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Selected by NIST for standardization (FN-DSA)
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- Efficient but complex (floating-point arithmetics, Gaussian sampler)
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Polynomial ring: R = Z | X]/(X" + 1) modulo g

. NTRU Lattice: L, = {(sy,5,) € R* | s, + s;h = 0 mod g} with h = fg~!

. Secret key: small vectors (g, — f) € R?, (G, — F) € R? and a “FALCON tree” T
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’( FALCON signatures follow a discrete Gaussian distribution 7 @BTZB
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We choose 2. to avoid leakage




|

f

|
\

FALCON

Distribution of signatures

—_— . =

——— — - [ —

—

’( FALCON signatures follow a discrete Gaussian distribution 7 @BTZB

We choose 2. to avoid leakage

GSO decomposition B = LD'?U
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’( FALCON signatures follow a discrete Gaussian distribution 7 @BTZB

We choose 2. to avoid leakage GSO decomposition B = LD?U
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’( FALCON signatures follow a discrete Gaussian distribution 7 @BTZB

f > =L 16D 'L then BTSB = 6%Id
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FALCON Tree ¥ 1\7”/ 2}” to sample X

?_:‘?_»_4—

—




|

f

|
\

FALCON

Distribution of signatures

— —— — —
——— o = T —

——— — - [ —

’( FALCON signatures follow a discrete Gaussian distribution 7 @BTZB

f > =L 16D 'L then BTSB = 6%Id
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FALCON Tree ¥ 1\7”/ 2}” to sample X
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Strategy: Perform (half) Gaussian sampling over Z then
merge

Implementation: constant-time, linear scan over a table
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Strategy: Perform (half) Gaussian sampling over Z then
merge

Implementation: constant-time, linear scan over a table

sampleZ():
= sampleUniform(72)
s =0
for 1 in range(N):
if RCDTI[i] > u:
s += 1




FALCON

Gaussian Sampling
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Smaller HMIEEI] — Smaller Gaussidn

if RCDT[i] > u:
S += 1
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Idea: Attack [HEMIRES] to lower its values and cause statistical leakage

Tool: Rowhammer attack (DRAM mashing) to trigger bitflips in the RCDT
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’( How many bitflips to work?

Nguyen-Regev
Attack

Full flip (Empty table) Not realistic

Scenario of Fahr et al. on

8 bitflips FrodoKEM (CCS2022)

1 bitflip
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Question: How does the signature distribution behave with bitflips?

f > =L"16’D 'L then B'SB = 6%1d

£
/O\
£ L

FALCON Tree ¥ 1\7”/ 2}” to sample X
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Question: How does the signature distribution behave with bitflips?

f > =L 16’E"'"L ' thenB'EB = 6?U'DE~'U = >,
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FALCON Tree ¥ 1\7”/ 2}” to sample X
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Question: How does the signature distribution behave with bitflips?

f >=LTE'"L-'thenB'SB = 6*U'DE"'U =X
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Effects of bitflips
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Question: How does the signature distribution behave with bitflips?

f >=LTE'"L-'thenB'SB = 6*U'DE"'U =X

Observation: the vectors of the normalized GSO U are eigenvectors of )y

Idea: get a good approximation of Y and compute its eigenvectors
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’( Idea: get a good approximation of X and compute its eigenvectors

: Memory + CPU efficient (Billions of signatures can be processed)

Drawback: Does not work alone, eigenspaces are of dimension 2
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Distribution of
eigenvalues of
the GSO vectors
for 8 bitflips

Eigenvalue
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‘( Summary: Shortcomings of NRO6
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 Bad results for full dimension (1024)

- Observation: Relevant eigenvectors live in small Subspace

. ldea: Perform search on Subspace
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Finding a good Subspace of dimension k
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, project signatures on V and oerform NRO6
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Finding a good Subspace of dimension k
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Real Covariance

>,V =tigenspace(4,, ..
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Approximation
= Eigenspace(d,, ..., 4,)

, project signatures on V and oerform NRO6

But V' # Vin practice...
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Finding a good Subspace of dimension k
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Real Covariance
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Approximation

WA 5,V = Eigenspace(, ..., 4;)

, project signatures on V and oerform NRO6

How “eclose” does it have to be?
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(Variant of) Davis-Kahan theorem ,

2min(dl/2H2 - Z||0p7 Hf3 - EHF) ‘
min(A—1 — A, As — Asi1)

|sin®(V,V)|r <
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(Variant of) Davis-Kahan theorem
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Davis-Kahan: subspaces are
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V = Eigenspace(d, ..., 4;)

/Ik o /1k+1

|2 - 2|
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(Variant of) Davis-Kahan theorem
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V = Eigenspace(d, ..., 4;)

But we only need one GSO vector to be in V.

\
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Our result: eigenvector vy is
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Summary
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’( How many bitflips to work?

Nguyen-Regev

Attack This work

Full flip (Empty table)

8 bitflips

1 bitflip
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’( Efficiency?

Full flip (Empty table)
8 bitflips

1 bitflip

Nguyen-Regev
Attack

2M

This work

20M + 2M
(k <16)

300M + 20M
(k < 64)
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Results

Countermeasures ,
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- Bitflips reduce signature sizes

. Bitflips are permanent in RAM
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Conclusion

What next?

 Extend the attack to other RCDT-based schemes . -
(Hawk)

» Find other ways to finish the attack




