Rerandomizable Garbling, Revisited

Raphael Heitjohann, Jonas von der Heyden, Tibor Jager

IT Security and Cryptography Group
University of Wuppertal

CRYPTO 2025

BERGISCHE
UNIVERSITAT
WUPPERTAL

_ Rerandomizable Garbling, Revisited 2025-08-21 1/10

Outsourced Multi-Party Computation

@ Setting: large number of resource-constrained clients, small committee of
high-performance servers.

Outsourced Multi-Party Computation

@ Setting: large number of resource-constrained clients, small committee of
high-performance servers.

@ Clients outsource MPC to servers without losing privacy.

Outsourced Multi-Party Computation

@ Setting: large number of resource-constrained clients, small committee of
high-performance servers.

@ Clients outsource MPC to servers without losing privacy.

* &8 8 & @&

2025-08-21

2/10

Outsourced Multi-Party Computation

@ Setting: large number of resource-constrained clients, small committee of
high-performance servers.

@ Clients outsource MPC to servers without losing privacy.

* & 8 & @&

(2]

2025-08-21

2/10

Outsourced Multi-Party Computation

@ Setting: large number of resource-constrained clients, small committee of
high-performance servers.

@ Clients outsource MPC to servers without losing privacy.

* & 8 & @&

(2]

2025-08-21

2/10

Outsourced Multi-Party Computation

@ Setting: large number of resource-constrained clients, small committee of
high-performance servers.

@ Clients outsource MPC to servers without losing privacy.

* 8 % 3 &

2025-08-21

2/10

Outsourced Multi-Party Computation

@ Setting: large number of resource-constrained clients, small committee of
high-performance servers.

@ Clients outsource MPC to servers without losing privacy.

e

=3

&
(0

[f(a, b,...)]

© Raphael H., JonasvdH. Rerandomizable Garbling, Revisited 20250821 2/10

Outsourced Multi-Party Computation

@ Setting: large number of resource-constrained clients, small committee of
high-performance servers.

@ Clients outsource MPC to servers without losing privacy.

e »

[f(a, b,...)]

© Raphael H., JonasvdH. Rerandomizable Garbling, Revisited 20250821 2/10

Outsourced Multi-Party Computation

@ Setting: large number of resource-constrained clients, small committee of
high-performance servers.

@ Clients outsource MPC to servers without losing privacy.

P
(0

© Raphael H., JonasvdH. Rerandomizable Garbling, Revisited 20250821

2/10

Outsourced Multi-Party Computation

@ Setting: large number of resource-constrained clients, small committee of
high-performance servers.

@ Clients outsource MPC to servers without losing privacy.

* & % 8 &

[f(a,b,...)] | [a]

8= =

Rerandomizable Garbling, Revisited 2025-08-21

2/10

Outsourced Multi-Party Computation

@ Setting: large number of resource-constrained clients, small committee of
high-performance servers.

@ Clients outsource MPC to servers without losing privacy.

. s &

2025-08-21

2/10

Outsourced Multi-Party Computation

@ Setting: large number of resource-constrained clients, small committee of
high-performance servers.

@ Clients outsource MPC to servers without losing privacy.

. s &

2025-08-21

2/10

Outsourced MPC with Semi-Honest Security Against Adaptive Server
Corruptions: State of the Art

Feature

FHE-based [MTBH21]

Garbling-based
("SCALES") [AHKP22]

Adaptive security Clients X . X
Servers | Only one server required v
Constant-round v v
Corruption Clients t<n t<n
threshold ¢ Servers | Only one server required t<m
AES (server cost) ~Minutes ~Years

Table: Comparison of FHE- and garbling-based outsourced MPC with n clients and m servers.

Rerandomizable Garbling, Revisited

2025-08-21

3/10

Outsourced MPC with Semi-Honest Security Against Adaptive Server
Corruptions: State of the Art

Garbling-based

Feature FHE-based [MTBH21] ("SCALES") [AHKP22]
. : Clients X X

Adaptive security Servers | Only one server required v

Constant-round v v

Corruption Clients t<n t<n

threshold t Servers | Only one server required t<m

AES (server cost) ~Minutes ~(Years

Table: Comparison of FHE- and garbling-based outsourced MPC with n clients and m servers.

