CRYPTO 2025

ePrint:

2025/575

arXiv: 2503.23238

Wagner's algorithm provably runs in subexponential time for SIS^{∞}

Léo Ducas, Lynn Engelberts, Johanna Loyer

Learning with Errors (LWE) is one of the most prominent computational problems in post-quantum cryptography

Learning with Errors (LWE) is one of the most prominent computational problems in post-quantum cryptography

Task: Solve a 'noisy' system of m linear equations in n variables modulo q

- Each equation is perturbed by some random error

Learning with Errors (LWE) is one of the most prominent computational problems in post-quantum cryptography

Task: Solve a 'noisy' system of m linear equations in n variables modulo q

Hardness of LWE depends on the parameters n, m, q

Learning with Errors (LWE) is one of the most prominent computational problems in post-quantum cryptography

Task: Solve a 'noisy' system of m linear equations in n variables modulo q

Each equation is perturbed by some random error

Hardness of LWE depends on the parameters n, m, q

Kirchner and Fouque (2015): A claimed subexponential-time algorithm for LWE with narrow error distribution

Learning with Errors (LWE) is one of the most prominent computational problems in post-quantum cryptography

Task: Solve a 'noisy' system of m linear equations in n variables modulo q

Each equation is perturbed by some random error

Hardness of LWE depends on the parameters n, m, q

Kirchner and Fouque (2015): A claimed subexponential-time algorithm for LWE with narrow error distribution

* Original statement: Holds when $m \approx n$ and $q = n^{\Theta(1)}$

Learning with Errors (LWE) is one of the most prominent computational problems in post-quantum cryptography

Task: Solve a 'noisy' system of m linear equations in n variables modulo q

Each equation is perturbed by some random error

Hardness of LWE depends on the parameters n, m, q

Kirchner and Fouque (2015): A claimed subexponential-time algorithm for LWE with narrow error distribution

- * Original statement: Holds when $m \approx n$ and $q = n^{\Theta(1)}$
- * Herold, Kirshanova, and May (2018) found an error in the proof, which they fixed for $m \approx n \ln n$

Learning with Errors (LWE) is one of the most prominent computational problems in post-quantum cryptography

Task: Solve a 'noisy' system of m linear equations in n variables modulo q

Each equation is perturbed by some random error

Hardness of LWE depends on the parameters n, m, q

Kirchner and Fouque (2015): A claimed subexponential-time algorithm for LWE with narrow error distribution

- * Original statement: Holds when $m \approx n$ and $q = n^{\Theta(1)}$
- * Herold, Kirshanova, and May (2018) found an error in the proof, which they fixed for $m \approx n \ln n$
- * Common belief: It can also be resolved for $m \approx n$

Learning with Errors (LWE) is one of the most prominent computational problems in post-quantum cryptography

Task: Solve a 'noisy' system of m linear equations in n variables modulo q

Each equation is perturbed by some random error

Hardness of LWE depends on the parameters n, m, q

Kirchner and Fouque (2015): A claimed subexponential-time algorithm for LWE with narrow error distribution

- * Original statement: Holds when $m \approx n$ and $q = n^{\Theta(1)}$
- * Herold, Kirshanova, and May (2018) found an error in the proof, which they fixed for $m \approx n \ln n$
- * Common belief: It can also be resolved for $m \approx n$

Our work: We establish this for the first step of Kirchner and Fouque's algorithm

Kirchner and Fouque's first step solves an instance of the Short Integer Solution problem (SIS), derived from the m LWE equations

Kirchner and Fouque's first step solves an instance of the Short Integer Solution problem (SIS), derived from the m LWE equations

For $n, m, q \in \mathbb{N}$ and norm bound $\beta > 0$, $SIS_{n,m,q,\beta}^{\infty}$ is defined as:

Kirchner and Fouque's first step solves an instance of the Short Integer Solution problem (SIS), derived from the m LWE equations

For $n, m, q \in \mathbb{N}$ and norm bound $\beta > 0$, $SIS_{n,m,q,\beta}^{\infty}$ is defined as:

Given: Uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$

Kirchner and Fouque's first step solves an instance of the Short Integer Solution problem (SIS), derived from the m LWE equations

For $n, m, q \in \mathbb{N}$ and norm bound $\beta > 0$, $SIS_{n,m,q,\beta}^{\infty}$ is defined as:

Given: Uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$

Goal: Find nonzero $\mathbf{x} \in \mathbb{Z}^m$ satisfying:

Kirchner and Fouque's first step solves an instance of the Short Integer Solution problem (SIS), derived from the m LWE equations

For $n, m, q \in \mathbb{N}$ and norm bound $\beta > 0$, $SIS_{n,m,q,\beta}^{\infty}$ is defined as:

Given: Uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$

Goal: Find nonzero $\mathbf{x} \in \mathbb{Z}^m$ satisfying:

• $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$

Kirchner and Fouque's first step solves an instance of the Short Integer Solution problem (SIS), derived from the m LWE equations

For $n, m, q \in \mathbb{N}$ and norm bound $\beta > 0$, $SIS_{n,m,q,\beta}^{\infty}$ is defined as:

Given: Uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$

Goal: Find nonzero $\mathbf{x} \in \mathbb{Z}^m$ satisfying:

- $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$
- $\|\mathbf{x}\|_{\infty} \leq \beta$

Kirchner and Fouque's first step solves an instance of the Short Integer Solution problem (SIS), derived from the m LWE equations

For $n, m, q \in \mathbb{N}$ and norm bound $\beta > 0$, $SIS_{n,m,q,\beta}^{\infty}$ is defined as:

