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Motivation

▶ [R05] Cryptographic schemes rely on the hardness of LWE.

▶ Goal: understand the (quantum) complexity of solving these
problems:

▶ Use lattice reduction techniques to assess the underlying
assumptions.

▶ [R02,R07] Reduce to well-studied quantum problems, e.g., the
Dihedral Coset Problem (DCP) or Hidden Subgroup problem.

▶ [BKSW18] LWE and EDCP (Extrapolated Dihedral Coset
Problem) are equivalent (under certain parameters).
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This talk

▶ A quasi-polynomial time/sample quantum algorithm for EDCP
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Learning with Errors (LWE)

(Search) LWEn,q,α

Find a fixed secret s ∈ Zn
q, given ai ←$ Zn

q and ei ←$ D

a1, b1 = ⟨a1, s⟩+ e1 (mod q)
a2, b2 = ⟨a2, s⟩+ e2 (mod q)

...
am, bm = ⟨am, s⟩+ em (mod q)

Typically, D = Dαq
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Learning with Errors (LWE)

(Search) LWEn,q,α

Find s ∈ Zn
q, given ai ←$ Zn

q and ei ←$ D

b ≡q A
s

e+

▶ Hardness of LWE depends on noise-to-modulus ratio α = σ
q .

The smaller α, the easier the LWE problem.
▶ Standard LWE: q = poly(n), m = n log q, χ = DZ,αq and
αq = O(

√
n).

Complexity: exponential
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DCP vs EDCP

Find a secret s, given ℓ quantum samples
DCPℓ

N

|0, xi⟩+ |1, xi + s mod N⟩

EDCPℓ
n,q,χ

∑
j∈Supp(D)

D(j) |j⟩ |xi + j · s mod q⟩

Most common distributions

▶ G-EDCP: D is a Gaussian distribution

▶ U-EDCPn,q,M :
∑M−1

j=0 |j⟩ |xi + j · s mod q⟩

⇒ n = 1,M = 2: DCP instances.

G-EDCP comp⇐=====⇒
[BKSW18]

U-EDCP
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Recall Relation between LWE, DCP and EDCP

LWEm
n,q,1/poly(n) DCPpoly(n)

qn

EDCPpoly(n)
n,q,M This work

1

2

3
4

1. [R02,R07] LWEm
n,q,1/poly(n) ≤ DCPpoly(n)

qn .

2. [BKSW18] LWEΩ(n log q)
n,q,α ≤ EDCPℓ

n,q,M where
M · ℓ ≈ 1/(α · n log q).

3. [BKSW18] EDCPℓ
n,q,M ≤ LWEℓ

n,q,α where α ≈ 1/M.

4. [BKSW18,D20] EDCPℓ
n,q,M ≤ DCPΘ(ℓ)

qn .
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Complexity of U-EDCPn,q,M

M

#Samples

poly(n) q/c q − c M = q

poly(n)

2O(log2 n)

2O(√n)

exp(n)
[R04, K20]

exp(n)
[R04, K20]

2O(√n)
[K05, R10, D20]

poly(n)

This work
or Arora-Ge

poly(n)
This work

or Arora-Ge
or [CLZ22]

poly(n)

[CD07,K20]

M = 2
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Our result for U-EDCPn,q,M

M

#Samples

poly(n) q/c q − c M = q

poly(n)
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This work
or Arora-Ge

poly(n)
This work

or Arora-Ge
or [CLZ22]

poly(n)

[CD07,K20]

M = 2

Our algorithm applies

Improve state-of-the-art for power-of-two modulus q: nO(log q)
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Our Algorithm
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Recall: Kuperberg’s idea to solve DCP ωq = e2πi/q

(1) Given state |ϕi⟩ = |0, xi⟩+ |1, xi + s mod N⟩

(2) Apply QFT over
ZN and Measure y |ψy ⟩ := |0⟩+ ω ys

N |1⟩

Main Idea: Combine |ψyi ⟩ = |0⟩+ ω yi s
N |1⟩ samples, and construct

a state:
|ψN/2⟩ := |0⟩+ (−1)s |1⟩

we recover one bit of s by measuring in the Hadamard basis.

Kuperberg’s algorithm [K05]

Solves DCPℓ
N in time 2O(

√
log2 N) when ℓ = 2O(

√
log2 N).
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This work – Outline ωq = e2πi/q

Kuperberg-like algorithm This work

U-EDCP1,q,2 U-EDCPn,q,2

Prepare many “coset” samples

|0, xi mod q⟩+ |1, xi + s mod q⟩ |0, xi mod q⟩+ |1, xi + s mod q⟩

Construct many “phase” samples

(y , |ψy ⟩ := |0⟩+ ω ys
q |1⟩) (y, |ψy⟩ := |0⟩+ ω⟨y, s⟩

q |1⟩)
U-EDCP

Merge samples

|0⟩+ ω
(yi ±yj )s
q |1⟩

∑
j∈Zn+1

2 : Y·j=b mod 2

ω⟨Y·j,s⟩
q |j⟩

Recover bits

1 LSB bit n LSB bits

12 / 21
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This work – Main step Base case: M = 2

Merge n + 1 U-EDCPq to get one U-EDCPq/2.

