Schnorr Signatures are Tightly Secure in the ROM under a Non-Interactive Assumption

Gavin Cho (UMass Amherst)
Georg Fuchsbauer (TU Wien)
Adam O'Neill (UMass Amherst)
Marek Sefranek (TU Wien)

https://ia.cr/2024/1528

• Provable security: break security of scheme $\Pi \Rightarrow$ solve problem P

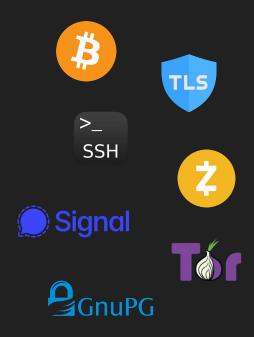
- Provable security: break security of scheme $\Pi \Rightarrow$ solve problem P
- Reduction: for every efficient adversary A that breaks Π with probability ϵ_A , there is efficient adversary B that solves P with probability ϵ_B

- Provable security: break security of scheme Π ⇒ solve problem P
- Reduction: for every efficient adversary A that breaks Π with probability ϵ_A , there is efficient adversary B that solves P with probability ϵ_B
- Tight reduction: $\epsilon_A \approx \epsilon_B$ (importance recognized since [BR93, BR94, BR96...])

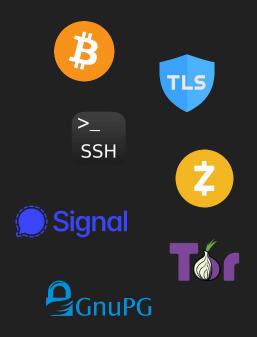
- Provable security: break security of scheme Π ⇒ solve problem P
- Reduction: for every efficient adversary A that breaks Π with probability ϵ_A , there is efficient adversary B that solves P with probability ϵ_B
- Tight reduction: $\epsilon_A \approx \epsilon_B$ (importance recognized since [BR93, BR94, BR96...])

- Provable security: break security of scheme Π ⇒ solve problem P
- Reduction: for every efficient adversary A that breaks Π with probability $\epsilon_{\rm A}$, there is efficient adversary B that solves P with probability $\epsilon_{\rm B}$
- Tight reduction: $\epsilon_A \approx \epsilon_B$ (importance recognized since [BR93, BR94, BR96...])
- Unfortunately, for many schemes we only have loose reductions
 (i.e., adversary B needs to spend much more effort than adversary A)

 One of the most widely deployed pieces of cryptography today

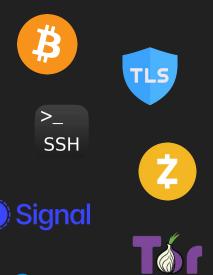


- One of the most widely deployed pieces of cryptography today
- Often in the form of the EdDSA scheme over twisted Edwards curves (currently standardized by NIST)



- One of the most widely deployed pieces of cryptography today
- Often in the form of the EdDSA scheme over twisted Edwards curves (currently standardized by NIST)
- Algebraic properties of Schnorr signatures have been instrumental in achieving advanced functionalities, such as threshold, blind, adaptor signatures...

- One of the most widely deployed pieces of cryptography today
- Often in the form of the EdDSA scheme over twisted Edwards curves (currently standardized by NIST)
- Algebraic properties of Schnorr signatures have been instrumental in achieving advanced functionalities, such as threshold, blind, adaptor signatures...
- Existentially unforgeable (EUF-CMA-secure)
 in the ROM under DL



 Suppose we want to use Schnorr signatures over twisted Edwards curves with 128-bit security – how large does the group order need to be?