Given: Uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$

Goal: Find nonzero $\mathbf{x} \in \mathbb{Z}^m$ satisfying:

- $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$
- $\cdot \|\mathbf{x}\|_{\infty} \leq \beta$

Kirchner and Fouque's first step solves an instance of the Short Integer Solution problem (SIS), derived from the m LWE equations

For $n, m, q \in \mathbb{N}$ and norm bound $\beta > 0$, $SIS_{n,m,q,\beta}^{\infty}$ is defined as:

Given: Uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$

Goal: Find nonzero $\mathbf{x} \in \mathbb{Z}^m$ satisfying:

- $\cdot \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$
- $\|\mathbf{x}\|_{\infty} \leq \beta$

Our contribution:

Kirchner and Fouque's first step solves an instance of the Short Integer Solution problem (SIS), derived from the m LWE equations

For $n, m, q \in \mathbb{N}$ and norm bound $\beta > 0$, $SIS_{n,m,q,\beta}^{\infty}$ is defined as:

Given: Uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$

Goal: Find nonzero $\mathbf{x} \in \mathbb{Z}^m$ satisfying:

- $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$
- $\|\mathbf{x}\|_{\infty} \leq \beta$

Our contribution:

* Re-interpretation of the Kirchner-Fouque SIS step as going through a chain of projected lattices

Kirchner and Fouque's first step solves an instance of the Short Integer Solution problem (SIS), derived from the m LWE equations

For $n, m, q \in \mathbb{N}$ and norm bound $\beta > 0$, $SIS_{n,m,q,\beta}^{\infty}$ is defined as:

Given: Uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$

Goal: Find nonzero $\mathbf{x} \in \mathbb{Z}^m$ satisfying:

- $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$
- $\cdot \|\mathbf{x}\|_{\infty} \leq \beta$

Our contribution:

- * Re-interpretation of the Kirchner-Fouque SIS step as going through a chain of projected lattices
- * Subexponential-time $\mathrm{SIS}_{n,m,q,\beta}^{\infty}$ algorithm for all $\underline{m=n+\omega(n/\ln\ln n)}$ with $m=n^{O(1)}$, all prime $q=n^{\Theta(1)}$, and some nontrivial $\underline{\beta}$ Instead of $m\approx n\ln n$

Kirchner and Fouque's first step solves an instance of the Short Integer Solution problem (SIS), derived from the m LWE equations

For $n, m, q \in \mathbb{N}$ and norm bound $\beta > 0$, $SIS_{n,m,q,\beta}^{\infty}$ is defined as:

Given: Uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$

Goal: Find nonzero $\mathbf{x} \in \mathbb{Z}^m$ satisfying:

- $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$
- $\|\mathbf{x}\|_{\infty} \leq \beta$

Our contribution:

- * Re-interpretation of the Kirchner-Fouque SIS step as going through a chain of projected lattices
- * Subexponential-time $\mathrm{SIS}_{n,m,q,\beta}^{\infty}$ algorithm for all $\underline{m=n+\omega(n/\ln\ln n)}$ with $m=n^{O(1)}$, all prime $q=n^{\Theta(1)}$, and some nontrivial $\underline{\beta}$ Instead of $m\approx n\ln n$ Such as $\beta=\frac{q}{\operatorname{polylog}(n)}$

Implications:

Kirchner and Fouque's first step solves an instance of the Short Integer Solution problem (SIS), derived from the m LWE equations

For $n, m, q \in \mathbb{N}$ and norm bound $\beta > 0$, $SIS_{n,m,q,\beta}^{\infty}$ is defined as:

Given: Uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$

Goal: Find nonzero $\mathbf{x} \in \mathbb{Z}^m$ satisfying:

- $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$
- $\|\mathbf{x}\|_{\infty} \leq \beta$

Our contribution:

- * Re-interpretation of the Kirchner-Fouque SIS step as going through a chain of projected lattices
- * Subexponential-time $\mathrm{SIS}_{n,m,q,\beta}^{\infty}$ algorithm for all $\underline{m=n+\omega(n/\ln\ln n)}$ with $m=n^{O(1)}$, all prime $q=n^{\Theta(1)}$, and some nontrivial $\underline{\beta}$ Instead of $m\approx n\ln n$ Such as $\beta=\frac{q}{\mathrm{polylog}(n)}$

Implications:

Result does not affect the concrete security of ML-DSA

Kirchner and Fouque's first step solves an instance of the Short Integer Solution problem (SIS), derived from the m LWE equations

For $n, m, q \in \mathbb{N}$ and norm bound $\beta > 0$, $SIS_{n,m,q,\beta}^{\infty}$ is defined as:

Given: Uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$

Goal: Find nonzero $\mathbf{x} \in \mathbb{Z}^m$ satisfying:

- $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$
- $\|\mathbf{x}\|_{\infty} \leq \beta$

Our contribution:

- * Re-interpretation of the Kirchner-Fouque SIS step as going through a chain of projected lattices
- * Subexponential-time $\mathrm{SIS}_{n,m,q,\beta}^{\infty}$ algorithm for all $\underline{m=n+\omega(n/\ln\ln n)}$ with $m=n^{O(1)}$, all prime $q=n^{\Theta(1)}$, and some nontrivial $\underline{\beta}$ Instead of $m\approx n\ln n$ Such as $\beta=\frac{q}{\mathrm{polylog}(p)}$

Implications:

- Result does not affect the concrete security of ML-DSA
- * Subexponential time also applies to nontrivial instances of Inhomogeneous-SIS and SIS[×], variants of SIS in the ℓ_2 -norm

