge of secret keys (white-box extraction, used for SNARKs)

Cannot be secure with auxiliary inputs assuming iO exists [BCPR14]

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 13 / 19



Non-solutions

Knowledge type assumptions (like knowledge of exponent assumption (KEA))
Most of them (like KEA) are not secure with auxiliary inputs assuming iO exists [BCPR14]
(E)KDH assumptions were designed to circumvent this problem...
...but we show that they are insecure against very simple auxiliary inputs (no iO needed)

Use NIZKPoKs to prove knowledge of secret keys (black-box extraction)
Extractor would need to know a trapdoor for the crs

In reality nobody knows this trapdoor
⇒ Unrealistic to assume that Bob knows it

Use NIZKPoKs to prove knowledge of secret keys (white-box extraction, used for SNARKs)

Cannot be secure with auxiliary inputs assuming iO exists [BCPR14]

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 13 / 19



Non-solutions

Knowledge type assumptions (like knowledge of exponent assumption (KEA))
Most of them (like KEA) are not secure with auxiliary inputs assuming iO exists [BCPR14]
(E)KDH assumptions were designed to circumvent this problem...
...but we show that they are insecure against very simple auxiliary inputs (no iO needed)

Use NIZKPoKs to prove knowledge of secret keys (black-box extraction)
Extractor would need to know a trapdoor for the crs
In reality nobody knows this trapdoor

⇒ Unrealistic to assume that Bob knows it

Use NIZKPoKs to prove knowledge of secret keys (white-box extraction, used for SNARKs)

Cannot be secure with auxiliary inputs assuming iO exists [BCPR14]

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 13 / 19



Non-solutions

Knowledge type assumptions (like knowledge of exponent assumption (KEA))
Most of them (like KEA) are not secure with auxiliary inputs assuming iO exists [BCPR14]
(E)KDH assumptions were designed to circumvent this problem...
...but we show that they are insecure against very simple auxiliary inputs (no iO needed)

Use NIZKPoKs to prove knowledge of secret keys (black-box extraction)
Extractor would need to know a trapdoor for the crs
In reality nobody knows this trapdoor

⇒ Unrealistic to assume that Bob knows it

Use NIZKPoKs to prove knowledge of secret keys (white-box extraction, used for SNARKs)

Cannot be secure with auxiliary inputs assuming iO exists [BCPR14]

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 13 / 19



Non-solutions

Knowledge type assumptions (like knowledge of exponent assumption (KEA))
Most of them (like KEA) are not secure with auxiliary inputs assuming iO exists [BCPR14]
(E)KDH assumptions were designed to circumvent this problem...
...but we show that they are insecure against very simple auxiliary inputs (no iO needed)

Use NIZKPoKs to prove knowledge of secret keys (black-box extraction)
Extractor would need to know a trapdoor for the crs
In reality nobody knows this trapdoor

⇒ Unrealistic to assume that Bob knows it

Use NIZKPoKs to prove knowledge of secret keys (white-box extraction, used for SNARKs)

Cannot be secure with auxiliary inputs assuming iO exists [BCPR14]

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 13 / 19



Non-solutions

Knowledge type assumptions (like knowledge of exponent assumption (KEA))
Most of them (like KEA) are not secure with auxiliary inputs assuming iO exists [BCPR14]
(E)KDH assumptions were designed to circumvent this problem...
...but we show that they are insecure against very simple auxiliary inputs (no iO needed)

Use NIZKPoKs to prove knowledge of secret keys (black-box extraction)
Extractor would need to know a trapdoor for the crs
In reality nobody knows this trapdoor

⇒ Unrealistic to assume that Bob knows it

Use NIZKPoKs to prove knowledge of secret keys (white-box extraction, used for SNARKs)
Cannot be secure with auxiliary inputs assuming iO exists [BCPR14]

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 13 / 19



Non-solutions

Knowledge type assumptions (like knowledge of exponent assumption (KEA))
Most of them (like KEA) are not secure with auxiliary inputs assuming iO exists [BCPR14]
(E)KDH assumptions were designed to circumvent this problem...
...but we show that they are insecure against very simple auxiliary inputs (no iO needed)

Use NIZKPoKs to prove knowledge of secret keys (black-box extraction)
Extractor would need to know a trapdoor for the crs
In reality nobody knows this trapdoor

