Functional Commitments
and SNARGs for P/poly
from SIS

T Hoeteck Wee
NTT Research

functional commitment (rc)

[LRY 16, IKOO7]

functional commitment (rc)

[LRY 16, IKOO7]

commit(crs,x) — o

S

commitment

functional commitment (rc)

[LRY 16, IKOO7]

commit(crs,x) — o

open(x,f) — T

o + dn— W

commitment opening

functional commitment (rc)

[LRY 16, IKOO7]

commit(crs,x) — o
open(x,f) —

verify(crs, 0.f,m,y) = 0/1 y = /i)

o + dn— W

commitment opening

functional commitment (rc)

[LRY 16, IKOO7]

commit(crs,x) — o small < |x|
open(x,f) — m small < |x|

verify(crs, 0, f,m,y) — 0/1 fast < time(f)

' + o — /W

commitment opening

functional commitment (rc)

[LRY 16, IKOO7]

commit(crs,x) — o small < |x|
open(x,f) — m small < |x|

verify(crs, 0, f,m,y) — 0/1 fast < time(f)

binding. hard to find ¢ that open to yy # 11

this work

functional commitments for P/poly from SIS
lers| = O(1)
|commitment| = O(1)

opening| = O(depth
P

this work

functional commitments for P/poly from SIS
lers| = O(1) transparent
|commitment| = O(1)
|lopening| = O(depth)

verification time O(|x|) (after pre-processing)

this work

functional commitments for P/poly from SIS
lers| = O(1) transparent
|commitment| = O(1)
|lopening| = O(depth)

verification time O(|x|) (after pre-processing)

prior. non-standard SIS, poly(depth) factors

[ACLMT22, WW23, BCFL23, CLM23, FLV23, W25]

this work (1)

SNARG:s for P/poly from SIS

... NO random oracles

this work (1)

SNARG:s for P/poly from SIS
lers| = O(1)
|proof| = O(depth)

verification time O(|x|) (after pre-processing)

this work (1)

SNARG:s for P/poly from SIS
lers| = O(1) transparent
|proof| = O(depth) unambiguous [kpy20]

verification time O(|x|) (after pre-processing)

this work (1)

SNARG:s for P/poly from SIS
lers| = O(1) transparent
|proof| = O(depth) unambiguous [kpy20]

verification time O(|x|) (after pre-processing)

v first SNARG from Minicrypt assumption

v/ NO Fiat-Shamir, CI-hashing, PCPs, BARGs

[JKKZ21, CJj21, KLVYW23, KLV23, CGJJZ23]

SIS assumption e

SIS. given B < ZZX’”, hard to find a low-norm
z# 0st Bz=0modg.

warm=u p [Ww23,w24]

functional commitments from succinct SIS
|ers| = Ogepen (¢*) where ¢ = |x]
|commitment| = Ogepen(1)
lopening| = Ogepun(1)

slow verification

warm=u p [Ww23,w24]

crs: BW, V. ije [/

B

W;

Vi

nxm
€z

c {0’ 1}m><m

warm=u p [Ww23,w24]

crs: BW, V. ije [/
commit(x): C =) x;W,

warm=u p [Ww23,w24]

crs: BW, V. ije [/
commit(x): C =) x;W,
open(x,f):

I. compute low-norm Z,; s.t.

CV, =BZ; + x,G GSW.enc(B, x;)

warm=u p [Ww23,w24]

crs: B,W; V., B {(W,V; — §,G)
commit(x): C =) x;W,
open(x,f):

I. compute low-norm Z,; s.t.

CV, =BZ; + x,G GSW.enc(B, x;)

warm=u p [Ww23,w24]

crs: B,W; V., B"{(W,V; — §,G)

commit(x): C =) x;W,

open(x,f):
I. compute low-norm Z,; s.t.
CV, =BZ,; + x,G GSW.enc(B, x;)
2. homomorphic eval [Gswi3,BGGHNSVVI4,GVWIS5]

— C,=BZ+ f(x)G GSW.enc(B, f(x))

warm=u p [Ww23,w24]

crs: B,W; V., B"{(W,V; — §,G)

commit(x): C =) x;W,

open(x,f): Zs
I. compute low-norm Z,; s.t.
CV, =BZ,; + x,G GSW.enc(B, x;)
2. homomorphic eval [Gswi3,BGGHNSVVI4,GVWIS5]

— C,=BZ+ f(x)G GSW.enc(B, f(x))

warm=u p [Ww23,w24]

crs: B,W; V., B {(W,V; — §,G)
commit(x): C =) x;W,
open(x,f): Zs

verify: C; ~ BZ + G

warm=u p [Ww23,w24]

