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FALCON
Trivia

•Selected by NIST for standardization (FN-DSA) 

•Efficient but complex (floating-point arithmetics, Gaussian sampler)
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FALCON
Signature

• Polynomial ring:  modulo  

• NTRU Lattice:  with  

• Secret key: small vectors  and a “FALCON tree” 

R = ℤq[X]/(Xn + 1) q

Lh = {(s1, s2) ∈ R2 | s2 + s1h = 0 mod q} h = fg−1

(g, − f ) ∈ R2, (G, − F) ∈ R2 T
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[g −f
G −F] [1 −h

0 q ]and are basis of  over Lh R
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∼ 𝒟BTΣB

We choose  to avoid leakageΣ GSO decomposition B = LD1/2U

If   then Σ = L−Tσ2D−1L−1 BTΣB = σ2Id

FALCON signatures follow a discrete Gaussian distribution
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∼ 𝒟BTΣB

If   then Σ = L−Tσ2D−1L−1 BTΣB = σ2Id

ℓ0

ℓ1 ℓ2
… … …

d1 d2
… …

FALCON Tree to sample Σ

FALCON signatures follow a discrete Gaussian distribution
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∼ 𝒟BTΣB

If   then Σ = L−Tσ2D−1L−1 BTΣB = σ2Id

ℓ0

ℓ1 ℓ2
… … …

d1 d2
… …

FALCON Tree to sample Σ

FALCON signatures follow a discrete Gaussian distribution
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Strategy: Perform (half) Gaussian sampling over  then 
merge
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Implementation: constant-time, linear scan over a table
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ℓ0

ℓ1 ℓ2
… … …

d1 d2
… …

Strategy: Perform (half) Gaussian sampling over  then 
merge

ℤ

Implementation: constant-time, linear scan over a table

def sampleZ(): 
    u = sampleUniform(72) 
    s = 0 
    for i in range(N): 
        if RCDT[i] > u: 
            s += 1 
    return s 



FALCON
Gaussian Sampling

26

RCDT[*]Smaller                                Smaller Gaussian⟹

def sampleZ(): 
    u = sampleUniform() 
    s = 0 
    for i in range(N): 
        if RCDT[i] > u: 
            s += 1 
    return s 



Rowhammer
Attacking DRAM
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RCDT[*]Idea: Attack                     to lower its values and cause statistical leakage 

Tool: Rowhammer attack (DRAM mashing) to trigger bitflips in the RCDT

0 1 0 0 0 1 0

0 0 0 0 0 1 0



Attack
Nguyen-Regev
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How many bitflips to work?

Full flip (Empty table)

8 bitflips

1 bitflip

Nguyen-Regev 
Attack

Not realistic

Scenario of Fahr et al. on 
FrodoKEM (CCS2022)



ℓ0

ℓ1 ℓ2
… … …

e1 e2 … …

FALCON Tree to sample Σ

Question: How does the signature distribution behave with bitflips?  

If   then Σ = L−Tσ2D−1L−1 BTΣB = σ2Id

Attack
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Effects of bitflips



If   then Σ = L−Tσ2E−1L−1 BTΣB = σ2UTDE−1U = Σ̃

ℓ0

ℓ1 ℓ2
… … …

e1 e2 … …

FALCON Tree

Question: How does the signature distribution behave with bitflips?  

Attack
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Effects of bitflips

to sample Σ



If   then Σ = L−TE−1L−1 BTΣB = σ2UTDE−1U = Σ̃

Question: How does the signature distribution behave with bitflips?  

Attack
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Effects of bitflips

Observation: the vectors of the normalized GSO  are eigenvectors of U Σ̃



If   then Σ = L−TE−1L−1 BTΣB = σ2UTDE−1U = Σ̃

Observation: the vectors of the normalized GSO  are eigenvectors of U Σ̃

Question: How does the signature distribution behave with bitflips?  

Idea: get a good approximation of  and compute its eigenvectors Σ̃

Attack
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Effects of bitflips



Idea: get a good approximation of  and compute its eigenvectors Σ̃

Advantage: Memory + CPU efficient (Billions of signatures can be processed)

Drawback: Does not work alone, eigenspaces are of dimension 2

Attack
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Eigenvalue attack



Distribution of 
eigenvalues of 
the GSO vectors 
for 8 bitflips

Attack

34

Eigenvalue attack



Attack
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Eigenvalue attack

Distribution of 
eigenvalues of 
the GSO vectors 
for 1 bitflip



Summary: Shortcomings of NR06

• Bad results for full dimension (1024) 

• Observation: Relevant eigenvectors live in small Subspace 

• Idea: Perform search on Subspace 

• Problem: How to find this subspace?
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Attack



Attack
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Eigenvalue attack

Distribution of 
eigenvalues of 
the GSO vectors 
for 1 bitflip

> 100
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Finding a good Subspace of dimension k
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Σ, V = Eigenspace(λ1, …, λk) Σ̂, ̂V = Eigenspace( ̂λ1, …, ̂λk)

Real Covariance Approximation

If  ,  project signatures on  and perform NR06V = ̂V ̂V
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Σ, V = Eigenspace(λ1, …, λk) Σ̂, ̂V = Eigenspace( ̂λ1, …, ̂λk)

Real Covariance Approximation

If  ,  project signatures on  and perform NR06V = ̂V ̂V

But  in practice…V ≠ ̂V



Attack
Finding a good Subspace of dimension k
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Σ, V = Eigenspace(λ1, …, λk) Σ̂, ̂V = Eigenspace( ̂λ1, …, ̂λk)

Real Covariance Approximation

If  ,  project signatures on  and perform NR06V = ̂V ̂V

How “close” does it have to be?



Attack
(Variant of) Davis-Kahan theorem
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Attack
(Variant of) Davis-Kahan theorem
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V = Eigenspace(λ1, …, λk) ̂V = Eigenspace( ̂λ1, …, ̂λk)

Davis-Kahan: subspaces are  -close
∥Σ − Σ̂∥
λk − λk+1



Attack
(Variant of) Davis-Kahan theorem
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V = Eigenspace(λ1, …, λk) ̂V = Eigenspace( ̂λ1, …, ̂λk)

But we only need one GSO vector to be in …̂V



Attack
(Variant of) Davis-Kahan theorem
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V = Eigenspace(λ1, …, λk) ̂V = Eigenspace( ̂λ1, …, ̂λk)

Our result: eigenvector  is  -close to v1
∥Σ − Σ̂∥
λ1 − λk+1

̂V



Attack
Summary
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2-step attack:

Project signatures on   to perform NR̂V

Compute a good approximation Σ̂



How many bitflips to work?

Full flip (Empty table)

8 bitflips

1 bitflip

Nguyen-Regev 
Attack This work

Results
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Eigenvalue attack



Efficiency?

Full flip (Empty table)

8 bitflips

1 bitflip

Nguyen-Regev 
Attack This work

2M

20M + 2M           
(k < 16)

300M + 20M   
(k < 64)

Results
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Eigenvalue attack



Results
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Countermeasures

• Bitflips reduce signature sizes 

• Bitflips are permanent in RAM



Results
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Countermeasures

• Bitflips reduce signature sizes 

• Bitflips are permanent in RAM

Lower Bound Rejection

Integrity Check



Conclusion

What next?

• Extend the attack to other RCDT-based schemes 
(Hawk) 

• Find other ways to finish the attack

50

Thanks for watching!