⇒ Unrealistic to assume that Bob knows it

Use NIZKPoKs to prove knowledge of secret keys (white-box extraction, used for SNARKs)
Cannot be secure with auxiliary inputs assuming iO exists [BCPR14]

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 13 / 19



Construction in the ROM

Basic idea: If Bob generates the crs himself, he can know the trapdoor.

crs← GenNIZK()
(pkB , skB)← VKGen(pp; r) (Traditional DVS)

π ← Prove(crs, pkB , skB)
return ((pkB , crs, π), skB)

Problem: How can we force a malicious Bob to sample crs randomly?
Solution: Generate it via random oracle (requires random string as crs)

crs← H(pp, id)
⇒ E can run A internally and program this query to a crs with known trapdoor

Problem: A could output a different public key when we change a ROM query
Solution: Hash also the public key (Fiat–Shamir like trick):

(pkB , skB)← VKGen(pp; r)
crs← H(pp, id, pkB)

π ← Prove(crs, pkB , skB)
return ((pkB , π), skB)

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 14 / 19



Construction in the ROM

Basic idea: If Bob generates the crs himself, he can know the trapdoor.
crs← GenNIZK()

(pkB , skB)← VKGen(pp; r) (Traditional DVS)
π ← Prove(crs, pkB , skB)

return ((pkB , crs, π), skB)

Problem: How can we force a malicious Bob to sample crs randomly?
Solution: Generate it via random oracle (requires random string as crs)

crs← H(pp, id)
⇒ E can run A internally and program this query to a crs with known trapdoor

Problem: A could output a different public key when we change a ROM query
Solution: Hash also the public key (Fiat–Shamir like trick):

(pkB , skB)← VKGen(pp; r)
crs← H(pp, id, pkB)

π ← Prove(crs, pkB , skB)
return ((pkB , π), skB)

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 14 / 19



Construction in the ROM

Basic idea: If Bob generates the crs himself, he can know the trapdoor.
crs← GenNIZK()

(pkB , skB)← VKGen(pp; r) (Traditional DVS)
π ← Prove(crs, pkB , skB)

return ((pkB , crs, π), skB)
Problem: How can we force a malicious Bob to sample crs randomly?

Solution: Generate it via random oracle (requires random string as crs)
crs← H(pp, id)

⇒ E can run A internally and program this query to a crs with known trapdoor
Problem: A could output a different public key when we change a ROM query
Solution: Hash also the public key (Fiat–Shamir like trick):

(pkB , skB)← VKGen(pp; r)
crs← H(pp, id, pkB)

π ← Prove(crs, pkB , skB)
return ((pkB , π), skB)

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 14 / 19



Construction in the ROM

Basic idea: If Bob generates the crs himself, he can know the trapdoor.
crs← GenNIZK()

(pkB , skB)← VKGen(pp; r) (Traditional DVS)
π ← Prove(crs, pkB , skB)

return ((pkB , crs, π), skB)
Problem: How can we force a malicious Bob to sample crs randomly?
Solution: Generate it via random oracle (requires random string as crs)

crs← H(pp, id)
⇒ E can run A internally and program this query to a crs with known trapdoor

Problem: A could output a different public key when we change a ROM query
Solution: Hash also the public key (Fiat–Shamir like trick):

(pkB , skB)← VKGen(pp; r)
crs← H(pp, id, pkB)

π ← Prove(crs, pkB , skB)
return ((pkB , π), skB)

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 14 / 19



Construction in the ROM

Basic idea: If Bob generates the crs himself, he can know the trapdoor.
crs← GenNIZK()

(pkB , skB)← VKGen(pp; r) (Traditional DVS)
π ← Prove(crs, pkB , skB)

return ((pkB , crs, π), skB)
Problem: How can we force a malicious Bob to sample crs randomly?
Solution: Generate it via random oracle (requires random string as crs)

crs← H(pp, id)
⇒ E can run A internally and program this query to a crs with known trapdoor

Problem: A could output a different public key when we change a ROM query
Solution: Hash also the public key (Fiat–Shamir like trick):

(pkB , skB)← VKGen(pp; r)
crs← H(pp, id, pkB)

π ← Prove(crs, pkB , skB)
return ((pkB , π), skB)

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 14 / 19



Construction in the ROM

Basic idea: If Bob generates the crs himself, he can know the trapdoor.
crs← GenNIZK()