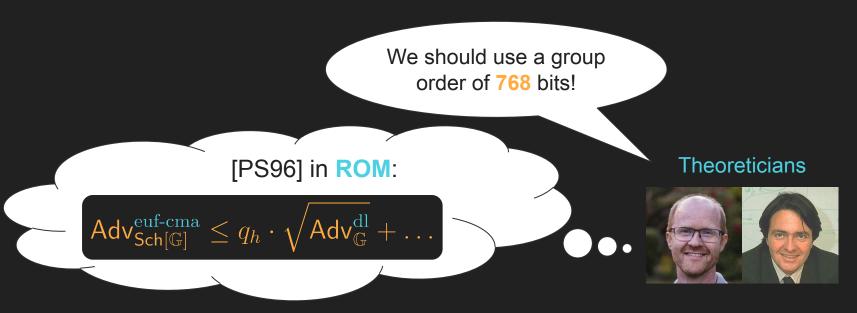
Practitioners

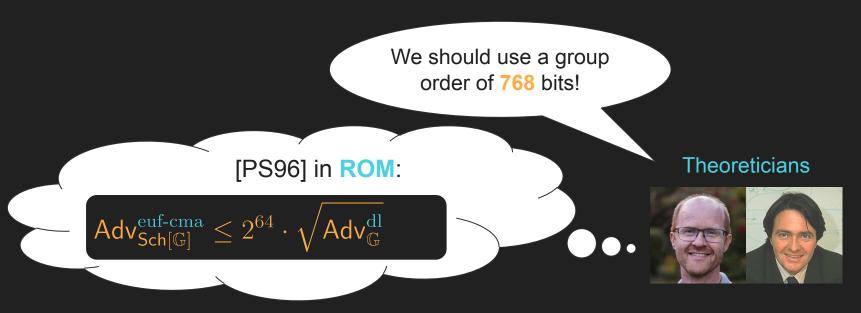
We should use a group order of 256 bits!

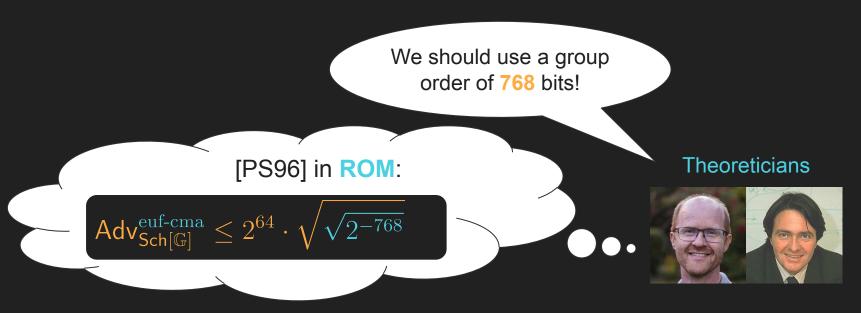
 Suppose we want to use Schnorr signatures over twisted Edwards curves with 128-bit security – how large does the group order need to be?

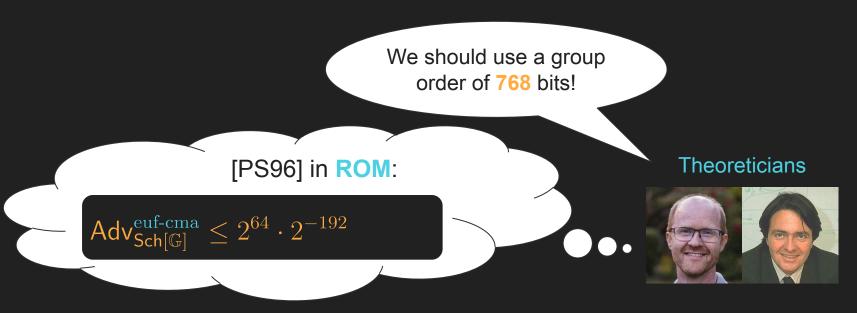
We should use a group order of 768 bits!

Theoreticians









 Suppose we want to use Schnorr signatures over twisted Edwards curves with 128-bit security – how large does the group order need to be?

Practitioners

We should use a group order of 256 bits!

We should use a group order of 768 bits!

Theoreticians

Our Question

Is there a tight security proof for Schnorr signatures? If so, under what assumption?

Paper	ROM?	Tight?	Asm./model	Notion
[PS96]	Yes	No	DL	EUF-CMA

Paper	ROM?	Tight?	Asm./model	Notion
[PS96]	Yes	No	DL	EUF-CMA
[PV05]	No	Yes	OMDL	KR-CMA
[BD20]	Yes	Semi	MBDL	EUF-CMA
[FPS20]	Yes	Yes	DL+AGM	EUF-CMA
[RS21]	Yes	No	HMDL	EUF-CMA

Paper	ROM?	Tight?	Asm./model	Notion
[PS96]	Yes	No	DL	EUF-CMA
[PV05]	No	Yes	OMDL	KR-CMA
[BD20]	Yes	Semi	MBDL	EUF-CMA
[FPS20]	Yes	Yes	DL+AGM	EUF-CMA
[RS21]	Yes	No	HMDL	EUF-CMA

⇒ Getting even a *semi*-tight reduction requires interactive, non-falsifiable assumptions!

