Crowhammer

A key-recovery attack on FALCON

Trivia

Selected by NIST for standardization (FN-DSA)

• Efficient but complex (floating-point arithmetics, Gaussian sampler)

Signature

- Polynomial ring: $R = \mathbb{Z}_q[X]/(X^n+1)$ modulo q
- NTRU Lattice: $L_h = \{(s_1, s_2) \in R^2 \mid s_2 + s_1 h = 0 \bmod q \}$ with $h = fg^{-1}$
- Secret key: small vectors $(g,-f)\in R^2, (G,-F)\in R^2$ and a "FALCON tree" T

$$egin{bmatrix} g & -f \ G & -F \end{bmatrix}$$
 and $egin{bmatrix} 1 & -h \ 0 & q \end{bmatrix}$ are basis of L_h over R

Signature

Nearest
Plane
Algorithm

Original basis

Signature

Nearest
Plane
Algorithm

Original basis

GSO basis

Signature

Nearest
Plane
Algorithm

GSO basis

Signature

Nearest **Plane Algorithm** Original basis GSO basis

Signature

Nearest **Plane Algorithm** Original basis GSO basis

Signature

Nearest **Plane Algorithm** Original basis GSO basis

Signature

Nearest
Plane
Algorithm

Signature

Nearest
Plane
Algorithm

Approximate

Closest Vector Problem

Find close" to

Signature

Nearest
Plane
Algorithm

Approximate

Closest Vector Problem

Find close" to

Signature

Nearest
Plane
Algorithm

Approximate

Closest Vector Problem

Find close" to

Signature

Nearest
Plane
Algorithm

Approximate

Closest Vector Problem

Find close" to

Signature

Nearest
Plane
Algorithm

Approximate

Closest Vector Problem

Find close" to

Signature

Nearest
Plane
Algorithm

Approximate

Closest Vector Problem

Find close" to

Signature

Nearest
Plane
Algorithm

Approximate

Closest Vector Problem

Find close" to

Distribution of signatures

FALCON signatures follow a discrete Gaussian distribution $\sim \mathscr{D}_{B^T\Sigma B}$

Distribution of signatures

FALCON signatures follow a discrete Gaussian distribution $\sim \mathscr{D}_{B^T\Sigma B}$

We choose Σ to avoid leakage

Distribution of signatures

FALCON signatures follow a discrete Gaussian distribution $\sim \mathscr{D}_{B^T\Sigma B}$

We choose Σ to avoid leakage

GSO decomposition $B=LD^{1/2}U$

Distribution of signatures

FALCON signatures follow a discrete Gaussian distribution $\sim \mathscr{D}_{B^T\Sigma B}$

We choose Σ to avoid leakage

GSO decomposition
$$B=LD^{1/2}U$$

If
$$\Sigma = L^{-T}\sigma^2D^{-1}L^{-1}$$
 then $B^T\Sigma B = \sigma^2Id$

Distribution of signatures

FALCON signatures follow a discrete Gaussian distribution $\sim \mathscr{D}_{B^T\Sigma B}$

If
$$\Sigma = L^{-T}\sigma^2D^{-1}L^{-1}$$
 then $B^T\Sigma B = \sigma^2Id$

Distribution of signatures

FALCON signatures follow a discrete Gaussian distribution $\sim \mathscr{D}_{B^T\Sigma B}$

If
$$\Sigma = L^{-T}\sigma^2D^{-1}L^{-1}$$
 then $B^T\Sigma B = \sigma^2Id$

Gaussian Sampling

Strategy: Perform (half) Gaussian sampling over \mathbb{Z} then merge

Implementation: constant-time, linear scan over a table

Gaussian Sampling

Strategy: Perform (half) Gaussian sampling over \mathbb{Z} then merge

Implementation: constant-time, linear scan over a table

Gaussian Sampling

Smaller $RCDT[*] \implies Smaller Gaussian$

Rowhammer

Attacking DRAM

Idea: Attack RCDT[*] to lower its values and cause statistical leakage

Tool: Rowhammer attack (DRAM mashing) to trigger bitflips in the RCDT

Nguyen-Regev

How many bitflips to work?

Full flip (Empty table)

8 bitflips

1 bitflip

Nguyen-Regev

Attack

Not realistic

Scenario of Fahr et al. on FrodoKEM (CCS2022)

Effects of bitflips

Question: How does the signature distribution behave with bitflips?

If
$$\Sigma = L^{-T}\sigma^2D^{-1}L^{-1}$$
 then $B^T\Sigma B = \sigma^2Id$

Effects of bitflips

Question: How does the signature distribution behave with bitflips?

If
$$\Sigma = L^{-T}\sigma^2 E^{-1}L^{-1}$$
 then $B^T\Sigma B = \sigma^2 U^T D E^{-1}U = \tilde{\Sigma}$

Effects of bitflips

Question: How does the signature distribution behave with bitflips?

If
$$\Sigma = L^{-T} E^{-1} L^{-1}$$
 then $B^T \Sigma B = \sigma^2 U^T D E^{-1} U = \tilde{\Sigma}$

Observation: the vectors of the normalized GSO U are eigenvectors of $\hat{oldsymbol{\Sigma}}$

Effects of bitflips

Question: How does the signature distribution behave with bitflips?

