Highway to Hull: A new algorithm solving the matrix code equivalence problem

Alain Couvreur

Christophe Levrat

Ínría_

CRYPTO 2025

16 June 2025

You may have heard of us

tl;wl

- A particular case of the matrix code equivalence problem is used in recent signature schemes MEDS, ALTEQ.
- ⋄ Two recent attacks (2024) on some specific instances made them change their parameters.
- We provide an algorithm HtH for a much broader range of parameters, with competitive complexity.
- HtH is based on the following idea: compute one-dimensional hulls of various codes, and search for collisions among them.

1 The matrix code equivalence problem

2 Overview of HtH

1 The matrix code equivalence problem

2 Overview of HtH

MCE: decisional and search problems

Fix a finite field \mathbb{F}_q and positive integers k, m, n such that $m \leq n$ and k < mn.

The matrix code equivalence problem (MCE)

Given k-dimensional linear subspaces \mathcal{C}, \mathcal{D} of $\mathbb{F}_q^{m \times n}$:

- ⋄ MCE Decisional problem: Do there exist matrices $P \in GL_m(\mathbb{F}_q), Q \in GL_n(\mathbb{F}_q)$ such that $\mathcal{D} = PCQ$?
- ♦ MCE Search problem: Find, if such matrices exist, $P \in GL_m(\mathbb{F}_q)$, $Q \in GL_n(\mathbb{F}_q)$ such that $\mathcal{D} = PCQ$.
- ♦ Particular case k = m = n: cubic matrix code equivalence problem (CMCE).

We present a probabilistic algorithm for the MCE search problem.

- \square $m \leqslant n$
- \square k < mn
- \square $\mathcal{C}, \mathcal{D} \subset \mathbb{F}_q^{m \times n}$
- \square $k = \dim(\mathcal{C})$

Related problems

The following problems are equivalent to MCE.

- ⋄ 3-Tensor Isomorphism
- ⋄ Trilinear Forms Equivalence (TFE)
- \diamond Matrix Space Conjugacy (MCE with $Q = P^{-1}$)

- \square $m \leqslant n$
- \square k < mn
- \square $\mathcal{C}, \mathcal{D} \subset \mathbb{F}_q^{m \times n}$
- \square $k = \dim(\mathcal{C})$

Use of these problems in NIST submissions

Two signature schemes based on these problems were recently put forward.

- ♦ ALTEQ: based on TFE Parameters (NIST Level I): $q = 2^{32} 5$, k = m = n = 13 Parameters (NIST Level III): $q = 2^{32} 5$, k = m = n = 20
- ♦ MEDS: based on MCE (but actually, the initial parameters were all instances of CMCE)

 Parameters (NIST Level I): $q = 2^{12} 1$, k = m = n = 14

Parameters (NIST Level III): $q = 2^{12} - 1$, k = m = n = 22

Both were thrown out of the NIST competition in October 2024.

- \square $m \leqslant n$
- \square k < mn
- \square $\mathcal{C}, \mathcal{D} \subset \mathbb{F}_q^{m \times n}$
- \square $k = \dim(\mathcal{C})$

Recent algorithms for MCE

[Narayanan, Qiao, Tang (2024)]

Method: Find matching points of corank 1 in both codes and construct equivalence from them

Strength: Best theoretical complexity to date $\widetilde{\mathcal{O}}(q^{n/2})$

Weakness: Only applies to CMCE problem (k = m = n)

[Ran, Samardjiska (2024)]

Method: Construct graphs associated with tensors, find triangles in them and construct equivalence from these triangles (low-degree polynomial system solving)

Strength: Best practical complexity to date

Weakness: Only works in 1/q of all cases (when graphs contain triangles)

- \square $m \leq n$
- \square k < mn
- $\square \ \mathcal{C}, \mathcal{D} \subset \mathbb{F}_q^{m \times n}$
- \square $k = \dim(\mathcal{C})$

How HtH compares to the state of the art

- \diamond Parameter range: $\{k, k^{\perp} < \min(m, n)^2 1\}$ where $k^{\perp} = mn k$
- \rightarrow much broader than both previous algorithms.
 - \diamond Time complexity when k = m = n: $\widetilde{\mathcal{O}}(q^{n/2})$
- \rightarrow similar to Narayanan et al.
- \rightarrow in practice, not better than Ran and Samardjiska.
 - \diamond Space complexity when k = m = n: $\mathcal{O}\left(nq^{\frac{n}{2}-1}\right)$
- $\rightarrow \mathcal{O}(n^2)$ times smaller than Narayanan et al.