(pkB , skB)← VKGen(pp; r) (Traditional DVS)
π ← Prove(crs, pkB , skB)

return ((pkB , crs, π), skB)
Problem: How can we force a malicious Bob to sample crs randomly?
Solution: Generate it via random oracle (requires random string as crs)

crs← H(pp, id)
⇒ E can run A internally and program this query to a crs with known trapdoor

Problem: A could output a different public key when we change a ROM query

Solution: Hash also the public key (Fiat–Shamir like trick):
(pkB , skB)← VKGen(pp; r)

crs← H(pp, id, pkB)
π ← Prove(crs, pkB , skB)

return ((pkB , π), skB)

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 14 / 19



Construction in the ROM

Basic idea: If Bob generates the crs himself, he can know the trapdoor.
crs← GenNIZK()

(pkB , skB)← VKGen(pp; r) (Traditional DVS)
π ← Prove(crs, pkB , skB)

return ((pkB , crs, π), skB)
Problem: How can we force a malicious Bob to sample crs randomly?
Solution: Generate it via random oracle (requires random string as crs)

crs← H(pp, id)
⇒ E can run A internally and program this query to a crs with known trapdoor

Problem: A could output a different public key when we change a ROM query
Solution: Hash also the public key (Fiat–Shamir like trick):

(pkB , skB)← VKGen(pp; r)
crs← H(pp, id, pkB)

π ← Prove(crs, pkB , skB)
return ((pkB , π), skB)

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 14 / 19



Construction in the ROM

Basic idea: If Bob generates the crs himself, he can know the trapdoor.
crs← GenNIZK()

(pkB , skB)← VKGen(pp; r) (Traditional DVS)
π ← Prove(crs, pkB , skB)

return ((pkB , crs, π), skB)
Problem: How can we force a malicious Bob to sample crs randomly?
Solution: Generate it via random oracle (requires random string as crs)

crs← H(pp, id)
⇒ E can run A internally and program this query to a crs with known trapdoor

Problem: A could output a different public key when we change a ROM query
Solution: Hash also the public key (Fiat–Shamir like trick):

(pkB , skB)← VKGen(pp; r)
crs← H(pp, id, pkB)

π ← Prove(crs, pkB , skB)
return ((pkB , π), skB)

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 14 / 19



Impossibility result (inspired by [BCPR14])

Theorem
Assuming iO exists, no DVS can be simultaneously malicious source-hiding and unforgeable.

A
pp

pkB

Obfuscated VKGen
(part of aux)

pp

pkB

E
pp

σ that verifies

⇒
mal. s.-h.

≈c

iO

Punctured
programming [SW14]

Obfuscated VKGen
with pk⋆ hardcoded

A
pp

pk⋆

pp

pk⋆

E
pp

σ that verifies

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 15 / 19



Impossibility result (inspired by [BCPR14])

Theorem
Assuming iO exists, no DVS can be simultaneously malicious source-hiding and unforgeable.

A
pp

pkB

Obfuscated VKGen
(part of aux)

pp

pkB

E
pp

σ that verifies

⇒
mal. s.-h.

≈c

iO

Punctured
programming [SW14]

Obfuscated VKGen
with pk⋆ hardcoded

A
pp

pk⋆

pp

pk⋆

E
pp

σ that verifies

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 15 / 19



Impossibility result (inspired by [BCPR14])

Theorem
Assuming iO exists, no DVS can be simultaneously malicious source-hiding and unforgeable.

A
pp

pkB

Obfuscated VKGen
(part of aux)

pp

pkB

E
pp

σ that verifies

⇒
mal. s.-h.

≈c

iO

Punctured
programming [SW14]

Obfuscated VKGen
with pk⋆ hardcoded

A
pp

pk⋆

pp

pk⋆

E
pp

σ that verifies

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 15 / 19



Impossibility result (inspired by [BCPR14])

Theorem
Assuming iO exists, no DVS can be simultaneously malicious source-hiding and unforgeable.

A
pp

pkB

Obfuscated VKGen
(part of aux)

pp

pkB

E
pp

σ that verifies

⇒
mal. s.-h.

≈c

iO

Punctured
programming [SW14]

Obfuscated VKGen
with pk⋆ hardcoded

A
pp

pk⋆

pp

pk⋆

E
pp

σ that verifies
Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 15 / 19



Impossibility result (inspired by [BCPR14])

Theorem
Assuming iO exists, no DVS can be simultaneously malicious source-hiding and unforgeable.