If
$$\Sigma = L^{-T}E^{-1}L^{-1}$$
 then $B^T\Sigma B = \sigma^2 U^TDE^{-1}U = \tilde{\Sigma}$

Observation: the vectors of the normalized GSO U are eigenvectors of $\widetilde{\Sigma}$

Idea: get a good approximation of $ilde{\Sigma}$ and compute its eigenvectors

Eigenvalue attack

Idea: get a good approximation of $ilde{\Sigma}$ and compute its eigenvectors

Advantage: Memory + CPU efficient (Billions of signatures can be processed)

Drawback: Does not work alone, eigenspaces are of dimension 2

Eigenvalue attack

Distribution of
eigenvalues of
the GSO vectors
for 8 bitflips

Eigenvalue attack

Summary: Shortcomings of NR06

- Bad results for full dimension (1024)
- Observation: Relevant eigenvectors live in small Subspace
- Idea: Perform search on Subspace
- Problem: How to find this subspace?

Eigenvalue attack

Distribution of
eigenvalues of
the GSO vectors
for 1 bitflip

Finding a good Subspace of dimension k

Real Covariance

 $\Sigma, V = \text{Eigenspace}(\lambda_1, ..., \lambda_k)$

Approximation

 $\hat{\Sigma}, \hat{V} = \text{Eigenspace}(\hat{\lambda}_1, ..., \hat{\lambda}_k)$

If
$$V=\hat{V}$$
 , **project** signatures on \hat{V} and perform NRO6

Finding a good Subspace of dimension k

Real Covariance

 $\Sigma, V = \text{Eigenspace}(\lambda_1, ..., \lambda_k)$

Approximation

$$\hat{\Sigma}, \hat{V} = \text{Eigenspace}(\hat{\lambda}_1, ..., \hat{\lambda}_k)$$

If
$$V=\hat{V}$$
 , **project** signatures on \hat{V} and perform NRO6

But
$$V \neq \hat{V}$$
 in practice...

Finding a good Subspace of dimension k

Real Covariance

 $\Sigma, V = \text{Eigenspace}(\lambda_1, ..., \lambda_k)$

Approximation

 $\hat{\Sigma}, \hat{V} = \text{Eigenspace}(\hat{\lambda}_1, ..., \hat{\lambda}_k)$

If $V=\hat{V}$, **project** signatures on \hat{V} and perform NRO6

How "close" does it have to be?

(Variant of) Davis-Kahan theorem

$$\|\sin\Theta(\hat{V},V)\|_{F} \leq \frac{2\min(d^{1/2}\|\hat{\Sigma} - \Sigma\|_{op}, \|\hat{\Sigma} - \Sigma\|_{F})}{\min(\lambda_{r-1} - \lambda_{r}, \lambda_{s} - \lambda_{s+1})}.$$

(Variant of) Davis-Kahan theorem

$$\|\sin\Theta(\hat{V},V)\|_{F} \leq \frac{2\min(d^{1/2}\|\hat{\Sigma} - \Sigma\|_{op}, \|\hat{\Sigma} - \Sigma\|_{F})}{\min(\lambda_{r-1} - \lambda_{r}, \lambda_{s} - \lambda_{s+1})}.$$

$$V = \text{Eigenspace}(\lambda_1, ..., \lambda_k)$$

$$\hat{V} = \text{Eigenspace}(\hat{\lambda}_1, ..., \hat{\lambda}_k)$$

Davis-Kahan: subspaces are
$$\frac{\|\Sigma - \hat{\Sigma}\|}{\lambda_k - \lambda_{k+1}}$$
-close

(Variant of) Davis-Kahan theorem

$$\|\sin\Theta(\hat{V},V)\|_{F} \leq \frac{2\min(d^{1/2}\|\hat{\Sigma} - \Sigma\|_{op}, \|\hat{\Sigma} - \Sigma\|_{F})}{\min(\lambda_{r-1} - \lambda_{r}, \lambda_{s} - \lambda_{s+1})}.$$

$$\hat{V} = \text{Eigenspace}(\lambda_1, ..., \lambda_k)$$

$$\hat{V} = \text{Eigenspace}(\hat{\lambda}_1, ..., \hat{\lambda}_k)$$

But we only need **one** GSO vector to be in \hat{V} ...

(Variant of) Davis-Kahan theorem

$$\|\sin\Theta(\hat{V},V)\|_{F} \leq \frac{2\min(d^{1/2}\|\hat{\Sigma} - \Sigma\|_{op}, \|\hat{\Sigma} - \Sigma\|_{F})}{\min(\lambda_{r-1} - \lambda_{r}, \lambda_{s} - \lambda_{s+1})}.$$

$$V = \text{Eigenspace}(\lambda_1, ..., \lambda_k)$$

$$\hat{V} = \text{Eigenspace}(\hat{\lambda}_1, ..., \hat{\lambda}_k)$$

Our result: eigenvector
$$v_1$$
 is $\frac{\|\Sigma - \hat{\Sigma}\|}{\lambda_1 - \lambda_{k+1}}$ -close to \hat{V}

Attack Summary

2-step attack:

Compute a good approximation $\hat{\Sigma}$

Project signatures on \hat{V} to perform NR

Eigenvalue attack

How many bitflips to work?

Full flip (Empty table)

8 bitflips

1 bitflip

Nguyen-Regev Attack

This work

Eigenvalue attack

Efficiency?

Full flip (Empty table)

8 bitflips

1 bitflip

Nguyen-Regev Attack

2M

This work

20M + 2M (k < 16)

300M + 20M (k < 64)

Countermeasures

• Bitflips reduce signature sizes

• Bitflips are permanent in RAM

Countermeasures

• Bitflips reduce signature sizes

• Bitflips are permanent in RAM

Lower Bound Rejection

Integrity Check

Conclusion

What next?

 Extend the attack to other RCDT-based schemes (Hawk)

Find other ways to finish the attack

Thanks for watching!