
Calvin ABOU HAIDAR, Mehdi TIBOUCHI, Quentin PAYET

A key-recovery attack on FALCON

Crowhammer

FALCON
Trivia

•Selected by NIST for standardization (FN-DSA)

•Efficient but complex (floating-point arithmetics, Gaussian sampler)

2

FALCON
Signature

• Polynomial ring: modulo

• NTRU Lattice: with

• Secret key: small vectors and a “FALCON tree”

R = ℤq[X]/(Xn + 1) q

Lh = {(s1, s2) ∈ R2 | s2 + s1h = 0 mod q} h = fg−1

(g, − f) ∈ R2, (G, − F) ∈ R2 T

3

[g −f
G −F] [1 −h

0 q]and are basis of over Lh R

FALCON
Signature

4

Nearest
Plane
Algorithm

Original basis

FALCON
Signature

5

Original basis GSO basis

Nearest
Plane
Algorithm

FALCON
Signature

6

Original basis GSO basis

Nearest
Plane
Algorithm

FALCON
Signature

7

Original basis GSO basis

Nearest
Plane
Algorithm

FALCON
Signature

8

Original basis GSO basis

Nearest
Plane
Algorithm

FALCON
Signature

9

Original basis GSO basis

Nearest
Plane
Algorithm

FALCON
Signature

10

GSO basis

Nearest
Plane
Algorithm

FALCON
Signature

11

GSO basis

Approximate
Closest Vector Problem

Find “close“ to

Nearest
Plane
Algorithm

FALCON
Signature

12

GSO basis

Find “close“ to

Nearest
Plane
Algorithm

Approximate
Closest Vector Problem

FALCON
Signature

13

GSO basis

Find “close“ to

Broken by NR06

Nearest
Plane
Algorithm

Approximate
Closest Vector Problem

FALCON
Signature

14

GSO basis

Find “close“ to

Nearest
Plane
Algorithm

Approximate
Closest Vector Problem

Broken by NR06

FALCON
Signature

15

GSO basis

Find “close“ to

Nearest
Plane
Algorithm

Approximate
Closest Vector Problem

Broken by NR06

FALCON
Signature

16

GSO basis

Find “close“ to

Nearest
Plane
Algorithm

Approximate
Closest Vector Problem

Broken by NR06

FALCON
Signature

17

GSO basis

Find “close“ to

Nearest
Plane
Algorithm

Approximate
Closest Vector Problem

Broken by NR06

FALCON
Distribution of signatures

18

∼ 𝒟BTΣBFALCON signatures follow a discrete Gaussian distribution

FALCON
Distribution of signatures

19

∼ 𝒟BTΣB

We choose to avoid leakageΣ

FALCON signatures follow a discrete Gaussian distribution

FALCON
Distribution of signatures

20

∼ 𝒟BTΣB

We choose to avoid leakageΣ GSO decomposition B = LD1/2U

FALCON signatures follow a discrete Gaussian distribution

FALCON
Distribution of signatures

21

∼ 𝒟BTΣB

We choose to avoid leakageΣ GSO decomposition B = LD1/2U

If then Σ = L−Tσ2D−1L−1 BTΣB = σ2Id

FALCON signatures follow a discrete Gaussian distribution

FALCON
Distribution of signatures

22

∼ 𝒟BTΣB

If then Σ = L−Tσ2D−1L−1 BTΣB = σ2Id

ℓ0

ℓ1 ℓ2
… … …

d1 d2
… …

FALCON Tree to sample Σ

FALCON signatures follow a discrete Gaussian distribution

FALCON
Distribution of signatures

23

∼ 𝒟BTΣB

If then Σ = L−Tσ2D−1L−1 BTΣB = σ2Id

ℓ0

ℓ1 ℓ2
… … …

d1 d2
… …

FALCON Tree to sample Σ

FALCON signatures follow a discrete Gaussian distribution

FALCON
Gaussian Sampling

24

ℓ0

ℓ1 ℓ2
… … …

d1 d2
… …

Strategy: Perform (half) Gaussian sampling over then
merge

ℤ

Implementation: constant-time, linear scan over a table

FALCON
Gaussian Sampling

25

ℓ0

ℓ1 ℓ2
… … …

d1 d2
… …

Strategy: Perform (half) Gaussian sampling over then
merge

ℤ

Implementation: constant-time, linear scan over a table

def sampleZ():
 u = sampleUniform(72)
 s = 0
 for i in range(N):
 if RCDT[i] > u:
 s += 1
 return s

FALCON
Gaussian Sampling

26

RCDT[*]Smaller Smaller Gaussian⟹

def sampleZ():
 u = sampleUniform()
 s = 0
 for i in range(N):
 if RCDT[i] > u:
 s += 1
 return s

Rowhammer
Attacking DRAM

27

RCDT[*]Idea: Attack to lower its values and cause statistical leakage

Tool: Rowhammer attack (DRAM mashing) to trigger bitflips in the RCDT

0 1 0 0 0 1 0

0 0 0 0 0 1 0

Attack
Nguyen-Regev

28

How many bitflips to work?