Kirchner and Fouque's first step solves an instance of the Short Integer Solution problem (SIS), derived from the m LWE equations

For $n, m, q \in \mathbb{N}$ and norm bound $\beta > 0$, $SIS_{n,m,q,\beta}^{\infty}$ is defined as:

Given: Uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$

Goal: Find nonzero $\mathbf{x} \in \mathbb{Z}^m$ satisfying:

- $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$
- $\|\mathbf{x}\|_{\infty} \leq \beta$

Our contribution:

- * Re-interpretation of the Kirchner-Fouque SIS step as going through a chain of projected lattices
- * Subexponential-time $\mathrm{SIS}_{n,m,q,\beta}^{\infty}$ algorithm for all $\underline{m=n+\omega(n/\ln\ln n)}$ with $m=n^{O(1)}$, all prime $q=n^{\Theta(1)}$, and some nontrivial $\underline{\beta}$ Instead of $m\approx n\ln n$ Such as $\beta=\frac{q}{\mathrm{polylog}(p)}$

Implications:

- Result does not affect the concrete security of ML-DSA
- * Subexponential time also applies to nontrivial instances of Inhomogeneous-SIS and SIS[×], variants of SIS in the ℓ_2 -norm
- * No direct corollary yet for LWE (for technical reasons), but seems feasible

Kirchner-Fouque SIS step: Refined version of Wagner's algorithm (originally solving the generalized birthday problem)

Kirchner-Fouque SIS step: Refined version of Wagner's algorithm (originally solving the generalized birthday problem)

Let
$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}$$
 be an $\mathrm{SIS}_{n,m,q,\beta}^{\infty}$ instance:

Wagner-style algorithm for SIS[∞]

Kirchner-Fouque SIS step: Refined version of Wagner's algorithm (originally solving the generalized birthday problem)

Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ be an $\mathrm{SIS}_{n,m,q,\beta}^{\infty}$ instance:

* Assuming \mathbf{A} is of full rank, we can write $\mathbf{A} = \begin{bmatrix} \mathbf{A}' \mid \mathbf{I}_n \end{bmatrix}$ for $\mathbf{A}' \in \mathbb{Z}_q^{n \times (m-n)}$

Kirchner-Fouque SIS step: Refined version of Wagner's algorithm (originally solving the generalized birthday problem)

Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ be an $\mathrm{SIS}_{n,m,q,\beta}^{\infty}$ instance:

- * Assuming \mathbf{A} is of full rank, we can write $\mathbf{A} = \begin{bmatrix} \mathbf{A}' \mid \mathbf{I}_n \end{bmatrix}$ for $\mathbf{A}' \in \mathbb{Z}_q^{n \times (m-n)}$
- * All solutions to $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$ are of the form $\mathbf{x} = \begin{pmatrix} \mathbf{z} \\ -\mathbf{A}'\mathbf{z} \end{pmatrix} \bmod q$ for some $\mathbf{z} \in \mathbb{Z}^{m-n}$

Kirchner-Fouque SIS step: Refined version of Wagner's algorithm (originally solving the generalized birthday problem)

Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ be an $\mathrm{SIS}_{n,m,q,\beta}^{\infty}$ instance:

- * Assuming \mathbf{A} is of full rank, we can write $\mathbf{A} = \begin{bmatrix} \mathbf{A}' \mid \mathbf{I}_n \end{bmatrix}$ for $\mathbf{A}' \in \mathbb{Z}_q^{n \times (m-n)}$
- * All solutions to $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$ are of the form $\mathbf{x} = \begin{pmatrix} \mathbf{z} \\ -\mathbf{A}'\mathbf{z} \end{pmatrix} \bmod q$ for some $\mathbf{z} \in \mathbb{Z}^{m-n}$

Strategy:

Kirchner-Fouque SIS step: Refined version of Wagner's algorithm (originally solving the generalized birthday problem)

Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ be an $\mathrm{SIS}_{n,m,q,\beta}^{\infty}$ instance:

- * Assuming \mathbf{A} is of full rank, we can write $\mathbf{A} = \begin{bmatrix} \mathbf{A}' \mid \mathbf{I}_n \end{bmatrix}$ for $\mathbf{A}' \in \mathbb{Z}_q^{n \times (m-n)}$
- * All solutions to $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$ are of the form $\mathbf{x} = \begin{pmatrix} \mathbf{z} \\ -\mathbf{A}'\mathbf{z} \end{pmatrix} \bmod q$ for some $\mathbf{z} \in \mathbb{Z}^{m-n}$

Strategy:

1. Sample many $\mathbf{z} \in \mathbb{Z}^{m-n}$ with $\|\mathbf{z}\|_{\infty}$ small

Kirchner-Fouque SIS step: Refined version of Wagner's algorithm (originally solving the generalized birthday problem)

Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ be an $\mathrm{SIS}_{n,m,q,\beta}^{\infty}$ instance:

- * Assuming \mathbf{A} is of full rank, we can write $\mathbf{A} = \begin{bmatrix} \mathbf{A}' \mid \mathbf{I}_n \end{bmatrix}$ for $\mathbf{A}' \in \mathbb{Z}_q^{n \times (m-n)}$
- * All solutions to $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$ are of the form $\mathbf{x} = \begin{pmatrix} \mathbf{z} \\ -\mathbf{A}'\mathbf{z} \end{pmatrix} \bmod q$ for some $\mathbf{z} \in \mathbb{Z}^{m-n}$

Strategy:

Note that $\mathbf{x} = \begin{pmatrix} \mathbf{z} \\ -\mathbf{A}'\mathbf{z} \end{pmatrix} \mod q$ may not be small

1. Sample many $\mathbf{z} \in \mathbb{Z}^{m-n}$ with $\|\mathbf{z}\|_{\infty}$ small

Kirchner-Fouque SIS step: Refined version of Wagner's algorithm (originally solving the generalized birthday problem)

Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ be an $\mathrm{SIS}_{n,m,q,\beta}^{\infty}$ instance:

- * Assuming \mathbf{A} is of full rank, we can write $\mathbf{A} = \begin{bmatrix} \mathbf{A}' \mid \mathbf{I}_n \end{bmatrix}$ for $\mathbf{A}' \in \mathbb{Z}_q^{n \times (m-n)}$
- * All solutions to $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$ are of the form $\mathbf{x} = \begin{pmatrix} \mathbf{z} \\ -\mathbf{A}'\mathbf{z} \end{pmatrix} \bmod q$ for some $\mathbf{z} \in \mathbb{Z}^{m-n}$

Strategy:

Note that $\mathbf{x} = \begin{pmatrix} \mathbf{z} \\ -\mathbf{A}'\mathbf{z} \end{pmatrix} \mod q$ may not be small

- 1. Sample many $\mathbf{z} \in \mathbb{Z}^{m-n}$ with $\|\mathbf{z}\|_{\infty}$ small
- 2. Iteratively combine vectors to obtain solutions to $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$ that satisfy $\|\mathbf{x}\|_{\infty} \leq \beta$

Kirchner-Fouque SIS step: Refined version of Wagner's algorithm (originally solving the generalized birthday problem)

Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ be an $\mathrm{SIS}_{n,m,q,\beta}^{\infty}$ instance:

- * Assuming \mathbf{A} is of full rank, we can write $\mathbf{A} = \begin{bmatrix} \mathbf{A}' \mid \mathbf{I}_n \end{bmatrix}$ for $\mathbf{A}' \in \mathbb{Z}_q^{n \times (m-n)}$
- * All solutions to $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$ are of the form $\mathbf{x} = \begin{pmatrix} \mathbf{z} \\ -\mathbf{A}'\mathbf{z} \end{pmatrix} \bmod q$ for some $\mathbf{z} \in \mathbb{Z}^{m-n}$

Strategy:

Note that $\mathbf{x} = \begin{pmatrix} \mathbf{z} \\ -\mathbf{A}'\mathbf{z} \end{pmatrix} \mod q$ may not be small

- 1. Sample many $\mathbf{z} \in \mathbb{Z}^{m-n}$ with $\|\mathbf{z}\|_{\infty}$ small
- 2. Iteratively combine vectors to obtain solutions to $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$ that satisfy $\|\mathbf{x}\|_{\infty} \leq \beta$

- Wagner-style: Considering one block of coordinates at a time

Wagner-style algorithm for SIS^{∞}

Consider $b_1, ..., b_r \in \mathbb{N}$ with $\sum_{i=1}^r b_i = n$

Wagner-style algorithm for SIS^{∞}

Consider $b_1, ..., b_r \in \mathbb{N}$ with $\sum_{i=1}^r b_i = n$

This yields matrices $\mathbf{A}_1, \dots, \mathbf{A}_r$ defined by $\mathbf{A}_i := \left[\mathbf{A}_i' \mid \mathbf{I}_{b_1 + \dots + b_i}\right]$, where \mathbf{A}_i' consists of the first $b_1 + \dots + b_i$ rows of \mathbf{A}'

Wagner-style algorithm for SIS[∞]

Consider $b_1, ..., b_r \in \mathbb{N}$ with $\sum_{i=1}^r b_i = n$

This yields matrices $\mathbf{A}_1, \dots, \mathbf{A}_r$ defined by $\mathbf{A}_i := \left[\mathbf{A}_i' \mid \mathbf{I}_{b_1 + \dots + b_i}\right]$, where \mathbf{A}_i' consists of the first $b_1 + \dots + b_i$ rows of \mathbf{A}'

Iteratively, the algorithm constructs short solutions to $\mathbf{A}_i \mathbf{x} = \mathbf{0} \mod q$ from short solutions to $\mathbf{A}_{i-1} \mathbf{x} = \mathbf{0} \mod q$

Algorithm:

Algorithm:

Parameters: $N, r, (b_i)_{i=1}^r, (p_i)_{i=1}^r$

1. Fill a list L_0 with N random vectors in $\{-1,0,1\}^{m-n} \subseteq \mathbb{Z}^{m-n}$

Kirchner and Fouque's algorithm for SIS[∞]

Algorithm:

- 1. Fill a list L_0 with N random vectors in $\{-1,0,1\}^{m-n} \subseteq \mathbb{Z}^{m-n}$
- 2. For i = 1, ..., r:
 - I. Lift each $\mathbf{x} \in L_{i-1}$ to a vector $\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$ that satisfies $\mathbf{A}_i \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \mathbf{0} \mod q$

Kirchner and Fouque's algorithm for SIS[∞]

Algorithm:

- 1. Fill a list L_0 with N random vectors in $\{-1,0,1\}^{m-n} \subseteq \mathbb{Z}^{m-n}$
- 2. For i = 1, ..., r:
 - I. Lift each $\mathbf{x} \in L_{i-1}$ to a vector $\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$ that satisfies $\mathbf{A}_i \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \mathbf{0} \mod q$
 - II. Form a new list L_i by repeatedly combining lifted vectors:

Algorithm:

- 1. Fill a list L_0 with N random vectors in $\{-1,0,1\}^{m-n} \subseteq \mathbb{Z}^{m-n}$
- 2. For i = 1, ..., r:
 - I. Lift each $\mathbf{x} \in L_{i-1}$ to a vector $\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$ that satisfies $\mathbf{A}_i \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \mathbf{0} \mod q$

- II. Form a new list L_i by repeatedly combining lifted vectors:
 - Search for vectors $\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{y}_1 \end{pmatrix}$, $\begin{pmatrix} \mathbf{x}_2 \\ \mathbf{y}_2 \end{pmatrix}$ such that $\|\mathbf{y}_1 \mathbf{y}_2\|_{\infty} \leq \frac{q}{p_i}$ (achieved via 'lazy-modulus switching')

Algorithm:

- 1. Fill a list L_0 with N random vectors in $\{-1,0,1\}^{m-n} \subseteq \mathbb{Z}^{m-n}$
- 2. For i = 1, ..., r:
 - I. Lift each $\mathbf{x} \in L_{i-1}$ to a vector $\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$ that satisfies $\mathbf{A}_i \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \mathbf{0} \mod q$

- II. Form a new list L_i by repeatedly combining lifted vectors:
 - Search for vectors $\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{y}_1 \end{pmatrix}$, $\begin{pmatrix} \mathbf{x}_2 \\ \mathbf{y}_2 \end{pmatrix}$ such that $\|\mathbf{y}_1 \mathbf{y}_2\|_{\infty} \leq \frac{q}{p_i}$ (achieved via 'lazy-modulus switching')
 - Add their difference to L_i

Algorithm:

- 1. Fill a list L_0 with N random vectors in $\{-1,0,1\}^{m-n} \subseteq \mathbb{Z}^{m-n}$
- 2. For i = 1, ..., r:
 - I. Lift each $\mathbf{x} \in L_{i-1}$ to a vector $\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$ that satisfies $\mathbf{A}_i \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \mathbf{0} \mod q$

- II. Form a new list L_i by repeatedly combining lifted vectors:
 - Search for vectors $\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{y}_1 \end{pmatrix}$, $\begin{pmatrix} \mathbf{x}_2 \\ \mathbf{y}_2 \end{pmatrix}$ such that $\|\mathbf{y}_1 \mathbf{y}_2\|_{\infty} \leq \frac{q}{p_i}$ (achieved via 'lazy-modulus switching')
 - ightharpoonup Add their difference to L_i
- 3. Return L_r

Algorithm:

Parameters:
$$N, r, (b_i)_{i=1}^r, (p_i)_{i=1}^r$$

- 1. Fill a list L_0 with N random vectors in $\{-1,0,1\}^{m-n} \subseteq \mathbb{Z}^{m-n}$
- 2. For i = 1, ..., r:
 - I. Lift each $\mathbf{x} \in L_{i-1}$ to a vector $\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$ that satisfies $\mathbf{A}_i \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \mathbf{0} \mod q$

- II. Form a new list L_i by repeatedly combining lifted vectors:
 - Search for vectors $\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{y}_1 \end{pmatrix}$, $\begin{pmatrix} \mathbf{x}_2 \\ \mathbf{y}_2 \end{pmatrix}$ such that $\|\mathbf{y}_1 \mathbf{y}_2\|_{\infty} \leq \frac{q}{p_i}$ (achieved via 'lazy-modulus switching')
 - Add their difference to L_i
- 3. Return L_r

There exists a choice of parameters such that:

Algorithm:

Parameters:
$$N, r, (b_i)_{i=1}^r, (p_i)_{i=1}^r$$

- 1. Fill a list L_0 with N random vectors in $\{-1,0,1\}^{m-n} \subseteq \mathbb{Z}^{m-n}$
- 2. For i = 1, ..., r:
 - I. Lift each $\mathbf{x} \in L_{i-1}$ to a vector $\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$ that satisfies $\mathbf{A}_i \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \mathbf{0} \mod q$

- II. Form a new list L_i by repeatedly combining lifted vectors:
 - Search for vectors $\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{y}_1 \end{pmatrix}$, $\begin{pmatrix} \mathbf{x}_2 \\ \mathbf{y}_2 \end{pmatrix}$ such that $\|\mathbf{y}_1 \mathbf{y}_2\|_{\infty} \leq \frac{q}{p_i}$ (achieved via 'lazy-modulus switching')
 - Add their difference to L_i
- 3. Return L_r

There exists a choice of parameters such that:

Runtime is subexponential

Kirchner and Fouque's algorithm for SIS[∞]

Algorithm:

Parameters:
$$N, r, (b_i)_{i=1}^r, (p_i)_{i=1}^r$$

- 1. Fill a list L_0 with N random vectors in $\{-1,0,1\}^{m-n} \subseteq \mathbb{Z}^{m-n}$
- 2. For i = 1, ..., r:
 - I. Lift each $\mathbf{x} \in L_{i-1}$ to a vector $\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$ that satisfies $\mathbf{A}_i \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \mathbf{0} \mod q$

- II. Form a new list L_i by repeatedly combining lifted vectors:
 - Search for vectors $\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{y}_1 \end{pmatrix}$, $\begin{pmatrix} \mathbf{x}_2 \\ \mathbf{y}_2 \end{pmatrix}$ such that $\|\mathbf{y}_1 \mathbf{y}_2\|_{\infty} \leq \frac{q}{p_i}$ (achieved via 'lazy-modulus switching')
 - Add their difference to L_i
- 3. Return L_r

