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Deniable authentication [DDN91, DNS98, DG05]

Alice Bob

Judge

Bob is convinced by the authenticity of Alice’s message.

Bob cannot convince anyone else of the authenticity of Alice’s message.
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Designated verifier signatures (DVS) [JSI96]

Alice
(pkA, skA)

Bob
(pkB, skB)

≈c
Alice and Bob can produce identically looking signatures.
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Designated verifier signatures (DVS) [JSI96]

Alice
(pkA, skA)

Bob
(pkB, skB)

≈c
Alice and Bob can produce identically looking signatures.

This assumes that Bob generates
his public/secret key pair honestly.
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Our contributions

1 A model for deniable authentication against malicious verifiers for DVS

2 Undeniability of Signal’s initial handshake protocols (X3DH and PQXDH) in a similar
model for key exchange

Break (Extended) Knowledge of Diffie–Hellman (E)KDH assumption

3 A construction of DVS in the ROM based on NIZKs
4 An impossibility for DVS in the standard model assuming indistinguishability obfuscation

(iO) exists (concrete attack)

Shows uninstantiatability of the ROM construction
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Modelling deniability against malicious verifiers

Alice

(pkA, skA)

Bob

(pkB, skB)

≈c

Bob can produce signatures using a secret he is guaranteed to possess.
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Modelling deniability against malicious verifiers

Alice

(pkA, skA)

Bob

(pkB, ???)

≈c
Bob can produce signatures using a secret he is guaranteed to possess.
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Modelling deniability against malicious verifiers: First attempt

Alice

(pkA, skA)

Bob
pkB ← A(pp, pkA; r)

(pkB, r)

≈c
Bob can produce signatures using a the random coins used to generate his public key.

We make no assumption about how Bob generates his public key.
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Alice

(pkA, skA)

Bob
pkB ← A(pp, pkA; r)

(pkB, r)

≈c
Bob can produce signatures using a the random coins used to generate his public key.

We make no assumption about how Bob generates his public key.

This assumes Bob is “isolated”
and samples everything himself.
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Is this realistic?

CD 83 40 FB 12 2F 79 6C 22 BE E9 20 0D 18 03 72 68 03 C6 40 49 2B 33 75 2B 47 0D FF D2 BA 2A 71 0D 24 3A AD C5 22 F1 B7 D7 0E B1 29 1A
9E 90 F8 8D 43 96 AA C4 A9 B3 BF 5D 55 25 B3 33 5D 3B D5 24 64 4E DD CA 82 7C 55 9A B1 C8 66 20 70 E7 9A FD 80 C6 34 61 2D CB E3 5A C2
36 C4 F7 71 E8 C2 07 77 01 C6 02 F3 A9 07 75 B2 75 31 14 A0 7D F0 6B F1 50 A0 73 5F B3 CC AA 99 CC F3 68 74 6E 03 D7 38 B5 FF DC A6 A9
9C 16 74 B9 9C FA 41 CD 1F 8E 1C 2C 49 6A 8E CC 88 76 CA 0A 5A D5 C5 ED E9 6E AE DB 8C 97 B9 76 39 3A E1 EA E9 C7 81 17 3E F8 41 FB 4C
D1 BB 53 C2 A0 70 17 95 8F DB D8 6F 2F F6 56 7A AA 3D 70 1D 07 ED 99 98 88 35 30 4C 6A 6B 4A 2A 11 84 01 BF 61 AA A5 C1 20 FF CD F4 26
0E EE 3F A3 B7 65 DC FE 89 35 9C 99 E5 7A 2F 9F D9 1D A6 B8 A6 09 2F D0 F3 B5 F0 A0 B8 15 D2 51 DC 8D 63 B8 2E BF D1 E9 67 DB 2A 2C 9B
95 DC D7 3C ED BE D2 87 53 4A 11 1D 99 2D 2B D1 E4 7E 18 7D B0 D1 70 9B A8 2B D5 93 74 F5 E4 7D AE 26 AB 75 C0 AA B6 2E 4E 15 80 29 2A
36 B3 A7 3D D6 07 6E AF A2 25 62 77 6B B5 EC A8 B5 76 70 BB E7 BA DE 37 91 89 83 05 DD DB DE 9D 12 35 1C 4C AC 96 06 92 A2 04 2A 6B DA
E7 1D 58 19 BD 5C 88 8A CE 56 D0 F6 8F 91 38 C4 70 8F 47 A0 5E 85 08 14 80 9E ED 32 48 0C 1D C0 BC AB 1C 79 CB E5 AC B4 65 01 B6 BB E0
F5 CB 48 37 3A C9 F6 8C CF 87 06 46 F8 AC 54 2D 47 37 9F 1B 84 B3 C9 00 FA 89 72 7D 04 0F C2 A3 3D 02 AF 22 8F 6F 4F EE BF 18 58 D9 E5
15 B7 56 FB E3 C5 BF 83 6E DC 05 97 52 F8 38 F0 7E E5 41 4F 50 5C 6E DA 98 BF CB A3 F6 75 E3 F8 DD 0C 2A 0B 64 47 5C 73 34 42 A5 B3 A9
FB 41 C1 87 DE 1B 9E 25 6D 2A 45 66 05 8F 2B FA 75

This is the product of two 2048 bit primes.

There is no algorithm to sample such a number without knowing the primes (as far as I
know)
But I don’t know the primes...
...because it is the public key of the iacr.org webserver.
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Fixing the definition

We have to model everything Bob might know without generating it himself:

Auxiliary input: Everything independent of the scheme’s public parameters pp.
Public keys of other verifiers
Public keys of senders
Valid signatures (for other messages or for other users)
...