- \square $m \leqslant n$
- \square k < mn
- \square $\mathcal{C}, \mathcal{D} \subset \mathbb{F}_q^{m \times n}$
- \square $k = \dim(\mathcal{C})$

1 The matrix code equivalence problem

2 Overview of HtH

General structure

Data k-dimensional matrix codes $\mathcal{C}, \mathcal{D} \subset \mathbb{F}_q^{m \times n}$.

Goal Find P, Q such that $\mathcal{D} = P\mathcal{C}Q$.

- 1. Reduce to conjugacy problem (i.e. $Q = P^{-1}$) for codes $\mathcal{C}_A, \mathcal{D}_B$ computed from \mathcal{C}, \mathcal{D} ... for which we know a pair of conjugate 1-dimensional subspaces in \mathcal{C} and \mathcal{D} (collision search).
- 2. Solve this conjugacy problem.
- 3. Deduce solution to the original problem.

- \square $m \leqslant n$
- \square k < mn
- \square $\mathcal{C}, \mathcal{D} \subset \mathbb{F}_q^{m \times n}$
- \square $k = \dim(\mathcal{C})$

Reducing to conjugacy problem (1/2)

If
$$\mathcal{D} = PCQ$$
, then for each $A \in \mathcal{C}^{\perp}$, $B = (P^{-1})^{\top}A(Q^{-1})^{\top} \in \mathcal{D}^{\perp}$.

We produce codes $C_A = CA^{\top}$, $D_B = DB^{\top}$ where $A \in C^{\perp}$, $B \in D^{\perp}$, hoping to find a matching pair (A, B). For such a pair, $D_B = PC_AP^{-1}$.

- \diamond Checking whether two *k*-dimensional codes are conjugate is hard.
- $\diamond\,$ Checking whether two 1-dimensional codes are conjugate is easy.
- \rightarrow We try to find A, B such that C_A and D_B contain specific conjugate 1-dimensional subspaces: their respective *hulls*.

- \square $m \leqslant n$
- \square k < mn
- \square $\mathcal{C}, \mathcal{D} \subset \mathbb{F}_q^{m \times n}$
- \square $k = \dim(\mathcal{C})$
- $\Box A \in \mathcal{C}^{\perp}$ $B \in \mathcal{D}^{\perp}$
- $\Box \ \mathcal{C}_A = \mathcal{C}A^\top \\ \mathcal{D}_B = \mathcal{D}B^\top$

Reducing to conjugacy problem (2/2)

Definition

In this talk, the hull of a matrix code $\mathcal{C} \subset \mathbb{F}_q^{m imes m}$ is

$$\textit{h}(\mathcal{C}) = \{ \textit{A} \in \mathcal{C} \mid \forall \textit{B} \in \mathcal{C}, \mathsf{Tr}(\textit{AB}) = 0 \}.$$

- ♦ Two conjugate codes have conjugate hulls.
- \diamond Roughly 1/q of all codes have 1-dimensional hull.
- \diamond Given a uniformly random code \mathcal{C} and a uniformly random matrix A such that $h(\mathcal{C}_A)$ has dimension 1, the characteristic polynomial of a generator of $h(\mathcal{C}_A)$ is uniformly random.

- \square $m \leqslant n$
- \square k < mn
- \square $\mathcal{C}, \mathcal{D} \subset \mathbb{F}_q^{m \times n}$
- \square $k = \dim(\mathcal{C})$
- $\Box A \in \mathcal{C}^{\perp}$ $B \in \mathcal{D}^{\perp}$
- $\Box \ \mathcal{C}_A = \mathcal{C}A^\top \\ \mathcal{D}_B = \mathcal{D}B^\top$

Overview of the collision search

- Construct a dictionary (polynomial:matrix):
 - 1. Pick matrix $A \in \mathcal{C}^{\perp}$
 - 2. If dim $h(C_A) = 1$, compute the characteristic polynomial χ of a normalized generator of $h(C_A)$, add $(\chi : A)$ to the dictionary
 - 3. Continue until the dictionary contains $\mathcal{O}(q^{(m-3)/2})$ entries
- ⋄ Find matching pairs:
 - 1. Pick matrix $B \in \mathcal{D}^{\perp}$
 - 2. If dim $h(\mathcal{D}_B)=1$, compute the characteristic polynomial of a normalized generator of $h(\mathcal{D}_B)$ and look for collision in the dictionary

- \square $m \leqslant n$
- \square k < mn
- \square $\mathcal{C}, \mathcal{D} \subset \mathbb{F}_q^{m \times n}$
- \square $k = \dim(\mathcal{C})$
- $\Box A \in \mathcal{C}^{\perp}$ $B \in \mathcal{D}^{\perp}$
- $\Box \ \mathcal{C}_A = \mathcal{C}A^\top \\ \mathcal{D}_B = \mathcal{D}B^\top$

Solving conjugacy problem

Data Codes $C_A, D_B \subset \mathbb{F}_q^{m \times m}$ containing two conjugate vectors $U_A \in h(C_A), V_B \in h(D_B)$:

$$V_B = P_0 U_A P_0^{-1}.$$

Goal Find
$$P$$
 such that $\mathcal{D}_B = P\mathcal{C}_A P^{-1}$.

