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Motivation
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Motivation

e Provable security: break security of scheme Il = solve problem P

e Reduction: for every efficient adversary A that breaks I1 with probability €,
there is efficient adversary B that solves P with probability e

e Tight reduction: €, ~ €, (importance recognized since [BR93, BR94, BR96...])

e Hardness of problem P then determines parameters (e.g. key length) for
instantiating scheme II in real world

e Unfortunately, for many schemes we only have loose reductions
(i.e., adversary B needs to spend much more effort than adversary A)
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Our Focus: Schnorr Signatures [Sch90]
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Our Focus: Schnorr Signatures [Sch90]

e One of the most widely deployed pieces of

cryptography today '
e Often in the form of the EADSA scheme over twisted S

Edwards curves (currently standardized by NIST) sSH
e Algebraic properties of Schnorr signatures have been

instrumental in achieving advanced functionalities,

such as threshold, blind, adaptor signatures...
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Our Focus: Schnorr Signatures [Sch90]

e One of the most widely deployed pieces of
cryptography today '
e Often in the form of the EADSA scheme over twisted S
Edwards curves (currently standardized by NIST) sSH
e Algebraic properties of Schnorr signatures have been
instrumental in achieving advanced functionalities,
such as threshold, blind, adaptor signatures...
e Existentially unforgeable (EUF-CMA-secure) e(jnup(j

in the ROM under DL
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Tightness

e Suppose we want to use Schnorr signatures over twisted Edwards curves
with 128-bit security — how large does the group order need to be?
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We should use a group
order of bits!
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Tightness

e Suppose we want to use Schnorr signatures over twisted Edwards curves
with 128-bit security — how large does the group order need to be?

We should use a group
order of bits!

IS
breaking DL, which on
twisted Edwards curves

Practitioners takes time
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We should use a group
order of bits!

Theoreticians

[PS96] in
Adved & < qn - \/Advg + ...
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Tightness

e Suppose we want to use Schnorr signatures over twisted Edwards curves
with 128-bit security — how large does the group order need to be?

We should use a group
order of bits!

Theoreticians

[PS96] in
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Tightness

e Suppose we want to use Schnorr signatures over twisted Edwards curves
with 128-bit security — how large does the group order need to be?

We should use a group
order of bits!

Theoreticians

[PS96] in ROM:
Advgléfcma < 264 2~ 192
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Tightness

e Suppose we want to use Schnorr signatures over twisted Edwards curves
with 128-bit security — how large does the group order need to be?

We should use a group
order of bits!

We should use a group Theoreticians
order of bits!

Practitioners
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Our Question

Is there a tight security proof for Schnorr signatures?
If so, under what assumption?
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Prior Work: Positive Results

Paper | ROM? | Tight? | Asm./model Notion

[PS96] | Yes No DL EUF-CMA
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Prior Work: Positive Results
Paper | ROM? | Tight? | Asm./model Notion
[PS96] Yes No DL EUF-CMA
[PVO05] No Yes OMDL KR-CMA
[BD20] Yes Semi MBDL EUF-CMA
[FPS20] | Yes Yes DL+AGM | EUF-CMA
[RS21] Yes No HMDL EUF-CMA
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= Getting even a semi-tight reduction requires interactive, non-falsifiable

assumptions!
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Prior Work: Positive Results

Paper | ROM? | Tight? | Asm./model Notion

[PS96] Yes No DL EUF-CMA adversary has
oracle access

4 A
[PVO05] No Yes OMDL KR-CMA

318240) Yes Semi . MBDL ) EUF-CMA

[FPS20] Yes Yes DL+AGM EUF-CMA

[RS21] Yes No HMDL EUF-CMA

= Getting even a semi-tight reduction requires interactive, non-falsifiable
assumptions!
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impossible to
efficiently “prove”
you found an attack

Prior Work: Positive Results
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Prior Work: Positive Results