Full flip (Empty table)

8 bitflips

1 bitflip

Nguyen-Regev
Attack

Not realistic

Scenario of Fahr et al. on
FrodoKEM (CCS2022)

ℓ0

ℓ1 ℓ2
… … …

e1 e2 … …

FALCON Tree to sample Σ

Question: How does the signature distribution behave with bitflips?

If then Σ = L−Tσ2D−1L−1 BTΣB = σ2Id

Attack

29

Effects of bitflips

If then Σ = L−Tσ2E−1L−1 BTΣB = σ2UTDE−1U = Σ̃

ℓ0

ℓ1 ℓ2
… … …

e1 e2 … …

FALCON Tree

Question: How does the signature distribution behave with bitflips?

Attack

30

Effects of bitflips

to sample Σ

If then Σ = L−TE−1L−1 BTΣB = σ2UTDE−1U = Σ̃

Question: How does the signature distribution behave with bitflips?

Attack

31

Effects of bitflips

Observation: the vectors of the normalized GSO are eigenvectors of U Σ̃

If then Σ = L−TE−1L−1 BTΣB = σ2UTDE−1U = Σ̃

Observation: the vectors of the normalized GSO are eigenvectors of U Σ̃

Question: How does the signature distribution behave with bitflips?

Idea: get a good approximation of and compute its eigenvectors Σ̃

Attack

32

Effects of bitflips

Idea: get a good approximation of and compute its eigenvectors Σ̃

Advantage: Memory + CPU efficient (Billions of signatures can be processed)

Drawback: Does not work alone, eigenspaces are of dimension 2

Attack

33

Eigenvalue attack

Distribution of
eigenvalues of
the GSO vectors
for 8 bitflips

Attack

34

Eigenvalue attack

Attack

35

Eigenvalue attack

Distribution of
eigenvalues of
the GSO vectors
for 1 bitflip

Summary: Shortcomings of NR06

• Bad results for full dimension (1024)

• Observation: Relevant eigenvectors live in small Subspace

• Idea: Perform search on Subspace

• Problem: How to find this subspace?

36

Attack

Attack

37

Eigenvalue attack

Distribution of
eigenvalues of
the GSO vectors
for 1 bitflip

> 100

Attack
Finding a good Subspace of dimension k

38

Σ, V = Eigenspace(λ1, …, λk) Σ̂, ̂V = Eigenspace(̂λ1, …, ̂λk)

Real Covariance Approximation

If , project signatures on and perform NR06V = ̂V ̂V

Attack
Finding a good Subspace of dimension k

39

Σ, V = Eigenspace(λ1, …, λk) Σ̂, ̂V = Eigenspace(̂λ1, …, ̂λk)

Real Covariance Approximation

If , project signatures on and perform NR06V = ̂V ̂V

But in practice…V ≠ ̂V

Attack
Finding a good Subspace of dimension k

40

Σ, V = Eigenspace(λ1, …, λk) Σ̂, ̂V = Eigenspace(̂λ1, …, ̂λk)

Real Covariance Approximation

If , project signatures on and perform NR06V = ̂V ̂V

How “close” does it have to be?

Attack
(Variant of) Davis-Kahan theorem

41

Attack
(Variant of) Davis-Kahan theorem

42

V = Eigenspace(λ1, …, λk) ̂V = Eigenspace(̂λ1, …, ̂λk)

Davis-Kahan: subspaces are -close
∥Σ − Σ̂∥
λk − λk+1

Attack
(Variant of) Davis-Kahan theorem

43

V = Eigenspace(λ1, …, λk) ̂V = Eigenspace(̂λ1, …, ̂λk)

But we only need one GSO vector to be in …̂V

Attack
(Variant of) Davis-Kahan theorem

44

V = Eigenspace(λ1, …, λk) ̂V = Eigenspace(̂λ1, …, ̂λk)

Our result: eigenvector is -close to v1
∥Σ − Σ̂∥
λ1 − λk+1

̂V

Attack
Summary

45

2-step attack:

Project signatures on to perform NR̂V

Compute a good approximation Σ̂

How many bitflips to work?

Full flip (Empty table)

8 bitflips

1 bitflip

Nguyen-Regev
Attack This work

Results

46

Eigenvalue attack

Efficiency?

Full flip (Empty table)

8 bitflips

1 bitflip

Nguyen-Regev
Attack This work

2M

20M + 2M
(k < 16)

300M + 20M
(k < 64)

Results

47

Eigenvalue attack

Results

48

Countermeasures

• Bitflips reduce signature sizes

• Bitflips are permanent in RAM

Results

49

Countermeasures

• Bitflips reduce signature sizes

• Bitflips are permanent in RAM

Lower Bound Rejection

Integrity Check

Conclusion

What next?

• Extend the attack to other RCDT-based schemes
(Hawk)

• Find other ways to finish the attack

50

Thanks for watching!