Rerandomizable Garbling, Revisited

2025-08-21

3/10

Outsourced MPC with Semi-Honest Security Against Adaptive Server

Corruptions: State of the Art

Garbling-based

Feature FHE-based [MTBH21] ("SCALES") [AHKP22]
. : Clients X X

Adaptive security Servers | Only one server required v

Constant-round v v

Corruption Clients t<n t<n

threshold ¢ Servers | Only one server required t<m

AES (server cost) ~Minutes ~(Years

Table: Comparison of FHE- and garbling-based outsourced MPC with n clients an(x\m servers.

Rerandomizable Garbling, Revisited

We improve this by
4 orders of magnitude!

2025-08-21

3/10

Construction of Outsourced MPC via Garbling

o Acharya et al. [AHKP22] construct outsourced MPC scheme “SCALES" based on
rerandomizable garbling schemes (RGS).

Construction of Outsourced MPC via Garbling

o Acharya et al. [AHKP22] construct outsourced MPC scheme “SCALES" based on
rerandomizable garbling schemes (RGS).
Cl

== C
— >
—

C < Garble(f) C’ <+ Rerand(C) C" < Rerand(C’)

Construction of Outsourced MPC via Garbling

o Acharya et al. [AHKP22] construct outsourced MPC scheme “SCALES" based on
rerandomizable garbling schemes (RGS).

== C == c’ =0
] > =D]
= — —
C < Garble(f) C’ <+ Rerand(C) C" < Rerand(C’)

o RGS require key-and-message homomorphic encryption (KMHE).

Construction of Outsourced MPC via Garbling

o Acharya et al. [AHKP22] construct outsourced MPC scheme “SCALES" based on
rerandomizable garbling schemes (RGS).

= c c’

== -
] — —
= — —

C < Garble(f) C’ <+ Rerand(C) C" < Rerand(C’)

e RGS require key-and-message homomorphic encryption (KMHE).

SCALES

_ Rerandomizable Garbling, Revisited 2025-08-21 4/10

Construction of Outsourced MPC via Garbling

o Acharya et al. [AHKP22] construct outsourced MPC scheme “SCALES" based on
rerandomizable garbling schemes (RGS).

= c c’

== -
] — —
= — —

C < Garble(f) C’ <+ Rerand(C) C" < Rerand(C’)

e RGS require key-and-message homomorphic encryption (KMHE).

> RGS > SCALES >

_ Rerandomizable Garbling, Revisited 2025-08-21 4/10

Construction of Outsourced MPC via Garbling

o Acharya et al. [AHKP22] construct outsourced MPC scheme “SCALES" based on
rerandomizable garbling schemes (RGS).
C/

== C

== -
] > =D —
= — —

C < Garble(f) C’ <+ Rerand(C) C" < Rerand(C’)

o RGS require key-and-message homomorphic encryption (KMHE).

> KMHE > RGS > SCALES >

_ Rerandomizable Garbling, Revisited 2025-08-21 4/10

Construction of Outsourced MPC via Garbling

o Acharya et al. [AHKP22] construct outsourced MPC scheme “SCALES" based on
rerandomizable garbling schemes (RGS).

== C == c’ -
] > =D —
= — —
C < Garble(f) C’ <+ Rerand(C) C" < Rerand(C’)

o RGS require key-and-message homomorphic encryption (KMHE).

> KMHE > RGS > SCALES >

o Only known KMHE so far: [BHHO08] where one encryption holds 2x2 + 3k + 1 group
elements and requires k3 + k2 exponentiations.

_ Rerandomizable Garbling, Revisited 2025-08-21 4/10

Construction of Outsourced MPC via Garbling

o Acharya et al. [AHKP22] construct outsourced MPC scheme “SCALES" based on
rerandomizable garbling schemes (RGS).