There exists a choice of parameters such that:

- Runtime is subexponential
- * L_r consists of solutions to $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$ that satisfy $\|\mathbf{x}\|_{\infty} \leq \beta$

Kirchner and Fouque's algorithm for SIS[∞]

Algorithm:

Parameters:
$$N, r, (b_i)_{i=1}^r, (p_i)_{i=1}^r$$

- 1. Fill a list L_0 with N random vectors in $\{-1,0,1\}^{m-n} \subseteq \mathbb{Z}^{m-n}$
- 2. For i = 1, ..., r:
 - I. Lift each $\mathbf{x} \in L_{i-1}$ to a vector $\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$ that satisfies $\mathbf{A}_i \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \mathbf{0} \mod q$

- II. Form a new list L_i by repeatedly combining lifted vectors:
 - Search for vectors $\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{y}_1 \end{pmatrix}$, $\begin{pmatrix} \mathbf{x}_2 \\ \mathbf{y}_2 \end{pmatrix}$ such that $\|\mathbf{y}_1 \mathbf{y}_2\|_{\infty} \leq \frac{q}{p_i}$ (achieved via 'lazy-modulus switching')
 - ightharpoonup Add their difference to L_i
- 3. Return L_r

There exists a choice of parameters such that:

- Runtime is subexponential
- * L_r consists of solutions to $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$ that satisfy $\|\mathbf{x}\|_{\infty} \leq \beta$

Short, but is one of them nonzero?

Kirchner and Fouque's SIS algorithm walks through a chain of lattices $\Lambda_0, \Lambda_1, \ldots, \Lambda_r$:

Kirchner and Fouque's SIS algorithm walks through a chain of lattices $\Lambda_0, \Lambda_1, ..., \Lambda_r$:

* It starts with sampling many short random vectors in $\Lambda_0 := \mathbb{Z}^{m-n}$

Kirchner and Fouque's SIS algorithm walks through a chain of lattices $\Lambda_0, \Lambda_1, ..., \Lambda_r$:

- * It starts with sampling many short random vectors in $\Lambda_0 := \mathbb{Z}^{m-n}$
- * Iteratively, by *lifting* & *combining* short vectors in Λ_{i-1} , it obtains short vectors in $\Lambda_i := \{\mathbf{x} \in \mathbb{Z}^{m-n+\sum_{j=1}^i b_j} \colon \mathbf{A}_i \mathbf{x} = \mathbf{0} \bmod q \}$

Kirchner and Fouque's SIS algorithm walks through a chain of lattices $\Lambda_0, \Lambda_1, ..., \Lambda_r$:

- * It starts with sampling many short random vectors in $\Lambda_0 := \mathbb{Z}^{m-n}$
- * Iteratively, by *lifting* & *combining* short vectors in Λ_{i-1} , it obtains short vectors in $\Lambda_i := \{\mathbf{x} \in \mathbb{Z}^{m-n+\sum_{j=1}^i b_j} \colon \mathbf{A}_i \mathbf{x} = \mathbf{0} \bmod q \}$
- * It outputs short vectors in $\Lambda_r := \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q \}$

Kirchner and Fouque's SIS algorithm walks through a chain of lattices $\Lambda_0, \Lambda_1, ..., \Lambda_r$:

- * It starts with sampling many short random vectors in $\Lambda_0 := \mathbb{Z}^{m-n}$
- * Iteratively, by *lifting* & *combining* short vectors in Λ_{i-1} , it obtains short vectors in $\Lambda_i := \{\mathbf{x} \in \mathbb{Z}^{m-n+\sum_{j=1}^i b_j} : \mathbf{A}_i \mathbf{x} = \mathbf{0} \bmod q \}$
- * It outputs short vectors in $\Lambda_r := \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q \}$

Kirchner and Fouque's SIS algorithm walks through a chain of lattices $\Lambda_0, \Lambda_1, ..., \Lambda_r$:

- * It starts with sampling many short random vectors in $\Lambda_0 := \mathbb{Z}^{m-n}$
- * Iteratively, by *lifting* & *combining* short vectors in Λ_{i-1} , it obtains short vectors in $\Lambda_i := \{\mathbf{x} \in \mathbb{Z}^{m-n+\sum_{j=1}^i b_j} \colon \mathbf{A}_i \mathbf{x} = \mathbf{0} \bmod q \}$
- * It outputs short vectors in $\Lambda_r := \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q \}$

SIS lattice $\Lambda_q^\perp(\mathbf{A})$

Re-interpretation of *lifting & combining*:

Kirchner and Fouque's SIS algorithm walks through a chain of lattices $\Lambda_0, \Lambda_1, ..., \Lambda_r$:

- * It starts with sampling many short random vectors in $\Lambda_0 := \mathbb{Z}^{m-n}$
- * Iteratively, by *lifting* & *combining* short vectors in Λ_{i-1} , it obtains short vectors in $\Lambda_i := \{\mathbf{x} \in \mathbb{Z}^{m-n+\sum_{j=1}^i b_j} : \mathbf{A}_i \mathbf{x} = \mathbf{0} \bmod q \}$
- * It outputs short vectors in $\Lambda_r := \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q \}$

SIS lattice $\Lambda_q^\perp(\mathbf{A})$

Re-interpretation of *lifting & combining*:

I. Lift each found vector $\mathbf{x} \in \Lambda_{i-1}$ to a vector \mathbf{x}' in the full-rank superlattice $\Lambda_i' \supseteq \Lambda_i$ defined by $\Lambda_i' = \Lambda_i + (\{0\}^{m-n+\sum_{j=1}^{i-1}b_j} \times \frac{q}{p_i}\mathbb{Z}^{b_i})$