A
pp

pkB

Obfuscated VKGen
(part of aux)

pp

pkB

E
pp

σ that verifies

⇒
mal. s.-h.

≈c

iO

Punctured
programming [SW14]

Obfuscated VKGen
with pk⋆ hardcoded

A
pp

pk⋆

pp

pk⋆

breaks unforgeabilityE
pp

σ that verifies
Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 15 / 19



ROM construction vs. impossibility result

An obfuscated program cannot access the RO

In the ROM construction it is impossible to generate a valid verifier pk without access to
RO.
When we instantiate the RO with a concrete hash function, the impossibility result applies

⇒ The ROM construction is insecure when instantiated.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 16 / 19



ROM construction vs. impossibility result

An obfuscated program cannot access the RO
In the ROM construction it is impossible to generate a valid verifier pk without access to
RO.

When we instantiate the RO with a concrete hash function, the impossibility result applies
⇒ The ROM construction is insecure when instantiated.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 16 / 19



ROM construction vs. impossibility result

An obfuscated program cannot access the RO
In the ROM construction it is impossible to generate a valid verifier pk without access to
RO.
When we instantiate the RO with a concrete hash function, the impossibility result applies

⇒ The ROM construction is insecure when instantiated.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 16 / 19



ROM construction vs. impossibility result

An obfuscated program cannot access the RO
In the ROM construction it is impossible to generate a valid verifier pk without access to
RO.
When we instantiate the RO with a concrete hash function, the impossibility result applies

⇒ The ROM construction is insecure when instantiated.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 16 / 19



Future work: Circumventing the impossibility result

Possible approaches:
Interactive protocols

Interactive proof of knowledge seems to be sufficient
Hard to use for E2EE messaging when users can be offline

Restricting auxiliary input

Realistic restrictions (e.g. only efficiently samplable auxiliary input) do not circumvent our
impossibility result
Some schemes require publishing an obfuscated circuit that suffices for our attack [HJK+16].
For concrete schemes, iO might not be needed (e.g. X3DH/PQXDH/(E)KDH)

Private verification

Seems to be the most promising direction

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 17 / 19



Future work: Circumventing the impossibility result

Possible approaches:
Interactive protocols

Interactive proof of knowledge seems to be sufficient

Hard to use for E2EE messaging when users can be offline

Restricting auxiliary input

Realistic restrictions (e.g. only efficiently samplable auxiliary input) do not circumvent our
impossibility result
Some schemes require publishing an obfuscated circuit that suffices for our attack [HJK+16].
For concrete schemes, iO might not be needed (e.g. X3DH/PQXDH/(E)KDH)

Private verification

Seems to be the most promising direction

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 17 / 19



Future work: Circumventing the impossibility result

Possible approaches:
Interactive protocols

Interactive proof of knowledge seems to be sufficient
Hard to use for E2EE messaging when users can be offline

Restricting auxiliary input

Realistic restrictions (e.g. only efficiently samplable auxiliary input) do not circumvent our
impossibility result
Some schemes require publishing an obfuscated circuit that suffices for our attack [HJK+16].
For concrete schemes, iO might not be needed (e.g. X3DH/PQXDH/(E)KDH)

Private verification

Seems to be the most promising direction

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 17 / 19



Future work: Circumventing the impossibility result

Possible approaches:
Interactive protocols

Interactive proof of knowledge seems to be sufficient
Hard to use for E2EE messaging when users can be offline

Restricting auxiliary input

Realistic restrictions (e.g. only efficiently samplable auxiliary input) do not circumvent our
impossibility result
Some schemes require publishing an obfuscated circuit that suffices for our attack [HJK+16].
For concrete schemes, iO might not be needed (e.g. X3DH/PQXDH/(E)KDH)

Private verification

Seems to be the most promising direction

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 17 / 19



Future work: Circumventing the impossibility result

Possible approaches:
Interactive protocols

Interactive proof of knowledge seems to be sufficient
Hard to use for E2EE messaging when users can be offline

Restricting auxiliary input
Realistic restrictions (e.g. only efficiently samplable auxiliary input) do not circumvent our
impossibility result

Some schemes require publishing an obfuscated circuit that suffices for our attack [HJK+16].
For concrete schemes, iO might not be needed (e.g. X3DH/PQXDH/(E)KDH)

Private verification

Seems to be the most promising direction

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 17 / 19



Future work: Circumventing the impossibility result

Possible approaches:
Interactive protocols

Interactive proof of knowledge seems to be sufficient
Hard to use for E2EE messaging when users can be offline

Restricting auxiliary input
Realistic restrictions (e.g. only efficiently samplable auxiliary input) do not circumvent our
impossibility result
Some schemes require publishing an obfuscated circuit that suffices for our attack [HJK+16].