== C == c’ -
] > =D —
= — —
C < Garble(f) C’ <+ Rerand(C) C" < Rerand(C’)

o RGS require key-and-message homomorphic encryption (KMHE).

> KMHE > RGS > SCALES >

o Only known KMHE so far: [BHHO08] where one encryption holds 2x2 + 3k + 1 group
elements and requires k3 + k2 exponentiations.

Our Goal
Improve efficiency of the KMHE building block. J

_ Rerandomizable Garbling, Revisited 2025-08-21 4/10

Our Contributions

@ We construct much more efficient KMHE.

SR Rerandomizable Garbling, Revisited R B0

Our Contributions

@ We construct much more efficient KMHE.

o We devise new KMHE and RGS definitions that address gaps in [AHKP22] and allow for
use of our KMHE.

~ Raphael H., Jonas vdH. Rerandomizable Garbling, Revisited 2025-08-21 5/10

Our Contributions

@ We construct much more efficient KMHE.

o We devise new KMHE and RGS definitions that address gaps in [AHKP22] and allow for
use of our KMHE.

o New Gate KMHE primitive allowing for randomness reuse across garbling table ciphertexts.

~ Raphael H., Jonas vdH. Rerandomizable Garbling, Revisited 2025-08-21 5/10

Table: Comparison of the RGS from [AHKP22] and our work in bytes and clock cycles (cc).

Performance Estimates for [AHKP22] and our RGS

BHHO-based Our work Improve-

ment
Size of one garbled gate 133.43MB 1.35MB 98.99 %
Size of one garbled Max circuit 125.87 GB 1.27GB 98.99 %
Size of one garbled Mult circuit 1.74TB 18.04 GB 98.99 %
Size of one garbled AES circuit 4.47TB 45.60 GB 98.99 %

Garbling one gate (cc) 1.28 x 10'#(33 min) 2.44 x 10°(0.04s) | 99.998 %
Garbling a Max circuit (cc) 1.24 x 1017(224d) 2.36 x 10%2(37s) 99.998 %
Garbling a Mult circuit (cc) 1.75 x 10%8(317d) | 3.33 x 10'3(9min) | 99.998 %
Garbling an AES circuit (cc) 4.43 x 10*8(2yr) | 8.43 x 10%3(20 min) 99.998 %

Rerand. a garbled gate (cc)

Rerand. a garbl. Max circuit (cc)
Rerand. a garbl. Mult circuit (cc)
Rerand. a garbl. AES circuit (cc)

5.13 x 104 (2.23h)
4.95 x 10*7(90d)
7.01 x 10%*8(3.5yr)
1.77 x 10%°(9yr)

3.35 x 109(0.05s) | 99.9993 %
3.24 x 10*2(51s) | 99.9993 %
4.58 x 10*3(11 min) | 99.9993 %
1.16 x 10#(30 min) | 99.9993 %

Rerandomizable Garbling, Revisited

2025-08-21

6/10

Table: Comparison of the RGS from [AHKP22] and our work in bytes and clock cycles (cc).

Performance Estimates for [AHKP22] and our RGS

BHHO-based Our work Improve-

ment
Size of one garbled gate 133.43MB 1.35MB 98.99 %
Size of one garbled Max circuit 125.87 GB 1.27GB 98.99 %
Size of one garbled Mult circuit 1.74TB 18.04 GB 98.99 %
Size of one garbled AES circuit 4.47TB 45.60 GB 98.99 %

Garbling one gate (cc) 1.28 x 10'#(33 min) 2.44 x 10°(0.04s) 99.998 %
Garbling a Max circuit (cc) 1.24 x 1017(22d) 2.36 x 10%2(37s) 99.998 %
Garbling a Mult circuit (cc) 1.75 x 10%8(317d) | 3.33 x 10'3(9min) | 99.998 %
Garbling an AES circuit (cc) 4.43 x 10*8(2yr) | 8.43 x 10%3(20 min) 99.998 %

Rerand. a garbled gate (cc)

Rerand. a garbl. Max circuit (cc)
Rerand. a garbl. Mult circuit (cc)
Rerand. a garbl. AES circuit (cc)

5.13 x 104 (2.23h)
4.95 x 10*7(90d)
7.01 x 10%*8(3.5yr)
1.77 x 10%°(9yr)

3.35 x 109(0.05s) | 99.9993 %
3.24 x 10*2(51s) | 99.9993 %
4.58 x 10*3(11 min) | 99.9993 %
1.16 x 10#(30 min) | 99.9993 %

Rerandomizable Garbling, Revisited

2025-08-21

6/10

Table: Comparison of the RGS from [AHKP22] and our work in bytes and clock cycles (cc).