Crs. B, Wj, Vl', Bil(Wle' — 6UG)
commit(x): C =) x;W,

next. relax CV; = BZ,; + x;G cf.[aMR25a]

warm=u p [Ww23,w24]

crs: = W, V,,

commit(x): C =) x;W,

next. relax CV; = BZ; + x;G
v binding from standard SIS

+ transparent set-up

warm=u p [Ww23,w24]

crs: = W, V,,

commit(x): C =) x;W,

next. relax CV; = BZ; + x;G
v binding from standard SIS
X CV; # GSW.enc(B, x;)
X Z; have size O(¢?), not O(1)

warm=u p [Ww23,w24]

crs: = W, V,,

commit(x): C =) x;W,

next. relax CV; = BZ; + x;,G
v binding from standard SIS 0
X CV; # GSW.enc(B, x;) 9

X Z; have size O(¢?), not O(1)

@ commitment from SIS

relax. CV; = BZ, + x;,G

@ commitment from SIS

relax. CV; — x,G = BZ,;

@ commitment from SIS

relax. CV; — x,G = BZ,;
Cv;
—XiG

i. CV;, —x,G —

@ commitment from SIS

relax. CV; — x,G = BZ,;
Cv;
—XiG

{ WV, .-
ii. B =

i. CV;, —x,G —

E ZQ”Xf m
—6JG o o

@ commitment from SIS

crs: W, V;
B4
Cv; W,V;
— Z,
—XiG 5UG .

@ commitment from SIS

crs: W, V;
B
CV; WV,
— Z;
—xiG 5UG .
correctness.
W.,V;

D_x5W)V;
—xl-G

LAY
Xit D X

-G 0

@ commitment from SIS

crs: W, V;
X
Cv; W.V;
— Z,
—xiG 5UG .
binding.

SIS= B = [TAY } is SIS-hard

@ multiplication xx

goal.

Cv,
—X1G

CV,

—.X'QG
CVi,

—Xl)CQG

—B-Z,

—B-Z,

=B -Z

@ multiplication xx

goal.

Cv,
—X1G

—B-Z,

x1CV
! ’ :B')C1Z2

—X1XQG

CVio B-Z
— : 12

—Xl)CQG

@ multiplication xx

_CV G (CV
GHEV) g Z:G(CV,)
—X1CV2
x1CV
! ? =B)C1Z2
—X1XQG

goal.

@ multiplication xx

_CV G H(CV B
1GTHEVY) = - Z,G71(CVy)
—x1CV3 B
x1CV B
1CVa Zo
—X1XQG B

goal.

@ multiplication xx

cviglcvy)| | B
—x1CV, = | B | -Z.G'(CVy)
0 0
] e
x1CVy | = | B | -x1Z
—x1x2G B

@ multiplication xx

CV1G_1 (CVQ)
0

[-~B -~

—x1x2G

[>-H~-~]

7,
N\

Vs

Zl(}_1 (CVQ)

X124

~

@ multiplication xx

CV1G_1 (CVQ)
0

—x1x2G

[-~B -~

[>-H~-~]

7,
N\

Vs

Zl(}_1 (CVQ)

X124

next. write CV1G71(CV2) = C(2) - V19 [was]

=> fast verification for deg two polynomials

~

@ circuits?

problem. depth d circuits incurs 2¢ blow-up

@ circuits?

problem. depth d circuits incurs 2¢ blow-up

solution. chainable FC [BcFL23, GRI19]

@ circuits?

problem. depth d circuits incurs 2¢ blow-up
solution. chainable FC [BcFL23, GRI19]
open(x,f):

— commit to each layer of the circuit f

— provide openings for adjacent layers

@ circuits?

problem. depth d circuits incurs 2¢ blow-up
solution. chainable FC [BcFL23, GRI19]

open(x,f):

— commit to each layer of the circuit f

— provide openings for adjacent layers

new. FC for deg two f: {0, 1}* — {0, 1}« that

supports opening to commit(f{x))

@ compressing openings

IDEA. Merkle-style recursion [w2s,aAMR25a]

@ compressing openings

base case. / = 2m?

@ compressing openings

base case. { = 2m>
recursion. (/2 — (

commit([x | xq])

@ compressing openings

base case. { = 2m>
recursion. (/2 — (

commit([x(| x;])

Cy := commit(x)), C; := commit(x;) € Z;*"

@ compressing openings

base case. { = 2m>
recursion. (/2 — (

commit([x(| x;])
6{0,1}2"’2

——
bitS(CO ‘ Cl)

Cy := commit(x)), C; := commit(x;) € Z;*"

@ compressing openings

base case. { = 2m>
recursion. (/2 — (

commit([x | x;]) :=
{0,112

—T—

commit(bits(Cy | Cy))

Cy := commit(x)), C; := commit(x;) € Z;*"

conclusion

FC & SNARGs for P/poly from SIS

conclusion

FC & SNARGs for P/poly from SIS
open problems.

— P without pre-processing

— |proof| = O(depth) — O(1)

conclusion

FC & SNARGs for P/poly from SIS
open problems.

— P without pre-processing

— |proof| = O(depth) — O(1)

// merci !