Paper	ROM?	Tight?	Asm./model	Notion
[PS96]	Yes	No	DL	EUF-CMA
[PV05]	No	Yes	OMDL	KR-CMA
[BD20]	Yes	Semi	MBDL	EUF-CMA
[FPS20]	Yes	Yes	DL+AGM	EUF-CMA
[RS21]	Yes	No	HMDL	EUF-CMA

adversary has oracle access

⇒ Getting even a *semi*-tight reduction requires interactive, non-falsifiable assumptions!

Paper	ROM?	Tight?	Asm./model	Notion
[PS96]	Yes	No	DL	EUF-CMA
[PV05]	No	Yes	OMDL	KR-CMA
[BD20]	Yes	Semi	MBDL	EUF-CMA
[FPS20]	Yes	Yes	DL+AGM	EUF-CMA
[RS21]	Yes	No	HMDL	EUF-CMA

impossible to efficiently "prove" you found an attack

⇒ Getting even a *semi*-tight reduction requires interactive, non-falsifiable assumptions!

Paper	ROM?	Tight?	Asm./model	Notion
[PS96]	Yes	No	DL	EUF-CMA
[PV05]	No	Yes	OMDL	KR-CMA
[BD20]	Yes	Semi	MBDL	EUF-CMA
[FPS20]	Yes	Yes	DL+AGM	EUF-CMA
[RS21]	Yes	No	HMDL	EUF-CMA

impossible to efficiently "prove" you found an attack

⇒ Getting even a *semi*-tight reduction requires interactive, non-falsifiable assumptions or additional idealized models!

 [PV05, GBL08, Seu12, FJS19]: no tight & generic reduction from representation-independent (RI), non-interactive problem to EUF-CMA of Schnorr signatures

- [PV05, GBL08, Seu12, FJS19]: no tight & generic reduction from representation-independent (RI), non-interactive problem to EUF-CMA of Schnorr signatures
 - Generic: reduction treats underlying group as a black-box

- [PV05, GBL08, Seu12, FJS19]: no tight & generic reduction from representation-independent (RI), non-interactive problem to EUF-CMA of Schnorr signatures
 - Generic: reduction treats underlying group as a black-box
 - RI: instance-solution pairs invariant to changes of group representation

- [PV05, GBL08, Seu12, FJS19]: no tight & generic reduction from representation-independent (RI), non-interactive problem to EUF-CMA of Schnorr signatures
 - Generic: reduction treats underlying group as a black-box
 - RI: instance-solution pairs invariant to changes of group representation
- All usual assumptions like DL, CDH, DDH, Uber assumption... are RI

- [PV05, GBL08, Seu12, FJS19]: no tight & generic reduction from representation-independent (RI), non-interactive problem to EUF-CMA of Schnorr signatures
 - Generic: reduction treats underlying group as a black-box
 - RI: instance-solution pairs invariant to changes of group representation
- All usual assumptions like DL, CDH, DDH, Uber assumption... are RI

Is there such a representation-dependent assumption or non-generic reduction that gets around the above?

Schnorr Signature Scheme

• Group (\mathbb{G},p,g) , hash function $H\colon \{0,1\}^* o \mathbb{Z}_p$

Schnorr Signature Scheme

Group (\mathbb{G},p,g) , hash function $H\colon\{0,1\}^* o\mathbb{Z}_p$

KeyGen():

- 1. $sk:=x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ 2. $vk:=g^x$ 3. Return (vk,sk)

Schnorr Signature Scheme

Group (\mathbb{G},p,g) , hash function $H\colon \{0,1\}^* o \mathbb{Z}_p$

KeyGen():

- 1. $sk := x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ 2. $vk := g^x$
- 3. Return (vk, sk)

Sign(x, m):

- 1. $r \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{Z}_p; \, R := g^r$
- **2**. c := H(R, m)
- $3. \quad s := r + cx \bmod p$
- 4. Return (R, s)

Schnorr Signature Scheme

lacktriangle Group (\mathbb{G},p,g) , hash function $H\colon\{0,1\}^* o\mathbb{Z}_p$

KeyGen():

- 1. $sk := x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
- $2. \quad vk := g^x$
- 3. Return (vk, sk)

Sign(x, m):

- 1. $r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$; $R := g^r$
- **2.** c := H(R, m)
- $3. \quad s := r + cx \bmod p$
- 4. Return (R, s)

Verify(vk, m, (R, s)):

- 1. c := H(R, m)
- $2. \quad g^s = R \cdot v k^c ?$

• Let $\mathbb{G} = \langle g \rangle$ be a group of prime order p

• Let $\mathbb{G} = \langle g \rangle$ be a group of prime order p

Discrete-Logarithm Problem:

1.
$$x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$$
; $h := g^x$

$$2. \quad x' \stackrel{\$}{\leftarrow} \mathrm{A}(h)$$

3.
$$x = x'$$
?