Performance Estimates for [AHKP22] and our RGS

BHHO-based Our work Improve-

ment
Size of one garbled gate 133.43MB 1.35MB 98.99 %
Size of one garbled Max circuit 125.87 GB 1.27GB 98.99 %
Size of one garbled Mult circuit 1.74TB 18.04 GB 98.99 %
Size of one garbled AES circuit 4.47TB 45.60 GB 98.99 %

Garbling one gate (cc) 1.28 x 10'#(33 min) 2.44 x 10°(0.04s) 99.998 %
Garbling a Max circuit (cc) 1.24 x 1017(22d) 2.36 x 10%2(37s) 99.998 %
Garbling a Mult circuit (cc) 1.75 x 10%8(317d) | 3.33 x 10'3(9min) | 99.998 %
Garbling an AES circuit (cc) 4.43 x 10*8(2yr) | 8.43 x 10%3(20 min) 99.998 %

Rerand. a garbled gate (cc)

Rerand. a garbl. Max circuit (cc)
Rerand. a garbl. Mult circuit (cc)
Rerand. a garbl. AES circuit (cc)

5.13 x 104 (2.23h)
4.95 x 10*7(90d)
7.01 x 10%*8(3.5yr)
1.77 x 10%°(9yr)

3.35 x 10°(0.05s) | 99.9993 %
3.24 x 10*2(51s) | 99.9993 %
4.58 x 10*3(11 min) | 99.9993 %
1.16 x 10#(30 min) | 99.9993 %

Rerandomizable Garbling, Revisited

2025-08-21

6/10

Key-and-Message Homomorphic Encryption (KMHE)

Requirements for KMHE scheme (intuitive):

SR Rerandomizable Garbling, Revisited 2035.08:21 oy

Key-and-Message Homomorphic Encryption (KMHE)

Requirements for KMHE scheme (intuitive):
O Need same homomorphism in the key and the message space.

SR Rerandomizable Garbling, Revisited 2035.08:21 oy

Key-and-Message Homomorphic Encryption (KMHE)

Requirements for KMHE scheme (intuitive):
O Need same homomorphism in the key and the message space.
» Not easy, e.g. ElGamal has no (efficiently decryptable) message homomorphism (Z, +).

_ Rerandomizable Garbling, Revisited 2025-08-21 7/10

Key-and-Message Homomorphic Encryption (KMHE)

Requirements for KMHE scheme (intuitive):
O Need same homomorphism in the key and the message space.
» Not easy, e.g. ElGamal has no (efficiently decryptable) message homomorphism (Z, +).
@ Key privacy under leakage: Key k and rerandomized key o(k) do not leak function o.

_ Rerandomizable Garbling, Revisited 2025-08-21 7/10

Key-and-Message Homomorphic Encryption (KMHE)

Requirements for KMHE scheme (intuitive):
O Need same homomorphism in the key and the message space.
» Not easy, e.g. ElGamal has no (efficiently decryptable) message homomorphism (Z, +).
@ Key privacy under leakage: Key k and rerandomized key o(k) do not leak function o.
» E.g. (Zp,+) does not work: Key k € Z,, and o(k) = k + o leak function o.

_ Rerandomizable Garbling, Revisited 2025-08-21 7/10

Key-and-Message Homomorphic Encryption (KMHE)

Requirements for KMHE scheme (intuitive):
O Need same homomorphism in the key and the message space.
» Not easy, e.g. ElGamal has no (efficiently decryptable) message homomorphism (Z,, +).
@ Key privacy under leakage: Key k and rerandomized key o (k) do not leak function o.
» E.g. (Zp,+) does not work: Key k € Z,, and o(k) = k + o leak function o.