For concrete schemes, iO might not be needed (e.g. X3DH/PQXDH/(E)KDH)

Private verification

Seems to be the most promising direction

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 17 / 19



Future work: Circumventing the impossibility result

Possible approaches:
Interactive protocols

Interactive proof of knowledge seems to be sufficient
Hard to use for E2EE messaging when users can be offline

Restricting auxiliary input
Realistic restrictions (e.g. only efficiently samplable auxiliary input) do not circumvent our
impossibility result
Some schemes require publishing an obfuscated circuit that suffices for our attack [HJK+16].
For concrete schemes, iO might not be needed (e.g. X3DH/PQXDH/(E)KDH)

Private verification

Seems to be the most promising direction

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 17 / 19



Future work: Circumventing the impossibility result

Possible approaches:
Interactive protocols

Interactive proof of knowledge seems to be sufficient
Hard to use for E2EE messaging when users can be offline

Restricting auxiliary input
Realistic restrictions (e.g. only efficiently samplable auxiliary input) do not circumvent our
impossibility result
Some schemes require publishing an obfuscated circuit that suffices for our attack [HJK+16].
For concrete schemes, iO might not be needed (e.g. X3DH/PQXDH/(E)KDH)

Private verification

Seems to be the most promising direction

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 17 / 19



Future work: Circumventing the impossibility result

Possible approaches:
Interactive protocols

Interactive proof of knowledge seems to be sufficient
Hard to use for E2EE messaging when users can be offline

Restricting auxiliary input
Realistic restrictions (e.g. only efficiently samplable auxiliary input) do not circumvent our
impossibility result
Some schemes require publishing an obfuscated circuit that suffices for our attack [HJK+16].
For concrete schemes, iO might not be needed (e.g. X3DH/PQXDH/(E)KDH)

Private verification
Seems to be the most promising direction

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 17 / 19



Future work: Different models for deniability against malicious verifiers

E.g. not relying on the verifier’s randomness for simulation

... which is also not meaningful against quantum adversaries
E.g. time-deniable signatures have no problem with malicious verifiers

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 18 / 19



Future work: Different models for deniability against malicious verifiers

E.g. not relying on the verifier’s randomness for simulation
... which is also not meaningful against quantum adversaries

E.g. time-deniable signatures have no problem with malicious verifiers

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 18 / 19



Future work: Different models for deniability against malicious verifiers

E.g. not relying on the verifier’s randomness for simulation
... which is also not meaningful against quantum adversaries
E.g. time-deniable signatures have no problem with malicious verifiers

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 18 / 19



Summary

Protecting Alice in this scenario is difficult.

ePrint: 2025/470
Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 19 / 19

https://eprint.iacr.org/2025/470


References I

Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen.
On the existence of extractable one-way functions.
In David B. Shmoys, editor, 46th Annual ACM Symposium on Theory of Computing, pages
505–514, New York, NY, USA, May 31 – June 3, 2014. ACM Press.
doi:10.1145/2591796.2591859.
Danny Dolev, Cynthia Dwork, and Moni Naor.
Non-malleable cryptography (extended abstract).
In 23rd Annual ACM Symposium on Theory of Computing, pages 542–552, New Orleans,
LA, USA, May 6–8, 1991. ACM Press.
doi:10.1145/103418.103474.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 1 / 6

https://doi.org/10.1145/2591796.2591859
https://doi.org/10.1145/103418.103474


References II

Mario Di Raimondo and Rosario Gennaro.
New approaches for deniable authentication.
In Vijayalakshmi Atluri, Catherine Meadows, and Ari Juels, editors, ACM CCS 2005: 12th
Conference on Computer and Communications Security, pages 112–121, Alexandria,
Virginia, USA, November 7–11, 2005. ACM Press.
doi:10.1145/1102120.1102137.
Cynthia Dwork, Moni Naor, and Amit Sahai.
Concurrent zero-knowledge.
In 30th Annual ACM Symposium on Theory of Computing, pages 409–418, Dallas, TX,
USA, May 23–26, 1998. ACM Press.
doi:10.1145/276698.276853.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 2 / 6

https://doi.org/10.1145/1102120.1102137
https://doi.org/10.1145/276698.276853


References III

Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and Mark
Zhandry.
How to generate and use universal samplers.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology –
ASIACRYPT 2016, Part II, volume 10032 of Lecture Notes in Computer Science, pages
715–744, Hanoi, Vietnam, December 4–8, 2016. Springer Berlin Heidelberg, Germany.
doi:10.1007/978-3-662-53890-6_24.

