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Task: Solve a ‘noisy’ system of  linear equations in  variables modulo      m n q

Hardness of LWE depends on the parameters  n, m, q

Kirchner and Fouque (2015): A claimed subexponential-time algorithm for LWE with narrow error distribution

❖ Original statement: Holds when  and m ≈ n q = nΘ(1)

❖ Herold, Kirshanova, and May (2018) found an error in the proof, which they fixed for  m ≈ n ln n

❖ Common belief: It can also be resolved for  m ≈ n

Our work: We establish this for the first step of Kirchner and Fouque’s algorithm  
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❖ Result does not affect the concrete security of ML-DSA 

❖ Subexponential time also applies to nontrivial instances of Inhomogeneous-SIS and SIS , variants of SIS in the -norm× ℓ2

❖ No direct corollary yet for LWE (for technical reasons), but seems feasible     
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