© Rerandomization indistinguishable from fresh ciphertext.

_ Rerandomizable Garbling, Revisited 2025-08-21 7/10

Encryption Algorithm of our KMHE (Simplified)

@ Setup sets up the bilinear group pp = (q,g, h, g1, G, H, GT,e) and KGen(pp) samples key
k < {0,1}" with Hamming weight /2.

SR Rerandomizable Garbling, Revisited 2035.08.21 TS

Encryption Algorithm of our KMHE (Simplified)

@ Setup sets up the bilinear group pp = (q,g, h, g1, G, H, GT,e) and KGen(pp) samples key

k <5 {0,1}" with Hamming weight /2.

Enc(pp, k € {0,1}",m € {0,1}"):

81,18 +38Gja1,... a0 <374

.y —e (H gikiah)
i€[k]

¢« (W, g7 - y¥) Vje€[x]

return ct < (C1,. .., Coy 81,5+ -5 &rs YY)

S SR Rerandomizable Garbling, Revisited

2025-08-21

8/10

Encryption Algorithm of our KMHE (Simplified)
@ Setup sets up the bilinear group pp = (q,g, h, g1, G, H, GT,e) and KGen(pp) samples key

k <5 {0,1}" with Hamming weight /2.

Enc(pp, k € {0,1}",m € {0,1}"):

81,18 +38Gja1,... a0 <374

.y —e (H gikiah)
i€[k]

¢« (W, g7 - y¥) Vje€[x]

return ct < (C1,. .., Coy 81,5+ -5 &rs YY)

S SR Rerandomizable Garbling, Revisited

o We follow [GHV10, AHKP22] by
using a bit permutation
homomorphism.

2025-08-21 8/10

Encryption Algorithm of our KMHE (Simplified)

@ Setup sets up the bilinear group pp = (q,g, h, g1, G, H, GT,e) and KGen(pp) samples key
k <5 {0,1}" with Hamming weight /2.

Enc(pp, k € {0,1}*,m € {0,1}%): ° er fo||OVY [GHV10, AHKP22] by
using a bit permutation

g1,---,8k (—$(Gr;81,...7a,i (—$Zq homomorphism.
) o Key Bit Permutation: Permute
.y —e H gikla h y
ic[x] 81,58k

¢« (W, g7 - y¥) Vje€[x]

return ct < (C1,. .., Coy 81,5+ -5 &rs YY)

~ Raphael H., Jonas vdH. Rerandomizable Garbling, Revisited 2025-08-21 8/10

Encryption Algorithm of our KMHE (Simplified)

@ Setup sets up the bilinear group pp = (q,g, h, g1, G, H, GT,e) and KGen(pp) samples key
k <5 {0,1}" with Hamming weight /2.

Enc(pp, k € {0,1}*,m € {0,1}%): o We follow [GHV10, AHKP22] by
using a bit permutation
81,18 +38Gja1,... a0 <374 homomorphism.
y e (H g;ki7 h) o Key Bit Permutation: Permute
i€[k] 81,58k
G« (W, g7 - y) Vjeln] @ Message Bit Permutation:
Permute ¢y, ..., cx.

return ct < (C1,. .., Coy 81,5+ -5 &rs YY)

~ Raphael H., Jonas vdH. Rerandomizable Garbling, Revisited 2025-08-21 8/10

Encryption Algorithm of our KMHE (Simplified)
@ Setup sets up the bilinear group pp = (g, g, h, g7, G, H, G1,e) and KGen(pp) samples key

k <5 {0,1}" with Hamming weight /2.

Enc(pp, k € {0, 1}, m € {0,1}%):

g1,--,8:+3$Ga1,...,3, +$Z4

y<e (H g,-k",h)
i€[k]

G (b, g7 - y¥) Vje[x]

return ct < (C1,. .., Coy 81,5+ -5 &rs YY)

Rerandomizable Garbling, Revisited

o We follow [GHV10, AHKP22] by
using a bit permutation
homomorphism.

o Key Bit Permutation: Permute
81,---,8k-

o Message Bit Permutation:
Permute ¢y, ..., cx.

o Rerandomization based on DDH.

