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Outsourced MPC with Semi-Honest Security Against Adaptive Server
Corruptions: State of the Art

Feature

FHE-based [MTBH21]

Garbling-based
("SCALES") [AHKP22]

Adaptive security Clients X . X
Servers | Only one server required v
Constant-round v v
Corruption Clients t<n t<n
threshold ¢ Servers | Only one server required t<m
AES (server cost) ~Minutes ~Years

Table: Comparison of FHE- and garbling-based outsourced MPC with n clients and m servers.
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o RGS require key-and-message homomorphic encryption (KMHE).

> KMHE > RGS > SCALES >

o Only known KMHE so far: [BHHO08] where one encryption holds 2x2 + 3k + 1 group
elements and requires k3 + k2 exponentiations.

Our Goal
Improve efficiency of the KMHE building block. J
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Our Contributions

@ We construct much more efficient KMHE.

o We devise new KMHE and RGS definitions that address gaps in [AHKP22] and allow for
use of our KMHE.

o New Gate KMHE primitive allowing for randomness reuse across garbling table ciphertexts.
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Table: Comparison of the RGS from [AHKP22] and our work in bytes and clock cycles (cc).

Performance Estimates for [AHKP22] and our RGS

BHHO-based Our work Improve-

ment
Size of one garbled gate 133.43MB 1.35MB 98.99 %
Size of one garbled Max circuit 125.87 GB 1.27GB 98.99 %
Size of one garbled Mult circuit 1.74TB 18.04 GB 98.99 %
Size of one garbled AES circuit 4.47TB 45.60 GB 98.99 %

Garbling one gate (cc) 1.28 x 10'#(33 min) 2.44 x 10°(0.04s) | 99.998 %
Garbling a Max circuit (cc) 1.24 x 1017(224d) 2.36 x 10%2(37s) 99.998 %
Garbling a Mult circuit (cc) 1.75 x 10%8(317d) | 3.33 x 10'3(9min) | 99.998 %
Garbling an AES circuit (cc) 4.43 x 10*8(2yr) | 8.43 x 10%3(20 min) 99.998 %

Rerand. a garbled gate (cc)

Rerand. a garbl. Max circuit (cc)
Rerand. a garbl. Mult circuit (cc)
Rerand. a garbl. AES circuit (cc)

5.13 x 104 (2.23h)
4.95 x 10*7(90d)
7.01 x 10%*8(3.5yr)
1.77 x 10%°(9yr)

3.35 x 109(0.05s) | 99.9993 %
3.24 x 10*2(51s) | 99.9993 %
4.58 x 10*3(11 min) | 99.9993 %
1.16 x 10#(30 min) | 99.9993 %
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Key-and-Message Homomorphic Encryption (KMHE)

Requirements for KMHE scheme (intuitive):
O Need same homomorphism in the key and the message space.
» Not easy, e.g. ElGamal has no (efficiently decryptable) message homomorphism (Z,, +).
@ Key privacy under leakage: Key k and rerandomized key o (k) do not leak function o.
» E.g. (Zp,+) does not work: Key k € Z,, and o(k) = k + o leak function o.

© Rerandomization indistinguishable from fresh ciphertext.
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Encryption Algorithm of our KMHE (Simplified)

@ Setup sets up the bilinear group pp = (q,g, h, g1, G, H, GT,e) and KGen(pp) samples key
k < {0,1}" with Hamming weight /2.
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Encryption Algorithm of our KMHE (Simplified)

@ Setup sets up the bilinear group pp = (g, g, h, g7, G, H, G1,e) and KGen(pp) samples key
k <5 {0,1}" with Hamming weight /2.

Enc(pp, k € {0,1}*,m € {0,1}%): o We follow [GHV10, AHKP22] by
using a bit permutation
g1,--,8:+3$Ga1,...,3, +$Z4 homomorphism.
y e (H g;ki7 h) o Key Bit Permutation: Permute
ie[x] 81,---,8k-
G« (W, g7 - y) Vjeln] @ Message Bit Permutation:
Permute ¢y, ..., cx.

return ct < (C1,. .., Coy 81,5+ -5 &rs YY)
@ Rerandomization based on DDH.
From Quadratic to Linear Size Ciphertexts

The BHHO scheme needed to store every combination g,-aj (k2 many) for decryption, using

pairings we can supply the g; and h% separately and then compute their combinations on the fly.
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Gate KMHE

Garbling requires some kind of encryption with two keys per ciphertext:
A) (B
Cloo = E"C(k(() )7 kg ), ke(0,0))

Ctyy = Enc(kgA), kgB)» ke(1,1))

Figure: Garbled Table Example.
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Gate KMHE

Garbling requires some kind of encryption with two keys per ciphertext:
A) (B
Ctoo = Enc(k[() ), kg ), ke(0,0))

Cty; = Enc(kgA), kgB)7 ke(1,1))

Figure: Garbled Table Example.

Gate KMHE

Gate KMHE primitive encrypts entire garbled table in single operation, halves ciphertext size
compared to secret-sharing approach from [AHKP22].

~ Raphael H., Jonas vdH. Rerandomizable Garbling, Revisited 2025-08-21 9/10



Conclusion

o Rerandomizable garbling allows adaptively secure, outsourced, and constant-round
multi-party computation, relying only on a public ledger.
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Gate KMHE

@ Our (Simplified) KMHE is only a single-key scheme;
garbling requires a double-key variant (e.g. [LP09])

@ Double-key variant possible via secret-sharing (as in
[AHKP22]) or direct construction (a bit more
efficient)

o We introduce the Gate KMHE primitive which
encrypts the entire garbled table in a single
operation, even more efficient

A) (B

ctop = Enc(k{, kP, k(0,0))
A) (B

Ctyy = E“C(kg )a kg )7 ke(1,1))

Approach ‘ Size of Garbled Table

Secret-sharing 8k G,8x H,8(k+ 1) G
Direct double-key | 8x G,4x H,4(xk + 1) Gt
Gate KMHE 2k G, 4k H,4(k +1) G1
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