Solution If such a P exists, then there exist $f,g\in \mathbb{F}_q[t]_{\leqslant m}$ such that

$$P = P_0 f(U_A)$$
 and $P^{-1} = g(U_A) P_0^{-1}$.

We compute the coefficients of f and g by linearizing the bilinear system:

$$P_0 f(U_A) C_A g(U_A) P_0^{-1} \subseteq \mathcal{D}_B$$
.

$$\square$$
 $m \leqslant n$

$$\square$$
 $k < mn$

$$\square$$
 $\mathcal{C}, \mathcal{D} \subset \mathbb{F}_q^{m \times n}$

$$\square$$
 $k = \dim(\mathcal{C})$

$$\Box A \in \mathcal{C}^{\perp}$$
$$B \in \mathcal{D}^{\perp}$$

$$\Box \ \mathcal{C}_{A} = \mathcal{C}A^{\top}
\mathcal{D}_{B} = \mathcal{D}B^{\top}$$

Solving the initial problem

Data Codes C, D and matrices $A \in C^{\perp}, B \in D^{\perp}, P \in GL_m(\mathbb{F}_q)$ such that $D_B = PC_AP^{-1}$.

Goal Find a matrix Q such that $\mathcal{D} = PCQ$.

Solution Let (C_1, \ldots, C_k) be a basis of C. Define the linear map:

$$\psi_{\mathcal{C}} \colon \mathbb{F}_q^{n \times n} \longrightarrow (\mathbb{F}_q^{m \times n})^k$$
$$Q \longmapsto (PC_1 Q, \dots, PC_k Q).$$

The suitable matrices Q are exactly the elements of $\psi_c^{-1}(\mathcal{D}^k) \cap \operatorname{GL}_n(\mathbb{F}_q)$.

- \square $m \leqslant n$
- \square k < mn
- \square $\mathcal{C}, \mathcal{D} \subset \mathbb{F}_q^{m \times n}$
- \square $k = \dim(\mathcal{C})$
- $\Box A \in \mathcal{C}^{\perp} \\
 B \in \mathcal{D}^{\perp}$
- $\Box \ \mathcal{C}_A = \mathcal{C}A^\top \\ \mathcal{D}_B = \mathcal{D}B^\top$

Total complexity

Theorem

For parameters k, m, n such that $m(n-m)+2 < k \le mn/2$, the average number of operations in \mathbb{F}_q required by algorithm HtH to solve $\mathsf{MCE}_{k,m,n}$ is

$$\widetilde{\mathcal{O}}\left(q^{\max\left(\frac{k^{\perp}}{2},k^{\perp}-m+2\right)}\right)$$

where $k^{\perp} = nm - k$.

Remark

For k = m = n, the above complexity is

$$\widetilde{\mathcal{O}}\left(q^{n/2}\right).$$

- \square $m \leqslant n$
- \square k < mn
- $\square \ \mathcal{C}, \mathcal{D} \subset \mathbb{F}_q^{m \times n}$
- $\square \ k = \dim(\mathcal{C})$
- $\square k^{\perp} = mn k$
- $\Box A \in \mathcal{C}^{\perp}$ $B \in \mathcal{D}^{\perp}$
- $\Box \ \mathcal{C}_{A} = \mathcal{C}A^{\top}$ $\mathcal{D}_{B} = \mathcal{D}B^{\top}$

18 / 19

tl;dl

- \diamond We provide an algorithm HtH which solves the MCE problem with time complexity $\widetilde{\mathcal{O}}\left(q^{\max\left(\frac{k^{\perp}}{2},k^{\perp}-m+2\right)}\right)$ for a broad range of parameters.
- HtH is based on the following idea: compute one-dimensional hulls of various codes, and search for collisions among them.
- \diamond In the cubic case k=m=n: matches the state of the art in terms of time complexity and beats it in terms of space complexity.
- In the general case: first algorithm with this complexity.

- \square $m \leq n$
- \square k < mn
- \square $\mathcal{C}, \mathcal{D} \subset \mathbb{F}_q^{m \times n}$
- \square $k = \dim(\mathcal{C})$
- $\square k^{\perp} = mn k$
- $\Box A \in \mathcal{C}^{\perp} \\
 B \in \mathcal{D}^{\perp}$
- $\Box C_A = CA^\top$ $D_B = DB^\top$