2025-08-21 8/10

Encryption Algorithm of our KMHE (Simplified)

@ Setup sets up the bilinear group pp = (g, g, h, g7, G, H, G1,e) and KGen(pp) samples key
k <5 {0,1}" with Hamming weight /2.

Enc(pp, k € {0,1}*,m € {0,1}%): o We follow [GHV10, AHKP22] by
using a bit permutation
g1,--,8:+3$Ga1,...,3, +$Z4 homomorphism.
y e (H g;ki7 h) o Key Bit Permutation: Permute
ie[x] 81,---,8k-
G« (W, g7 - y) Vjeln] @ Message Bit Permutation:
Permute ¢y, ..., cx.

return ct < (C1,. .., Coy 81,5+ -5 &rs YY)
@ Rerandomization based on DDH.
From Quadratic to Linear Size Ciphertexts

The BHHO scheme needed to store every combination g,-aj (k2 many) for decryption, using

pairings we can supply the g; and h% separately and then compute their combinations on the fly.

_ Rerandomizable Garbling, Revisited 2025-08-21 8/10

Gate KMHE

Garbling requires some kind of encryption with two keys per ciphertext:
A) (B
Cloo = E"C(k(())7 kg), ke(0,0))

Ctyy = Enc(kgA), kgB)» ke(1,1))

Figure: Garbled Table Example.

" RaphaelH., JonasvdH. | Rerandomizable Garbling, Revisited 2025-08-21

9/10

Gate KMHE

Garbling requires some kind of encryption with two keys per ciphertext:
A) (B
Ctoo = Enc(k[()), kg), ke(0,0))

Cty; = Enc(kgA), kgB)7 ke(1,1))

Figure: Garbled Table Example.

Gate KMHE

Gate KMHE primitive encrypts entire garbled table in single operation, halves ciphertext size
compared to secret-sharing approach from [AHKP22].

~ Raphael H., Jonas vdH. Rerandomizable Garbling, Revisited 2025-08-21 9/10

Conclusion

o Rerandomizable garbling allows adaptively secure, outsourced, and constant-round
multi-party computation, relying only on a public ledger.

SR Rerandomizable Garbling, Revisited 2025-08.21 10/10

https://eprint.iacr.org/2025/843
https://docs.google.com/document/d/123CV3LRTdO4CdhLmZHtvLbAMYBpyIbU5O8YTbbeXJX4/edit?tab=t.0

Conclusion

@ Rerandomizable garbling allows adaptively secure, outsourced, and constant-round
multi-party computation, relying only on a public ledger.

@ Our pairing-based KMHE improves ciphertext size by two and runtime by four to five
orders of magnitude. Gate KMHE further improves performance by enabling randomness

reuse.

_ Rerandomizable Garbling, Revisited 2025-08-21 10 /10

https://eprint.iacr.org/2025/843
https://docs.google.com/document/d/123CV3LRTdO4CdhLmZHtvLbAMYBpyIbU5O8YTbbeXJX4/edit?tab=t.0

Conclusion

o Rerandomizable garbling allows adaptively secure, outsourced, and constant-round
multi-party computation, relying only on a public ledger.

@ Our pairing-based KMHE improves ciphertext size by two and runtime by four to five
orders of magnitude. Gate KMHE further improves performance by enabling randomness
reuse.

o New RGS definitions address small gaps in [AHKP22].

_ Rerandomizable Garbling, Revisited 2025-08-21 10 /10

https://eprint.iacr.org/2025/843
https://docs.google.com/document/d/123CV3LRTdO4CdhLmZHtvLbAMYBpyIbU5O8YTbbeXJX4/edit?tab=t.0

Conclusion

o Rerandomizable garbling allows adaptively secure, outsourced, and constant-round
multi-party computation, relying only on a public ledger.