Markus Jakobsson, Kazue Sako, and Russell Impagliazzo.
Designated verifier proofs and their applications.
In Ueli M. Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume 1070 of
Lecture Notes in Computer Science, pages 143–154, Saragossa, Spain, May 12–16, 1996.
Springer Berlin Heidelberg, Germany.
doi:10.1007/3-540-68339-9_13.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 3 / 6

https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/3-540-68339-9_13


References IV

Amit Sahai and Brent Waters.
How to use indistinguishability obfuscation: deniable encryption, and more.
In David B. Shmoys, editor, 46th Annual ACM Symposium on Theory of Computing, pages
475–484, New York, NY, USA, May 31 – June 3, 2014. ACM Press.
doi:10.1145/2591796.2591825.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 4 / 6

https://doi.org/10.1145/2591796.2591825


Pictures

Alice, Bob, judge, seal, warning sign, and papyrus scroll: freepik.com
Mail: Icon made by SimpleIcon from www.flaticon.com
Scenes: AI generated (Microsoft copilot)

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 5 / 6

https://de.freepik.com/vektoren-kostenlos/bunte-sammlung-mit-einer-vielzahl-von-avataren_1258263.htm
https://www.freepik.com/free-vector/law-icons-flat-set_4411456.htm
https://www.freepik.com/free-vector/vector-realistic-sealing-wax-collection-with-ribbons_4393687.htm
https://www.freepik.com/free-vector/warning-sign-four-styles_94865631.htm
ttps://www.freepik.com/free-vector/vertical-vintage-paper-roll-parchment-scroll-ancient-papyrus_23806296.htm
https://www.freepik.com/
https://www.flaticon.com/free-icon/mail-encryption-interface-symbol-of-an-envelope-back-with-a-padlock_33489
https://www.flaticon.com/authors/simpleicon
https://www.flaticon.com/


Identities

Verifiers have unique identities

Generate pk/sk w.r.t. identity
Sign w.r.t. verifier’s identity and public key

Sign can just return ⊥ if the public key doesn’t match the identity.
Avoids key copying attack.

Identities can be avoided if we assume that public keys are unique (can be enforced by a PKI).

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 6 / 6



Identities

Verifiers have unique identities
Generate pk/sk w.r.t. identity

Sign w.r.t. verifier’s identity and public key

Sign can just return ⊥ if the public key doesn’t match the identity.
Avoids key copying attack.

Identities can be avoided if we assume that public keys are unique (can be enforced by a PKI).

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 6 / 6



Identities

Verifiers have unique identities
Generate pk/sk w.r.t. identity
Sign w.r.t. verifier’s identity and public key

Sign can just return ⊥ if the public key doesn’t match the identity.
Avoids key copying attack.

Identities can be avoided if we assume that public keys are unique (can be enforced by a PKI).

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 6 / 6



Identities

Verifiers have unique identities
Generate pk/sk w.r.t. identity
Sign w.r.t. verifier’s identity and public key

Sign can just return ⊥ if the public key doesn’t match the identity.

Avoids key copying attack.

Identities can be avoided if we assume that public keys are unique (can be enforced by a PKI).

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 6 / 6



Identities

Verifiers have unique identities
Generate pk/sk w.r.t. identity
Sign w.r.t. verifier’s identity and public key

Sign can just return ⊥ if the public key doesn’t match the identity.
Avoids key copying attack.

Identities can be avoided if we assume that public keys are unique (can be enforced by a PKI).

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 6 / 6



Identities

Verifiers have unique identities
Generate pk/sk w.r.t. identity
Sign w.r.t. verifier’s identity and public key

Sign can just return ⊥ if the public key doesn’t match the identity.
Avoids key copying attack.

Identities can be avoided if we assume that public keys are unique (can be enforced by a PKI).

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 6 / 6


	Appendix

