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This talk

» A quasi-polynomial time/sample quantum algorithm for EDCP
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Learning with Errors (LWE)

(Search) LWE, .o

Find a fixed secret s € Zg, given a; <% Zg and ¢ <$D

ai, by = (a1, s) +e1  (mod q)
az, by = (a2, s) + & (mod q)

am, bm = (am, s) + en (mod q)

Typically, D = D4
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Learning with Errors (LWE)

(Search) LWE, ;.o }

Find s € Zg, given a; «$ Zg and ¢; <5 D

| I8

» Hardness of LWE depends on noise-to-modulus ratio o = %.
The smaller «, the easier the LWE problem.

» Standard LWE: g = poly(n), m = nlogq, x = Dz q and
aq = O(/n).

Complexity: exponential
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DCPY, EDCPf,’q,X
0, x;) + |1, x; + s mod N) > D)) xi+j-smod q)
J€Supp(D)

Most common distributions
» G-EDCP: D is a Gaussian distribution

» U-EDCP, 4 m: YY) Ixi +j - s mod q)

= n=1,M = 2: DCP instances.

G-EDCP «—=" . U.EDCP J
[BKSW18]
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Complexity of U-EDCP, ,

#Samples
20(Vn) 20(:/n)
[K05, R10, D20]
poly(n) | poly(n) | poly(n)
20(log? n) exp(n) This work | e O CD07,K20]
[RO4, K20] or Arora-Ge or [CLZ22]
poly(n) exp(n)
[R04, K20]
M
M=2 poly(n) q/c q—c M=gq
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Our result for U-EDCP, ,

#Samples
20(v/n) 20(v/n)
[K05, R10, D20]
poly(n) poly(n) | poly(n)
2O(log? ) exp(n) Thiswork | 1% L S
[R04, K20] or Arora-Ge or [CLZ22]
poly(n) exp(n)
[R04, K20]
M=2 poly(n) q/c g—c¢ M=gq

Our algorithm applies

Improve state-of-the-art for power-of-two modulus g: n©(log q)
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(2) Apply QFT over
Zy and Measure y  [¢)y) == |0) + wj’ |1)

Main Idea: Combine [ty,) = [0) + w{/* |1) samples, and construct
a state:

[¥ny2) = 10) + (=1)°[1)

we recover one bit of s by measuring in the Hadamard basis.

Kuperberg’s algorithm [K05]
Solves DCP in time 20(W10g2N) \yhen ¢ = 20(\/log2 N).
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U-EDCP, ", — U-EDCP, 5,

1. Tensor input states:

n+1 n+1

R lve) =@ (10) +wfe 1)) = > wi¥i9j)
k=1

k=1 jEZ£+1

nx(n+1)

where Y = (y1,...,¥n+1) € Zgqg and known classically.

2. Compute Y - jmod 2 in a new register and measure to get
some b € Z5:

> wi¥ 4o j) .

JEZITE Y j=b mod 2
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This work — Merge Base case: M =2

3. Recall y, is uniform in Zg. So Y (mod 2) € ng(nﬂ) has full
rank with constant probability:

{iezst: Y -j=bmod2} = {jo,j1}.
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This work — Recover n bits M=2, /0= nOloga) — 20('°g2 n)

U-EDCP,,, — U-EDCP,/\tY) — ... — U-EDCP,,, J

» Final Stage: we get n U-EDCP,, 5> samples with known

{yk}i:

n

{10) + (1) 1) |

» Measure each in Hadamard basis to learn (yy, s) mod 2.

k=1

» Use Gaussian elimination to recover s :='s mod 2.
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The algorithm works for M = 2. What about general M?
Lemma (U-EDCP self-reduction) [D20]

Let M' < M. There is a polynomial time reduction from
U—EDCPf,’q’M to U—EDCPSE?M, that succeeds with constant
probability.

Main theorem

Let ¢ = poly(n) be a power of two, 2 < M < q. There is
an algorithm that solves U-EDCPf,’q,M in time 20(lcgnlogq) —

2O(|Og2 n) using ! = 2O(|0g2 n) samples.
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Algorithm also applies for S |LWE)

Solve S [LWE)["  [CLZ22]

Let a function x : Zg — C. Given m input states:

{2 xe)l(ai, ) + & mod )}y,

ei€lq

where a; ~ U(Zg) and known classically, and find s € Zj.
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Algorithm also applies for S |LWE)

Solve S [LWE)["  [CLZ22]

Let a function x : Zg — C. Given m input states:

{2 xe)l(ai, ) + & mod )}y,

ei€lq

where a; ~ U(Zg) and known classically, and find s € Zj.

S|LWE)! _ , < G-EDCP"

——_0(0)
n,q,D, n,q,o < U'EDCPn,q,M
where 0 = g/rand M =c-o.
Theorem

Let n, g = poly(k) be integers, where q is a power-of-two. Let
r = Q(v/k) and q/r = Q(y/k). There exists a quantum algo-

rithm for S [LWE)" _ 1, in time 200" ) when ¢ = 22018’ ).
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Impact on LWE

Theorem [BKSW18]

Let m > nlogq and g = poly(n). There is a probabilistic quan-
tum reduction from LWE]'_ ., < U—EDCPf,’qu, where

n,q,o

¢ <1/(M-«-poly(n)).
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Let m > nlogq and g = poly(n). There is a probabilistic quan-
tum reduction from LWE]'_ ., < U—EDCPf,,qu, where

n,q,o

¢ <1/(M-«-poly(n)).

» Our algorithm needs ¢ = 2%(log” n) J_EDCP samples.
> M-¢<1/(a-poly(n)) = aq < q/(M-{-poly(n)).

» Reduction yields only polynomially many EDCP samples.
= Our algorithm does not extend to standard LWE
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Future work

1. Can the reduction from LWE to EDCP be improved, or can
our algorithm be modified so that it requires only a poly(n)
EDCP samples?
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Future work

1. Can the reduction from LWE to EDCP be improved, or can
our algorithm be modified so that it requires only a poly(n)
EDCP samples?

2. Is it possible to handle NON power-of-two moduli (e.g. via
modulus switching)?

3. EDCP assumption for structured LWE problems?
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Thanks for your time

Do you have any questions? J
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