- Let $\mathbb{G} = \langle g \rangle$ be a group of prime order p
- Let $f : \mathbb{G} \to \mathbb{Z}_p$ be an efficiently computable function

Discrete-Logarithm Problem:

1.
$$x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$$
; $h := g^x$

$$2. \quad x' \stackrel{\$}{\leftarrow} A(h)$$

3.
$$x = x'$$
?

- Let $\mathbb{G} = \langle g \rangle$ be a group of prime order p
- Let $f\colon \mathbb{G} o \mathbb{Z}_p$ be an efficiently computable function

Discrete-Logarithm Problem:

1.
$$x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$$
; $h := g^x$

- **2.** $x' \stackrel{\$}{\leftarrow} A(h)$
- 3. x = x'?

Circular Discrete-Logarithm Problem:

1.
$$x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$$
; $h := g^x$

2.
$$(R,z) \stackrel{\$}{\leftarrow} A(h)$$

3.
$$f(R) \neq 0 \land g^z = R \cdot h^{f(R)}$$
?

• CDL solution: $(R,z) \in \mathbb{G} \times \mathbb{Z}_p$ such that $f(R) \neq 0 \wedge g^z = R \cdot h^{f(R)}$

- CDL solution: $(R,z) \in \mathbb{G} \times \mathbb{Z}_p$ such that $f(R) \neq 0 \wedge g^z = R \cdot h^{f(R)}$
- CDL is:
 - non-interactive

- CDL solution: $(R,z) \in \mathbb{G} \times \mathbb{Z}_p$ such that $f(R) \neq 0 \wedge g^z = R \cdot h^{f(R)}$
- CDL is:
 - non-interactive
 - falsifiable

- CDL solution: $(R,z) \in \mathbb{G} \times \mathbb{Z}_p$ such that $f(R) \neq 0 \wedge g^z = R \cdot h^{f(R)}$
- CDL is:
 - non-interactive
 - falsifiable
 - representation-dependent

- CDL solution: $(R,z)\in \mathbb{G} imes \mathbb{Z}_p$ such that $f(R)
 eq 0 \wedge g^z = R\cdot h^{f(R)}$
- CDL is:
 - non-interactive
 - falsifiable
 - representation-dependent
- Does it correspond to a no-message attack on the empty message?

- CDL solution: $(R,z) \in \mathbb{G} \times \mathbb{Z}_p$ such that $f(R) \neq 0 \wedge g^z = R \cdot h^{f(R)}$
- CDL is:
 - non-interactive
 - falsifiable
 - representation-dependent
- Does it correspond to a no-message attack on the empty message?
 - \circ No, because f doesn't have to be the same as hash function used by Schnorr!

- CDL solution: $(R,z)\in \mathbb{G} imes \mathbb{Z}_p$ such that $f(R)
 eq 0 \wedge g^z = R\cdot h^{f(R)}$
- CDL is:
 - non-interactive
 - falsifiable
 - representation-dependent
- Does it correspond to a no-message attack on the empty message?
 - \circ No, because f doesn't have to be the same as hash function used by Schnorr!
 - \circ In fact, we don't even need to know what f is!

Main Result

Theorem (in ROM):

$$\mathsf{Adv}^{\text{euf-cma}}_{\mathsf{Sch}[\mathbb{G}]} \leq \mathsf{Adv}^{\text{cdl}}_{\mathbb{G},f} + \frac{q_s(q_s + q_h) + q_h \cdot |f^{-1}(0)|}{p}$$

Main Result

Theorem (in ROM):
$$\operatorname{Adv^{euf\text{-}cma}_{Sch[\mathbb{G}]}} \leq \operatorname{Adv^{cdl}_{\mathbb{G},f}} + \frac{q_s(q_s+q_h)+q_h\cdot|f^{-1}(0)|}{p}$$

ullet Arbitrary efficiently computable function $f\colon \mathbb{G} o \mathbb{Z}_p$!