@ Our pairing-based KMHE improves ciphertext size by two and runtime by four to five
orders of magnitude. Gate KMHE further improves performance by enabling randomness
reuse.

o New RGS definitions address small gaps in [AHKP22].

Read full version on ePrint:
2025/843

[=]5 5 [m]

=]

_ Rerandomizable Garbling, Revisited 2025-08-21 10 /10

https://eprint.iacr.org/2025/843
https://docs.google.com/document/d/123CV3LRTdO4CdhLmZHtvLbAMYBpyIbU5O8YTbbeXJX4/edit?tab=t.0

Conclusion

o Rerandomizable garbling allows adaptively secure, outsourced, and constant-round
multi-party computation, relying only on a public ledger.

@ Our pairing-based KMHE improves ciphertext size by two and runtime by four to five
orders of magnitude. Gate KMHE further improves performance by enabling randomness
reuse.

o New RGS definitions address small gaps in [AHKP22].

Read full version on ePrint:
2025/843 Hire Jonas!

[=]5 5 [m]

=]

_ Rerandomizable Garbling, Revisited 2025-08-21 10 /10

https://eprint.iacr.org/2025/843
https://docs.google.com/document/d/123CV3LRTdO4CdhLmZHtvLbAMYBpyIbU5O8YTbbeXJX4/edit?tab=t.0

Conclusion

o Rerandomizable garbling allows adaptively secure, outsourced, and constant-round
multi-party computation, relying only on a public ledger.

@ Our pairing-based KMHE improves ciphertext size by two and runtime by four to five
orders of magnitude. Gate KMHE further improves performance by enabling randomness
reuse.

o New RGS definitions address small gaps in [AHKP22].

Read full version on ePrint:
2025/843 Hire Jonas!

[=] %5 =]
; Thank you!

=]

_ Rerandomizable Garbling, Revisited 2025-08-21 10 /10

https://eprint.iacr.org/2025/843
https://docs.google.com/document/d/123CV3LRTdO4CdhLmZHtvLbAMYBpyIbU5O8YTbbeXJX4/edit?tab=t.0

Bibliography |

Anasuya Acharya, Carmit Hazay, Vladimir Kolesnikov, and Manoj Prabhakaran.
SCALES - MPC with small clients and larger ephemeral servers.
In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part Il, volume 13748 of
LNCS, pages 502-531. Springer, Cham, November 2022.

Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky.
Circular-secure encryption from decision Diffie-Hellman.
In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 108-125. Springer,
Berlin, Heidelberg, August 2008.

Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
i-Hop homomorphic encryption and rerandomizable Yao circuits.
In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 155-172. Springer,
Berlin, Heidelberg, August 2010.

SR Rerandomizable Garbling, Revisited 2035.08:21 o

Bibliography Il

Yehuda Lindell and Benny Pinkas.
A proof of security of Yao's protocol for two-party computation.
Journal of Cryptology, 22(2):161-188, April 2009.

Christian Mouchet, Juan Ramén Troncoso-Pastoriza, Jean-Philippe Bossuat, and
Jean-Pierre Hubaux.
Multiparty homomorphic encryption from ring-learning-with-errors.
PoPETs, 2021(4):291-311, October 2021.

" RaphaelH., JonasvdH. | Rerandomizable Garbling, Revisited 2025-08-21

0/1

Gate KMHE

@ Our (Simplified) KMHE is only a single-key scheme;
garbling requires a double-key variant (e.g. [LP09])

@ Double-key variant possible via secret-sharing (as in
[AHKP22]) or direct construction (a bit more
efficient)

o We introduce the Gate KMHE primitive which
encrypts the entire garbled table in a single
operation, even more efficient

A) (B

ctop = Enc(k{, kP, k(0,0))
A) (B

Ctyy = E“C(kg)a kg)7 ke(1,1))

Approach ‘ Size of Garbled Table

Secret-sharing 8k G,8x H,8(k+ 1) G
Direct double-key | 8x G,4x H,4(xk + 1) Gt
Gate KMHE 2k G, 4k H,4(k +1) G1

	KMHE Schemes
	Appendix
	Appendix

