
Computationally Efficient Asynchronous
MPC with Linear Communication

and Low Additive Overhead

Chen-Da Liu-Zhang
Lucerne U. of Applied Sciences and Arts

& Web3 Foundation

Akhil Bandarupalli
Purdue University

Yifan Song
 Tsinghua University

& Shanghai Qi Zhi Institute

Xiaoyu Ji
 Tsinghua University

Aniket Kate
Purdue University & Supra Research

Multiparty Computation

Setting
• parties of them are corrupted

• Malicious Adversary

• Asynchronous Network

• Complete network of bilateral channels

Multiparty Computation

Goal
• Correctness: All honest parties finally obtain correct output (GOD)

• Privacy: Adversary does not learn anything beyond the computed

output

Setting
• parties of them are corrupted

• Malicious Adversary

• Asynchronous Network

• Complete network of bilateral channels

Network Setting

Synchronous Asynchronous
Time Time

no global clockrounds

fixed delay

Landscape of Asynchronous MPC protocols

The communication complexity of information-theoretically secure AMPC
protocols is too high to be practical.

Communication Computation Assumption

[CP23] � � —— Secure Channels

[GLS24] � �� —— Secure Channels

[CP23] Ashish Choudhury and Arpita Patra. On the communication efficiency of statistically secure asynchronous mpc with
optimal resilience.
[GLS24] Vipul Goyal, Chen-Da Liu-Zhang, and Yifan Song. Towards achieving asynchronous MPC with linear
communication and optimal resilience.

Landscape of Asynchronous MPC protocols
Communication Computation Assumption

[CP23] � � —— Secure Channels

[GLS24] � �� —— Secure Channels

[CP15] � � SHE SHE

[SLL+24] � � � DLE DLog + q-SDH
SHE: somewhat Homomorphic Encryption; DLE: Discrete-log exponentiation; q-SDH: q-Strong Diffie Hellman
hardness assumptions.

The computational complexity of the existed AMPC protocols is too high to be
practical.

[CP15] Ashish Choudhury and Arpita Patra. 2015. Optimally resilient asynchronous MPC with linear communication
complexity.
[SLL+24] Yuan Su, Yuan Lu, Jiliang Li, Yuyi Wang, Chengyi Dong, and Qiang Tang. Dumbo-mpc: Efficient fully
asynchronous mpc with optimal resilience.

The space in between:
Lightweight Cryptography

Term coined by [SS24]

[SS24] Victor Shoup and Nigel P. Smart. Lightweight asynchronous verifiable secret sharing with optimal resilience.

Lightweight Cryptography

● Symmetric key cryptographic operations, Pseudorandom Functions, Hash
computations

● Computational Efficiency: 100-1000x faster than heavyweight cryptographic
operations

Operation Computation Time

Discrete Log Exponentiation 70 micro seconds

Bilinear Pairings 600 micro seconds

Hash Computation 0.5 micro seconds

Hardware Accelerated Hash 0.04 micro seconds

Landscape of Asynchronous MPC protocols
Communication Computation Assumption

[CP23] � � —— Secure Channels

[GLS24] � �� —— Secure Channels

[CP15] � � SHE SHE

[SLL+24] � � � DLE DLog + q-SDH

[Mom24] � � � Hash ROM

By building based on ROM, [Mom24] balances the communication and
computation, but is still not efficient.

[Mom24] Atsuki Momose. Practical asynchronous mpc from lightweight cryptography.

Landscape of Asynchronous MPC protocols
Communication Computation Assumption

[CP23] � � —— Secure Channels

[GLS24] � �� —— Secure Channels

[CP15] � � SHE SHE

[SLL+24] � � � DLE DLog + q-SDH

[Mom24] � � � Hash ROM

This work � � Hash ROM

General Approach

Input: Each party secretly shares his input

Computation: All parties jointly compute a secret sharing for every wire value

Output: All parties reconstruct the sharings for output wires

Gate

General Approach

Computation: All parties jointly compute a secret sharing for every wire value

Linear Homomorphism Beaver Triples

Shamir Secret Sharing
Use Asynchronous Complete Secret Sharing (ACSS)
• Allow a dealer to share degree- Shamir sharings such that:

If an honest party accepts his share, all honest parties eventually obtain valid shares

 on a valid degree-
polynomial.

Shamir Secret Sharing
Use Asynchronous Complete Secret Sharing (ACSS)
• Allow a dealer to share degree- Shamir sharings such that:

If an honest party accepts his share, all honest parties eventually obtain valid shares

 on a valid degree-
polynomial.

Benefit: Computation phase can be achieved with � communication.

Shamir Secret Sharing
Use Asynchronous Complete Secret Sharing (ACSS)
• Allow a dealer to share degree- Shamir sharings such that:

If an honest party accepts his share, all honest parties eventually obtain valid shares

 on a valid degree-
polynomial.

Benefit: Computation phase can be achieved with � communication.

IT-Secure: per sharing plus �� additive overheads [JLS24]

Best Prior Works:

Assume RO: � per sharing plus � additive overheads [SS24]

[JLS24] Xiaoyu Ji, Junru Li, and Yifan Song. Linear-communication asynchronous complete secret sharing with optimal
resilience.