U-EDCPn+1
n,q,2 → U-EDCP1

n,q/2,2

1. Tensor input states:

n+1⊗
k=1
|ψk⟩ =

n+1⊗
k=1

(
|0⟩+ ω⟨yk , s⟩

q |1⟩
)

=
∑

j∈Zn+1
2

ω⟨Y·j, s⟩
q |j⟩

where Y = (y1, . . . , yn+1) ∈ Zn×(n+1)
q and known classically.

2. Compute Y · j mod 2 in a new register and measure to get
some b ∈ Zn

2: ∑
j∈Zn+1

2 : Y·j=b mod 2
ω⟨Y·j, s⟩

q |j⟩ .
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This work – Merge Base case: M = 2

3. Recall yk is uniform in Zn
q. So Y (mod 2) ∈ Zn×(n+1)

2 has full
rank with constant probability:

{j ∈ Zn+1
2 : Y · j = b mod 2} = {j0, j1}.

4. We have

ω⟨Y·j0, s⟩
q |j0⟩+ ω⟨Y·j1, s⟩

q |j1⟩ = |0⟩+ ω⟨Y(j1−j0), s⟩
q |1⟩ .

5. Since Y(j1 − j0) = 0 mod 2, we have

|0⟩+ ω
⟨y′, s⟩
q/2 |1⟩

where 2y′ = Y(j1 − j0) mod q.
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This work – Recover n bits M = 2, ℓ = nO(log q) = 2O(log2 n)

U-EDCPℓ
n,q,2 → U-EDCPℓ/(n+1)

n,q/2,2 → · · · → U-EDCPn
n,2,2

▶ Final Stage: we get n U-EDCPn,2,2 samples with known
{yk}k : {

|0⟩+ (−1)⟨yk , s⟩ |1⟩
}n

k=1
.

▶ Measure each in Hadamard basis to learn ⟨yk , s⟩ mod 2.
▶ Use Gaussian elimination to recover s̄ := s mod 2.
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The algorithm works for M = 2. What about general M?

Lemma (U-EDCP self-reduction) [D20]

Let M ′ ≤ M. There is a polynomial time reduction from
U-EDCPℓ

n,q,M to U-EDCPΘ(ℓ)
n,q,M′ that succeeds with constant

probability.

Main theorem
Let q = poly(n) be a power of two, 2 ≤ M ≤ q. There is
an algorithm that solves U-EDCPℓ

n,q,M in time 2O(log n log q) =
2O(log2 n) using ℓ = 2O(log2 n) samples.

16 / 21



Algorithm also applies for S |LWE⟩

Solve S |LWE⟩mn,q,χ [CLZ22]

Let a function χ : Zq → C. Given m input states:{ ∑
ei ∈Zq

χ(ei) |⟨ai , s⟩+ ei mod q⟩
}

m
i=1,

where ai ∼ U(Zn
q) and known classically, and find s ∈ Zn

q.

S |LWE⟩ℓn,q,Dr
≤ G-EDCPℓ

n,q,σ ≤ U-EDCPO(ℓ)
n,q,M

where σ = q/r and M = c · σ.
Theorem
Let n, q = poly(κ) be integers, where q is a power-of-two. Let
r = Ω(

√
κ) and q/r = Ω(

√
κ). There exists a quantum algo-

rithm for S |LWE⟩ℓn,q,Dr
in time 2O(log2 n) , when ℓ = 2Ω(log2 n).
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Impact on LWE

Theorem [BKSW18]

Let m ≥ n log q and q = poly(n). There is a probabilistic quan-
tum reduction from LWEm

n,q,α ≤ U-EDCPℓ
n,q,M , where

ℓ < 1/(M · α · poly(n)).

▶ Our algorithm needs ℓ = 2Ω(log2 n) U-EDCP samples.
▶ M · ℓ < 1/(α · poly(n))⇒ αq < q/(M · ℓ · poly(n)).
▶ Reduction yields only polynomially many EDCP samples.

⇒ Our algorithm does not extend to standard LWE
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Future work

1. Can the reduction from LWE to EDCP be improved, or can
our algorithm be modified so that it requires only a poly(n)
EDCP samples?

2. Is it possible to handle NON power-of-two moduli (e.g. via
modulus switching)?

3. EDCP assumption for structured LWE problems?
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Thanks for your time

Do you have any questions?

20 / 21



References

▶ [AG11] Sanjeev Arora and Rong Ge. “New Algorithms for Learning in Presence
of Errors.” ICALP 2011.

▶ [BKSW18] Zvika Brakerski, Elena Kirshanova, Damien Stehlé, and Weiqiang
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