Kirchner and Fouque's SIS algorithm walks through a chain of lattices $\Lambda_0, \Lambda_1, ..., \Lambda_r$:

- * It starts with sampling many short random vectors in $\Lambda_0 := \mathbb{Z}^{m-n}$
- * Iteratively, by *lifting* & *combining* short vectors in Λ_{i-1} , it obtains short vectors in $\Lambda_i := \{\mathbf{x} \in \mathbb{Z}^{m-n+\sum_{j=1}^i b_j} : \mathbf{A}_i \mathbf{x} = \mathbf{0} \bmod q \}$
- * It outputs short vectors in $\Lambda_r := \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q \}$

SIS lattice $\Lambda_q^\perp(\mathbf{A})$

Re-interpretation of *lifting & combining*:

- I. Lift each found vector $\mathbf{x} \in \Lambda_{i-1}$ to a vector \mathbf{x}' in the full-rank superlattice $\Lambda_i' \supseteq \Lambda_i$ defined by $\Lambda_i' = \Lambda_i + (\{0\}^{m-n+\sum_{j=1}^{i-1}b_j} \times \frac{q}{p_i}\mathbb{Z}^{b_i})$
- II. Combine lifted vectors $\mathbf{x}_1', \mathbf{x}_2' \in \Lambda_i'$ that belong to the same coset modulo Λ_i , yielding a vector $\mathbf{x}_1' \mathbf{x}_2' \in \Lambda_i$

Kirchner and Fouque's SIS algorithm walks through a chain of lattices $\Lambda_0, \Lambda_1, ..., \Lambda_r$:

- * It starts with sampling many short random vectors in $\Lambda_0 := \mathbb{Z}^{m-n}$
- * Iteratively, by *lifting* & *combining* short vectors in Λ_{i-1} , it obtains short vectors in $\Lambda_i := \{\mathbf{x} \in \mathbb{Z}^{m-n+\sum_{j=1}^i b_j} : \mathbf{A}_i \mathbf{x} = \mathbf{0} \bmod q \}$
- * It outputs short vectors in $\Lambda_r := \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q \}$

SIS lattice $\Lambda_q^{\perp}(\mathbf{A})$

Re-interpretation of *lifting & combining*:

- I. Lift each found vector $\mathbf{x} \in \Lambda_{i-1}$ to a vector \mathbf{x}' in the full-rank superlattice $\Lambda_i' \supseteq \Lambda_i$ defined by $\Lambda_i' = \Lambda_i + (\{0\}^{m-n+\sum_{j=1}^{i-1}b_j} \times \frac{q}{p_i}\mathbb{Z}^{b_i})$
- II. Combine lifted vectors $\mathbf{x}_1', \mathbf{x}_2' \in \Lambda_i'$ that belong to the same coset modulo Λ_i , yielding a vector $\mathbf{x}_1' \mathbf{x}_2' \in \Lambda_i$

Recall: Output list L_r should contain a short and nonzero vector in the SIS lattice $\Lambda_q^\perp(\mathbf{A})$

But... tracking the vector distributions seems nontrivial after the first iteration

Recall: Output list L_r should contain a short and nonzero vector in the SIS lattice $\Lambda_q^\perp(\mathbf{A})$

But... tracking the vector distributions seems nontrivial after the first iteration

The lattice perspective opens the door to using the discrete Gaussian toolbox:

Recall: Output list L_r should contain a short and nonzero vector in the SIS lattice $\Lambda_q^\perp(\mathbf{A})$

But... tracking the vector distributions seems nontrivial after the first iteration

The lattice perspective opens the door to using the discrete Gaussian toolbox:

* Fill the initial list L_0 with discrete Gaussian samples over \mathbb{Z}^{m-n}

Recall: Output list L_r should contain a short and nonzero vector in the SIS lattice $\Lambda_q^\perp(\mathbf{A})$

But... tracking the vector distributions seems nontrivial after the first iteration

The lattice perspective opens the door to using the discrete Gaussian toolbox:

- st Fill the initial list L_0 with *discrete Gaussian samples* over \mathbb{Z}^{m-n}
- st Allows to control the distributions of the vectors in the lists L_i

Recall: Output list L_r should contain a short and nonzero vector in the SIS lattice $\Lambda_q^\perp(\mathbf{A})$

But... tracking the vector distributions seems nontrivial after the first iteration

The lattice perspective opens the door to using the discrete Gaussian toolbox:

- * Fill the initial list L_0 with *discrete Gaussian samples* over \mathbb{Z}^{m-n}
- st Allows to control the distributions of the vectors in the lists L_i

Under certain 'smoothing' conditions:

Recall: Output list L_r should contain a short and nonzero vector in the SIS lattice $\Lambda_q^\perp(\mathbf{A})$

But... tracking the vector distributions seems nontrivial after the first iteration

The lattice perspective opens the door to using the discrete Gaussian toolbox:

- * Fill the initial list L_0 with *discrete Gaussian samples* over \mathbb{Z}^{m-n}
- st Allows to control the distributions of the vectors in the lists L_i

Under certain 'smoothing' conditions:

* The vectors in L_r are (similar to) discrete Gaussian samples over $\Lambda_q^\perp(\mathbf{A})$

The algorithm has become a Wagner-style Gaussian sampler!

