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Cryptographic Groups
A pair (G, % ) consisting of a set G and a binary operation

* : G X G — G is an abelian group if the following properties
hold:

e |dentity: de€ G:eka=a*xe=a,VaeGG.
e Inverse: Vae G,db:bxa=axb=c¢e.
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Cryptographic Groups
A pair (3, % ) consisting of a set (s and a binary operation
* : G X (3 = (G is an abelian group if the following properties hold:
e Identity: de€ G:ekxa=a*xe=a,Va€eQq.
e Inverse: Vae G,db:bxa=a*xb=c¢.
 Associativity: (@ x b) x ¢ = a % (b % ¢)
o Commutativity:a *x b =b * a

o |Diffie-Hellman ’76]: Hardness assumptions on (cyclic) groups (.

* Discrete log: g, g" 42 a ]
e CDH: g,g“,gb —>6q" b
e DDH: A e e
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Quantum Computers break Cryptographic Groups

+ Finding discrete log is easy:
Suppose i = g, want to find a
(oL i e
F'is periodic: F'((x,y) + (—a,1)) = F(x, y)

— How can we use group-
Thm [Shor’94]: Quantum theoretic problems in a

algorithms can easily find periods | |quantum secure manner?
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Cryptographic Group Actions erassad-yungor)

 (Abelian) group G acting on set X via an action *.

o |dentity:

If e is identity in (3, thene x x = x,Vx € X.

o Compatibility:
gx(hxx)=(g-h)*x, Vg,he G, Vx € X.

e Discrete loq:
(X, g *xXx)—> g2

* Groups are a special case of group actions:
Z, acts on G viaa % x = x“.
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Justifying security in classical group + classical attack

v

Prove security under hardness of some computational problem on
group.

v

Justify hardness of the problem. (Can be justified in the generic black
box model)
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Understanding the security of Group Actions

Justifying security in classical ioup action + quantum attack
Prove security under hardness of so;e computational problem on group.

Justify hardness of the problem?
[EHOO,EHKO04]:
e there exist algorithms w/ polynomial query complexity (but super poly run
time) that break crypto assumptions on GAs.
 Unconditional lower bounds not possible!

Prove unconditional hardness for similar assumptions on_ Quantum State
Group Actions.




Quantum State Group Actions

* A quantum state group action will consist of:
» A classical group action (G, X, % ).
» A collection of statesy = (|y, > € &) .x-

 Distinguished starting element x.. € X.
» QPT procedure Start: produces |y, > .

 QPT procedure Act (g € G, |y, > € #) produces
‘Wg*x>=g*‘l//x>'
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Quantum State Group Actions

* A qguantum state group action will consist of:
» A classical group action ({3, X, % ).
» A collection of states i = (|, > ) ¥

» Distinguished starting element x.. € X.
» QPT procedure Start: produces |y, > .

» QPT procedure Act (g € G, |y, > € #) produces
‘l//g*x>:g*"//x>'

* ASsume:

*(2,x) — (g % x,x) is a bijection.
* Orthogonal if:

e Vx,y € X :< l//xh//y > = ().



Quantum State Group Actions

* A qguantum state group action will consist of:
» A classical group action ({3, X, % ).
« A collection of states y = (|, > ),y
» Distinguished starting element x.. € X.
« QPT procedure Start: produces |y, > .

» QPT procedure Act (g € G, |y, > € Z) produces |y, > = g * [y, > .

e Assume:

*(g2,x) — (g * x, x) is a bijection.
e Orthogonal if:

« Vx,y € X < l//xh//y > = ().

» Remark: ‘Wg*x* > _Is not necessarily clonable, hard problems on quantum group
action parametrized by number of copies.




Quantum State Group Actions
« £-DDH:
[y, > Ly, > Ly, >® & Ly, > |y, > |y, >®

/- Discrete log:
Prg < A (|Wysr, >® )] < neg

Hard (without parametrization by ¢) if £-hard for all polynomials Z.
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» Family of matrix assumptions parameterized by M € Z7\*".
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Quantum State Group Actions

* Generalized Matrix Problem (GMP):

« Family of matrix assumptions parameterized by M & Zz’{,xm.
 Consider

.« Dy-output |y, >, ... |y, >,8=(8,...8) =M-s,5 € Z.