Shamir Secret Sharing
Use Asynchronous Complete Secret Sharing with Identifiable Abort (ACSS-Id)
• Weaker than ACSS, but still guarantees the reconstruction of the dealer’s secret if terminated.

If an honest party accepts his share, all honest parties eventually obtain valid shares or a proof;

Shamir Secret Sharing
Use Asynchronous Complete Secret Sharing with Identifiable Abort (ACSS-Id)
• Weaker than ACSS, but still guarantees the reconstruction of the dealer’s secret if terminated.

If an honest party accepts his share, all honest parties eventually obtain valid shares or a proof;

 Best Prior Work:

Assume RO: per sharing plus � additive overheads [SS24]

Can we aggressively use ACSS-Id to prepare

degree- Shamir sharings?

Problem
Online Phase:

All parties compute a multiplication gate with input � � and a triple � � �

�

Gate

Reconstruct � �

Problem
Online Phase:

All parties compute a multiplication gate with input � � and a triple � � �

�

Gate

New Issue: Public Reconstruction cannot be done just by Error Correction!

Reconstruct � �

Our Idea
Solution: Party Elimination based Public Reconstruction
For each degree- Shamir secret sharing �, we can decompose it into:

�
푖=1

푛

� �

where each � � is distributed by party � through ACSS-Id

Our Idea
Solution: Party Elimination based Public Reconstruction
For each degree- Shamir secret sharing �, we can decompose it into:

�
푖=1

푛

� �

where each � � is distributed by party � through ACSS-Id

Observation: If a party cannot compute his share of �, he can use the proof to accuse
a corrupted party.

Our Idea
Solution: Party Elimination based Public Reconstruction

Observation: If a party cannot compute his share of �, he can use the proof to accuse
a corrupted party.

� � �
푖=2

푛

� � � �
푖=2

푛

� �

Note that

Our Idea
Solution: Party Elimination based Public Reconstruction

� �
푖=2

푛

� �

�!

Note that

Observation: If a party cannot compute his share of �, he can use the proof to accuse
a corrupted party.

Once all parties agree on a corrupted party, they reconstruct his secrets and update their
shares. The public reconstruction will not fail due to this corrupted party next time!

� � �
푖=2

푛

� �

Summary of the Online Phase

Do Public
Reconstruction

for (1/)

Agree on the
reconstruction

results

True

Summary of the Online Phase

Do Public
Reconstruction

for (1/)

Agree on the
reconstruction

results

True

False

Agree on a corrupted party,
recover the secrets,
and update shares

should be amortized linear

Summary of the Online Phase

Do Public
Reconstruction

for (1/)

Agree on the
reconstruction

results

True

False

Agree on a corrupted party,
recover the secrets,
and update shares

Communication complexity: (+ � + �) field elements.

should be amortized linear

Triple Generation
DN Technique [DN07]

Triple Generation
DN Technique:
• Difficult in asynchronous setting: the king may not be online.

How Previous Approach Works
Construction from [Mom24]:
• Use DN + Party Elimination framework: divide the generation of triples into segments

퐶
퐿

� communication each time
DN Protocol

Verify

True

Continue

How Previous Approach Works
Construction from [Mom24]:
• Use DN + Party Elimination framework: divide the generation of triples into segments

DN Protocol

Verify

True

Continue

False

Fault
Localization

How Previous Approach Works
Construction from [Mom24]:

• Do Fault Localization if the verification fails

Exchange Views

퐶
퐿

� � communication each time

To achieve linear communicaiton, �

How Previous Approach Works
Construction from [Mom24]:
• Use DN + Party Elimination framework: divide the generation of triples into segments

DN Protocol

Verify

True

Continue

False

Fault
Localization

times, each time 퐶
퐿

� �

times, each time 퐶
퐿

�

�

Our Idea

Reducing the additive overhead from � to � :

• Reveal partial views to each party for Fault Localization

� � �

Our Idea
Divide the generation of triples into segments, each king generates

fraction of triples in each segment

DN+Verify+FaultLoc

DN+Verify+FaultLoc

DN+Verify+FaultLoc

kings’
triples are
correct?

True

False

Our Idea
Divide the generation of triples into segments, each king generates

fraction of triples in each segment

DN+Verify+FaultLoc

DN+Verify+FaultLoc

DN+Verify+FaultLoc

kings’
triples are
correct?

True

False

Additive Overheads are �

Our Idea

If all parties fail the generation in one segment, there are at least new dispute

pairs. All parites will fail the generation for at most � segments.

Views

(Dispute, ����, �)

Goal: guarantee termination in segments.

Dispute Control: only a corrupted party will conflict with more than parties.

Summary of Triple Generation

DN+Verify+FaultLoc

DN+Verify+FaultLoc

kings’
triples are
correct?

True

Communication complexity: (+ �) field elements.

False

 Any party
with
disputes?

True
Eliminate the

corrupted party

False
Rerun

 Thank you!

 Q & A

https://eprint.iacr.org/2024/1666

Link to Paper

Credit: Icons: https://www.flaticon.com/