Recall: Output list L_r should contain a short and nonzero vector in the SIS lattice $\Lambda_q^\perp(\mathbf{A})$

But... tracking the vector distributions seems nontrivial after the first iteration

The lattice perspective opens the door to using the discrete Gaussian toolbox:

- * Fill the initial list L_0 with *discrete Gaussian samples* over \mathbb{Z}^{m-n}
- * Allows to control the distributions of the vectors in the lists L_i

Under certain 'smoothing' conditions:

- * The vectors in L_r are (similar to) discrete Gaussian samples over $\Lambda_q^\perp(\mathbf{A})$
- * With high probability, a vector in L_r is short (in ℓ_2 -norm and ℓ_∞ -norm)

The algorithm has become a Wagner-style Gaussian sampler!

Recall: Output list L_r should contain a short and nonzero vector in the SIS lattice $\Lambda_q^\perp(\mathbf{A})$

But... tracking the vector distributions seems nontrivial after the first iteration

The lattice perspective opens the door to using the discrete Gaussian toolbox:

- * Fill the initial list L_0 with discrete Gaussian samples over \mathbb{Z}^{m-n}
- * Allows to control the distributions of the vectors in the lists L_i

Under certain 'smoothing' conditions:

- * The vectors in L_r are (similar to) discrete Gaussian samples over $\Lambda_q^\perp(\mathbf{A})$
- * With high probability, a vector in L_r is short (in ℓ_2 -norm and ℓ_∞ -norm)
- * And... not equal to 0

The algorithm has become a Wagner-style Gaussian sampler!

Lattice re-interpretation of Wagner's algorithm:

Using discrete Gaussian tools, we control the distributions and avoid ending up with (only) $oldsymbol{0}$ in the final output

Lattice re-interpretation of Wagner's algorithm:

Using discrete Gaussian tools, we control the distributions and avoid ending up with (only) $oldsymbol{0}$ in the final output

Main result:

Lattice re-interpretation of Wagner's algorithm:

Using discrete Gaussian tools, we control the distributions and avoid ending up with (only) $oldsymbol{0}$ in the final output

Main result:

Wagner-style Gaussian sampler that solves nontrivial instances of SIS[∞], Inhomogeneous-SIS, and SIS[×] in subexponential time

Lattice re-interpretation of Wagner's algorithm:

Using discrete Gaussian tools, we control the distributions and avoid ending up with (only) $oldsymbol{0}$ in the final output

Main result:

Wagner-style Gaussian sampler that solves nontrivial instances of SIS[∞], Inhomogeneous-SIS, and SIS[×] in subexponential time

* Including parameters with $m = n + \omega(n/\ln \ln n)$ (instead of $m \approx n \ln n$)

Lattice re-interpretation of Wagner's algorithm:

Using discrete Gaussian tools, we control the distributions and avoid ending up with (only) $oldsymbol{0}$ in the final output

Main result:

Wagner-style Gaussian sampler that solves nontrivial instances of SIS[∞], Inhomogeneous-SIS, and SIS[×] in subexponential time

- * Including parameters with $m = n + \omega(n/\ln \ln n)$ (instead of $m \approx n \ln n$)
- * Asymptotic result, so ML-DSA/Dilithium is not broken

Lattice re-interpretation of Wagner's algorithm:

Using discrete Gaussian tools, we control the distributions and avoid ending up with (only) 0 in the final output

Main result:

Wagner-style Gaussian sampler that solves nontrivial instances of SIS[∞], Inhomogeneous-SIS, and SIS[×] in subexponential time

- * Including parameters with $m = n + \omega(n/\ln \ln n)$ (instead of $m \approx n \ln n$)
- * Asymptotic result, so ML-DSA/Dilithium is not broken

Future work:

Lattice re-interpretation of Wagner's algorithm:

Using discrete Gaussian tools, we control the distributions and avoid ending up with (only) 0 in the final output

Main result:

Wagner-style Gaussian sampler that solves nontrivial instances of SIS[∞], Inhomogeneous-SIS, and SIS[×] in subexponential time

- * Including parameters with $m = n + \omega(n/\ln \ln n)$ (instead of $m \approx n \ln n$)
- * Asymptotic result, so ML-DSA/Dilithium is not broken

Future work:

Wagner-style Gaussian sampler: applications beyond SIS lattices?

Lattice re-interpretation of Wagner's algorithm:

Using discrete Gaussian tools, we control the distributions and avoid ending up with (only) 0 in the final output

Main result:

Wagner-style Gaussian sampler that solves nontrivial instances of SIS[∞], Inhomogeneous-SIS, and SIS[×] in subexponential time

- * Including parameters with $m = n + \omega(n/\ln \ln n)$ (instead of $m \approx n \ln n$)
- Asymptotic result, so ML-DSA/Dilithium is <u>not</u> broken

Future work:

- Wagner-style Gaussian sampler: applications beyond SIS lattices?
- Corollary for (narrow-error) LWE?

Lattice re-interpretation of Wagner's algorithm:

Using discrete Gaussian tools, we control the distributions and avoid ending up with (only) $oldsymbol{0}$ in the final output

Main result:

Wagner-style Gaussian sampler that solves nontrivial instances of SIS[∞], Inhomogeneous-SIS, and SIS[×] in subexponential time

- * Including parameters with $m = n + \omega(n/\ln \ln n)$ (instead of $m \approx n \ln n$)
- * Asymptotic result, so ML-DSA/Dilithium is not broken

Future work:

- * Wagner-style Gaussian sampler: applications beyond SIS lattices?
- Corollary for (narrow-error) LWE?

Thank you!

ePrint: 2025/575 arXiv: 2503.23238