Paper | ROM? | Tight? | Asm./model Notion

[PS96] Yes No DL EUF-CMA adversary has
7 ~N oracle access

[PV05] No Yes OMDL KR-CMA

[BD20] Yes Semi \%[=]D] EUF-CMA

[FPS20] | Yes Yes | DL+AGM | EUF-CMA

[RS21] Yes No HMDL EUF-CMA

impossible to
efficiently “prove”
you found an attack

= Getting even a semi-tight reduction requires interactive, non-falsifiable

assumptions or additional idealized models!
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Prior Work: Negative Results

e [PVO05, GBL08, Seu12, FJS19]: no tight & generic reduction from
representation-independent (RI), non-interactive problem to EUF-CMA
of Schnorr signatures
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[PVO5, GBLO08, Seu12, FJS19]: no tight & generic reduction from
representation-independent (RI), non-interactive problem to EUF-CMA

of Schnorr signatures
o Generic: reduction treats underlying group as a black-box

o RI: instance-solution pairs invariant to changes of group representation

All usual assumptions like DL, CDH, DDH, Uber assumption... are Rl

CY

CYBERSECURITYCENTER | &Privacy




Prior Work: Negative Results
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[PVO5, GBLO08, Seu12, FJS19]: no tight & generic reduction from
representation-independent (RI), non-interactive problem to EUF-CMA

of Schnorr signatures
o Generic: reduction treats underlying group as a black-box

o RI: instance-solution pairs invariant to changes of group representation

All usual assumptions like DL, CDH, DDH, Uber assumption... are Rl

Is there such a representation-dependent assumption or
non-generic reduction that gets around the above?
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Schnorr Signature Scheme

e Group (G, p,g), hash function H: {0,1}* — Z,
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Schnorr Signature Scheme

e Group (G, p,g), hash function H: {0,1}* — Z,

KeyGen():
1. sk:=z< 7,
2. vk:=g"
3. Return (vk, sk)
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Schnorr Signature Scheme

e Group (G, p,g), hash function H: {0,1}* — Z,

KeyGen(): Sign(x, m):
1. sk:=z & 7, 1. 1& 72, Ri=g
2. vk:=g" 2. ¢c:=H(R,m)
3. Return (vk, sk) 3. s:=r+cxrmodp

4. Return (R, s)
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Schnorr Signature Scheme

e Group (G, p,g), hash function H: {0,1}* — Z,

KeyGen(): Sign(z, m): Verify(vk, m, (R, s)):
1. sk:=z & 7, 1. 1&2Z,;,R:=g 1. c¢:= H(R,m)
2. vk :=g" 2. ¢c:=H(R,m) 2. ¢° =R-vk°?
3. Return (vk, sk) 3. s:=r+crmodp

4. Return (R, s)
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New Assumption: Circular Discrete-Logarithm (CDL)

e Let G = (g) be a group of prime order p
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New Assumption: Circular Discrete-Logarithm (CDL)

e Let G = (g) be a group of prime order p

Discrete-Logarithm Problem:
1. x@Zp; h:=g"
2. o & A(h)

3. z=2'7?
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New Assumption: Circular Discrete-Logarithm (CDL)

e Let G = (g) be a group of prime order p
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e Let G = (g) be a group of prime order p

o Letf: G — Z, be an efficiently computable function

Discrete-Logarithm Problem:
1. x@Zp; h:=g"
2. o & A(h)

3. z=2'7?
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1. xﬁZp; h:=g"
2. (R,z) & A(h)
3. f(R)IA0ANg*=R-hW B2




Circular Discrete-Logarithm (CDL) Assumption

e CDL solution: (R, z) € G x Z, such that f(R) #0A g° = R-h/P)
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Circular Discrete-Logarithm (CDL) Assumption

e CDL solution: (R, z) € G X Z, such that f(R) A#0ANg° =R - pf®)
e CDLis:

B non-interactive
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Circular Discrete-Logarithm (CDL) Assumption

e CDL solution: (R, z) € G X Z, such that f(R) A#0ANg° =R - hS (B
e CDLis:

B non-interactive
B falsifiable

B representation-dependent

® Does it correspond to a no-message attack on the empty message?
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Circular Discrete-Logarithm (CDL) Assumption

e CDL solution: (R, z) € G X Z, such that f(R) A#0ANg° =R - hS (B
e CDLis:

B non-interactive
B ralsifiable
B representation-dependent
® Does it correspond to a no-message attack on the empty message?

o No, because fdoesn’t have to be the same as hash function used by Schnorr!
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Circular Discrete-Logarithm (CDL) Assumption

e CDL solution: (R, z) € G X Z, such that f(R) A#0ANg° =R - hS (B
e CDLis:

B non-interactive
B ralsifiable
B representation-dependent
® Does it correspond to a no-message attack on the empty message?
o No, because fdoesn’t have to be the same as hash function used by Schnorr!
o In fact, we don’t even need to know what f is!
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Main Result

Theorem (in ROM):

Ad gléf]cma < Ad cd

qs(qs +aqn) +qn - | f7H0)]

p
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Main Result

Theorem (in ROM):
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qs(qs +qn) + qn - | f7H(0)]

p

e Arbitrary efficiently computable function f: G — Z, !
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Main Result

Theorem (in ROM):
L 0s(ds + @n) + dn /(0]

Adve i < Advg p

e Arbitrary efficiently computable function f: G — Z, !

e Take f that minimizes advantage
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Applicability of CDL to Threshold Schnorr Signatures

e Sparkle+ [CKMZ23] is a recent 3-round threshold Schnorr signature scheme
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e Sparkle+ [CKMZ23] is a recent 3-round threshold Schnorr signature scheme
e NIST is currently standardizing threshold Schnorr

e Sparkle+ has a loose reduction from static security to DL (in the ROM)
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Applicability of CDL to Threshold Schnorr Signatures

e Sparkle+ [CKMZ23] is a recent 3-round threshold Schnorr signature scheme
e NIST is currently standardizing threshold Schnorr
e Sparkle+ has a loose reduction from static security to DL (in the ROM)

e \We give a tight proof of static security under CDL (in the ROM)
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Justifying CDL

1. Idealized group:
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Justifying CDL

1. ldealized group:

o We show CDL is as hard as DL in the elliptic-curve GGM [GS22]
for any function f that has small preimage sets
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Justifying CDL

1. ldealized group:

o We show CDL is as hard as DL in the elliptic-curve GGM [GS22]
for any function f that has small preimage sets

2. ldealized function:
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Justifying CDL

1. ldealized group:

o We show CDL is as hard as DL in the elliptic-curve GGM [GS22]
for any function f that has small preimage sets

2. ldealized function:

o We show that for the ECDSA conversion function
f:(xz,y) — . mod p
CDL reduces to DL in the algebraic bijective ROM [FKP16, QCY21]
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Summary

e \We introduce the circular discrete-logarithm problem, a new non-interactive
and falsifiable variant of DL which uses a function f: G — Z,
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e \We show a tight reduction from EUF-CMA of Schnorr signatures to CDL
in the ROM
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Summary

e \We introduce the circular discrete-logarithm problem, a new non-interactive
and falsifiable variant of DL which uses a function f: G — Z,

e \We show a tight reduction from EUF-CMA of Schnorr signatures to CDL
in the ROM

e \We conjecture that the ECDSA conversion function works as f for a suitable
elliptic-curve group and give evidence by proving it in suitable idealized models
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Summary

e \We introduce the circular discrete-logarithm problem, a new non-interactive
and falsifiable variant of DL which uses a function f: G — Z,

e \We show a tight reduction from EUF-CMA of Schnorr signatures to CDL
in the ROM

e \We conjecture that the ECDSA conversion function works as f for a suitable
elliptic-curve group and give evidence by proving it in suitable idealized models

e \We give a tight proof of (static) security of the Sparkle+ threshold signature
scheme [CKM23] under CDL
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Future Directions

e Is there a function for which CDL reduces to a standard assumption, maybe
even DL?

e |s CDL applicable to:
o Additional threshold Schnorr schemes?

o Additional advanced primitives based on Schnorr signatures like adaptor
signatures, multisignatures, or blind signatures?

e Could CDL be useful for instantiating Schnorr signatures under EUF-CMA in
the standard model?
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Thanks!
Questions?
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Proof Intuition

e On CDL instance h, we run the forger with public key h
e \We simulate signing queries as in [PS96]
e For hash queries, we want to embed outputs of f in responses such that:

1. Responses are independent and uniform

2. The forgery can be used to extract a CDL solution
e On the i-th hash query (R, m), we set R’ := R - h® - g% for random a;, b; € 7Z,

and return

f(R") + a; mod p
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Proof Intuition

e Now adversary’s forgery m, (R, s) will correspond to a hash query, so:
¢ =R-h*=R- pJ(R-hg)+a

e Multiplying both sides by ¢ gives:
gs+b _R.}He. gb . pf (B-h%g°)

e S0, we can return the CDL solution:

(R-h*-¢° s+ bmod p)
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