These are given to Bob as input or oracle access.
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Fixing the definition

We have to model everything Bob might know without generating it himself:
Auxiliary input: Everything independent of the scheme’s public parameters pp.
Public keys of other verifiers
Public keys of senders
Valid signatures (for other messages or for other users)
...

These are given to Bob as input or oracle access.

Ignored here for simplicity.
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Malicious source hiding

A DVS is malicious source hiding iff
∀ Adversaries A (Bob, generates pkB)

∃ Extractor E (forges signatures, same inputs/random tape as Bob)
∀ Distinguisher D (Judge)
∀ aux ∈ {0, 1}∗ (given to A and E)

D cannot distinguish real (Alice’s) signatures
from faked (E ’s) signatures.
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Non-solutions

Knowledge type assumptions (like knowledge of exponent assumption (KEA))

Most of them (like KEA) are not secure with auxiliary inputs assuming iO exists [BCPR14]
(E)KDH assumptions were designed to circumvent this problem...
...but we show that they are insecure against very simple auxiliary inputs (no iO needed)

Use NIZKPoKs to prove knowledge of secret keys (black-box extraction)

Extractor would need to know a trapdoor for the crs
In reality nobody knows this trapdoor

⇒ Unrealistic to assume that Bob knows it

Use NIZKPoKs to prove knowledge of secret keys (white-box extraction, used for SNARKs)

Cannot be secure with auxiliary inputs assuming iO exists [BCPR14]
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Construction in the ROM

Basic idea: If Bob generates the crs himself, he can know the trapdoor.

crs← GenNIZK()
(pkB , skB)← VKGen(pp; r) (Traditional DVS)

π ← Prove(crs, pkB , skB)
return ((pkB , crs, π), skB)

Problem: How can we force a malicious Bob to sample crs randomly?
Solution: Generate it via random oracle (requires random string as crs)

crs← H(pp, id)
⇒ E can run A internally and program this query to a crs with known trapdoor

Problem: A could output a different public key when we change a ROM query
Solution: Hash also the public key (Fiat–Shamir like trick):

(pkB , skB)← VKGen(pp; r)
crs← H(pp, id, pkB)

π ← Prove(crs, pkB , skB)
return ((pkB , π), skB)
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Impossibility result (inspired by [BCPR14])

Theorem
Assuming iO exists, no DVS can be simultaneously malicious source-hiding and unforgeable.
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ROM construction vs. impossibility result

An obfuscated program cannot access the RO

In the ROM construction it is impossible to generate a valid verifier pk without access to
RO.
When we instantiate the RO with a concrete hash function, the impossibility result applies

⇒ The ROM construction is insecure when instantiated.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 16 / 19



ROM construction vs. impossibility result

An obfuscated program cannot access the RO
In the ROM construction it is impossible to generate a valid verifier pk without access to
RO.

When we instantiate the RO with a concrete hash function, the impossibility result applies
⇒ The ROM construction is insecure when instantiated.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 16 / 19



ROM construction vs. impossibility result

An obfuscated program cannot access the RO
In the ROM construction it is impossible to generate a valid verifier pk without access to
RO.
When we instantiate the RO with a concrete hash function, the impossibility result applies

⇒ The ROM construction is insecure when instantiated.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 16 / 19



ROM construction vs. impossibility result

An obfuscated program cannot access the RO
In the ROM construction it is impossible to generate a valid verifier pk without access to
RO.
When we instantiate the RO with a concrete hash function, the impossibility result applies

⇒ The ROM construction is insecure when instantiated.

Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 16 / 19



Future work: Circumventing the impossibility result

Possible approaches:
Interactive protocols

Interactive proof of knowledge seems to be sufficient
Hard to use for E2EE messaging when users can be offline

Restricting auxiliary input

Realistic restrictions (e.g. only efficiently samplable auxiliary input) do not circumvent our
impossibility result
Some schemes require publishing an obfuscated circuit that suffices for our attack [HJK+16].
For concrete schemes, iO might not be needed (e.g. X3DH/PQXDH/(E)KDH)

Private verification

Seems to be the most promising direction
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Future work: Different models for deniability against malicious verifiers

E.g. not relying on the verifier’s randomness for simulation

... which is also not meaningful against quantum adversaries
E.g. time-deniable signatures have no problem with malicious verifiers
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Summary

Protecting Alice in this scenario is difficult.

ePrint: 2025/470
Roman Langrehr (ETH Zurich/University of Waterloo) On Deniable Authentication against Malicious Verifiers 2025-08-06 19 / 19
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Pictures

Alice, Bob, judge, seal, warning sign, and papyrus scroll: freepik.com
Mail: Icon made by SimpleIcon from www.flaticon.com
Scenes: AI generated (Microsoft copilot)
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https://de.freepik.com/vektoren-kostenlos/bunte-sammlung-mit-einer-vielzahl-von-avataren_1258263.htm
https://www.freepik.com/free-vector/law-icons-flat-set_4411456.htm
https://www.freepik.com/free-vector/vector-realistic-sealing-wax-collection-with-ribbons_4393687.htm
https://www.freepik.com/free-vector/warning-sign-four-styles_94865631.htm
ttps://www.freepik.com/free-vector/vertical-vintage-paper-roll-parchment-scroll-ancient-papyrus_23806296.htm
https://www.freepik.com/
https://www.flaticon.com/free-icon/mail-encryption-interface-symbol-of-an-envelope-back-with-a-padlock_33489
https://www.flaticon.com/authors/simpleicon
https://www.flaticon.com/


Identities

Verifiers have unique identities

Generate pk/sk w.r.t. identity
Sign w.r.t. verifier’s identity and public key

Sign can just return ⊥ if the public key doesn’t match the identity.
Avoids key copying attack.

Identities can be avoided if we assume that public keys are unique (can be enforced by a PKI).
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