Main Result

Theorem (in ROM):
$$\text{Adv}_{\text{Sch}[\mathbb{G}]}^{\text{euf-cma}} \leq \text{Adv}_{\mathbb{G},f}^{\text{cdl}} + \frac{q_s(q_s + q_h) + q_h \cdot |f^{-1}(0)|}{p}$$

- Arbitrary efficiently computable function $f: \mathbb{G} \to \mathbb{Z}_p$!
- Take f that minimizes advantage

• Sparkle+ [CKM23] is a recent 3-round threshold Schnorr signature scheme

- Sparkle+ [CKM23] is a recent 3-round threshold Schnorr signature scheme
- NIST is currently standardizing threshold Schnorr

- Sparkle+ [CKM23] is a recent 3-round threshold Schnorr signature scheme
- NIST is currently standardizing threshold Schnorr
- Sparkle+ has a loose reduction from static security to DL (in the ROM)

- Sparkle+ [CKM23] is a recent 3-round threshold Schnorr signature scheme
- NIST is currently standardizing threshold Schnorr
- Sparkle+ has a loose reduction from static security to DL (in the ROM)
- We give a tight proof of static security under CDL (in the ROM)

1. Idealized group:

1. Idealized group:

 \circ We show CDL is as hard as DL in the elliptic-curve GGM [GS22] for any function f that has small preimage sets

1. Idealized group:

 \circ We show CDL is as hard as DL in the elliptic-curve GGM [GS22] for any function f that has small preimage sets

Idealized function:

1. Idealized group:

We show CDL is as hard as DL in the elliptic-curve GGM [GS22]
 for any function f that has small preimage sets

Idealized function:

We show that for the ECDSA conversion function

$$f \colon (x,y) \mapsto x \bmod p$$

CDL reduces to DL in the algebraic bijective ROM [FKP16, QCY21]

• We introduce the circular discrete-logarithm problem, a new non-interactive and falsifiable variant of DL which uses a function $f: \mathbb{G} \to \mathbb{Z}_p$

- We introduce the circular discrete-logarithm problem, a new non-interactive and falsifiable variant of DL which uses a function $f: \mathbb{G} \to \mathbb{Z}_p$
- We show a tight reduction from EUF-CMA of Schnorr signatures to CDL in the ROM

- We introduce the circular discrete-logarithm problem, a new non-interactive and falsifiable variant of DL which uses a function $f: \mathbb{G} \to \mathbb{Z}_p$
- We show a tight reduction from EUF-CMA of Schnorr signatures to CDL in the ROM
- We conjecture that the ECDSA conversion function works as f for a suitable elliptic-curve group and give evidence by proving it in suitable idealized models

- We introduce the circular discrete-logarithm problem, a new non-interactive and falsifiable variant of DL which uses a function $f: \mathbb{G} \to \mathbb{Z}_p$
- We show a tight reduction from EUF-CMA of Schnorr signatures to CDL in the ROM
- We conjecture that the ECDSA conversion function works as f for a suitable elliptic-curve group and give evidence by proving it in suitable idealized models
- We give a tight proof of (static) security of the Sparkle+ threshold signature scheme [CKM23] under CDL

Future Directions

- Is there a function for which CDL reduces to a standard assumption, maybe even DL?
- Is CDL applicable to:
 - Additional threshold Schnorr schemes?
 - Additional advanced primitives based on Schnorr signatures like adaptor signatures, multisignatures, or blind signatures?
- Could CDL be useful for instantiating Schnorr signatures under EUF-CMA in the standard model?

Thanks! Questions?

https://ia.cr/2024/1528

Proof Intuition

- On CDL instance h, we run the forger with public key h
- We simulate signing queries as in [PS96]
- ullet For hash queries, we want to embed outputs of f in responses such that:
 - 1. Responses are independent and uniform
 - 2. The forgery can be used to extract a CDL solution
- On the i-th hash query (R,m), we set $R':=R\cdot h^{a_i}\cdot g^{b_i}$ for random $a_i,b_i\in\mathbb{Z}_p$ and return $f(R')+a_i \bmod p$

Proof Intuition

ullet Now adversary's forgery m,(R,s) will correspond to a hash query, so:

$$q^s = R \cdot h^c = R \cdot h^{f(R \cdot h^a \cdot g^b) + a}$$

Multiplying both sides by g^b gives:

$$g^{s+b} = R \cdot h^a \cdot g^b \cdot h^{f(R \cdot h^a \cdot g^b)}$$

So, we can return the CDL solution:

$$(R \cdot h^a \cdot g^b, s + b \bmod p)$$