+ Dy-output |y, >, ...y, >, 8=(g),...8,) is uniformly random.
Dy~ D, given M (not s, g).
1 O
- DDH- special case of GMP with M= 10 1
1 1

e Linear Hidden Shift assumption: Generalizing GMP to non-uniform

s € {0,1}", uniformly random M.
o Extended Linear Hidden Shift assumption: Generalizing GMP to structured

M.
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Main Results

A Hash based construction of Quantum State group actions

. Generalized matrix assumption
- DDH assumption
. Linear hidden shift assumption

Unconditionally hard '
y Computationally hard Unconditionally hard
when when H is Lossy
_ _ : w/ query bounded
Hash is k wise function (w/o trapdoor, security in QROM
independent. assume LWE) |

N

e

| Orthogonal |




Main Results

 An attack in the “many copy” regime:

* When hash based construction is orthogonal: query bounded ,

computationally inefficient quantum coset sampling attacks

IEHOO, EHKO4] on classical group actions generalize given
multiple copies.




Main Results
* Unifying Quantum Money:

o [Zha2?4]: constructed Quantum Money from abelian GA.

Generalize construction to quantum state group actions + instantiate
w/ Hash based construction

[Zha19]: Quantum Money construction from non collapsing hash
functions.
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Hash Based Quantum State Group Action

» Ingredients: H{ : R — ZN, \¢ > : efficiently constructible state,
superposition over elements in R.

» Underlying classical group action: G = X = Z,, with g * x = g + x.

- Start: create state | > .

. H
) Act(geZN,\z//>=Za,,\r>):Pgh//>,Pg. | r > —>a)]§, D>

reRr

— 2 Wy HO >
reR
o PgPh — Pg+h (additive notion for group operation).
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Hash Based Quantum State Group Action

* Proving DDH security of hash based construction:
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Hash Based Quantum State Group Action

* Proving DDH security of hash based construction:

‘w& > |l//82 > hljgl"‘gz > =

H(x)- H(v)- H(z)-
Z a)N(x) 81 ‘x > Z a)N(Y) gz‘y > Z a)N(Z) (g1+g2)‘z > =
X y e

Z a)]I\?(x)‘81+H(Y)‘82+H(Z)‘(81+82) ‘X, V,7 >

A, Y.<



Hash Based Quantum State Group Action

* Proving DDH security of hash based construction:

h/jgl > h'ljgz > ‘l//81+82 > =

H(x)- H(v)- H(7).
ZwN(X)gl‘x> ZwN(Y)gz‘y> ZwN(Z) (g1+32)‘z> —
X

y Z
Z mﬁ(x)‘gl‘FH(Y)'gz‘l‘H(Z)'(81+82) ‘X, V,7 > =
X,V,2

Z w}ifH(XHH(Z))-gl+(H(y)+H(z))-gz X, y,7 >

X, Y&



Hash Based Quantum State Group Action

* Proving DDH security of hash based construction:

W, > W, > W, 1o > = Vo, > 1 We, > (W, > =

H(x)-9,+H(v)-2,+H(7)- + H(x)-g,+H(y)-g,+H(z)- g,
ZwN(x) g1 +H(y)-g,+H(2)(g gZ)\x,y,z o ZwN Xoy.z >

X, Y5<

X5 Y&



Hash Based Quantum State Group Action

* Proving DDH security of hash based construction:

[y, > |y, > |y, ., > = (W, > W, > |y, > =
Z w]I\?(x)-g1+H(y)-g2+H(Z)-(g1+g2) ‘X, v, 7> Z w]?(x)'gﬁH(Y)'gz"‘H(Z)'& ‘X, v,z >
X,V,< X,V,.Z

Averaging over choice of g, £,,25- resulting mixed states close if:

e f'(x,y,2) = (H(x), H(y), H(z)) and
s f(x,y,2) = (H(x) + H(z), H(y) + H(z))

are almost injective.



Unifying Quantum Money

[Zha24] Q-Money
Scheme from abelian

> lg) O group actions.

9€G L]
1*
> g, g*x)

geG
| arr

Z 6i27rgh/N|h’g " .’13>

heG \
- 0\\
v

h = Serial # $ X Z 6i2ﬂgh/ng * ZE>
g



Unifying Quantum Money

Plugging in hash-based quantum state group action:

\ _ h
8

v

Z ara)jf,'H(’”) | r >
r



Unifying Quantum Money

Plugging in hash-based quantum state group action:

_ gh — gh+gH(x)
\$h>—Zth/fg*x*>—Za)N | x >
g g.X
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Unifying Quantum Money

Plugging in hash-based quantum state group action:

51> = T offlv> = T L

8 g X
zero’s out every term w/ h + H(x) # 0!

= ) |x>

x:H(x)=—h

Money state from [Zha19] with non collapsing CRHF H.



