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Cryptographic Groups
• A pair  consisting of a set  and a binary operation 

 is an abelian group if the following properties 
hold:

• Identity: 

• Inverse: 

• Associativity: 

• Commutativity: 


  


(G, ⋆ ) G
⋆ : G × G → G

∃e ∈ G : e ⋆ a = a ⋆ e = a, ∀a ∈ G .
∀a ∈ G, ∃b : b ⋆ a = a ⋆ b = e .

(a ⋆ b) ⋆ c = a ⋆ (b ⋆ c)
a ⋆ b = b ⋆ a



Cryptographic Groups
• A pair  consisting of a set  and a binary operation 

 is an abelian group if the following properties hold:

• Identity: 

• Inverse: 

• Associativity: 

• Commutativity: 


  

• [Diffie-Hellman ’76]: Hardness assumptions on (cyclic) groups .


(𝔾, ⋆ ) 𝔾
⋆ : 𝔾 × 𝔾 → 𝔾

∃e ∈ G : e ⋆ a = a ⋆ e = a, ∀a ∈ G .
∀a ∈ G, ∃b : b ⋆ a = a ⋆ b = e .

(a ⋆ b) ⋆ c = a ⋆ (b ⋆ c)
a ⋆ b = b ⋆ a

𝔾



Quantum Computers break Cryptographic Groups
•  Finding discrete log is easy:




Quantum Computers break Cryptographic Groups
•  Finding discrete log is easy:


How can we use group-
theoretic problems in a 

quantum secure manner?



Cryptographic Group Actions [Brassard-Yung’91]

• (Abelian) group  acting on set  via an action .


• Identity:  

If  is identity in , then 


• Compatibility: 

                  , .


𝔾 X ⋆

e 𝔾 e ⋆ x = x, ∀x ∈ X .

g ⋆ (h ⋆ x) = (g ⋅ h) ⋆ x ∀g, h ∈ 𝔾, ∀x ∈ X



Cryptographic Group Actions [Brassard-Yung’91]

• (Abelian) group  acting on set  via an action .


• Identity:  

If  is identity in , then 


• Compatibility: 

                  , .


• Discrete log: 

                    


• Groups are a special case of group actions:

 acts on  via .


               

𝔾 X ⋆

e 𝔾 e ⋆ x = x, ∀x ∈ X .

g ⋆ (h ⋆ x) = (g ⋅ h) ⋆ x ∀g, h ∈ 𝔾, ∀x ∈ X

(x, g ⋆ x) → g

ℤp 𝔾 a ⋆ x = xa



Understanding the security of Group Actions
Justifying security in classical group + classical attack


Prove security under hardness of some computational problem on 
group.


Justify hardness of the problem. (Can be justified in the generic black 
box model)
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• there exist algorithms w/ polynomial query complexity (but super 

poly run time) that break crypto assumptions on GAs.




Understanding the security of Group Actions
Justifying security in classical group action + quantum attack


Prove security under hardness of some computational problem on group. 


Justify hardness of the problem?

[EH00,EHK04]: 

• there exist algorithms w/ polynomial query complexity (but super poly run 

time) that break crypto assumptions on GAs.

• Unconditional lower bounds not possible! 


Prove unconditional hardness for similar assumptions on Quantum State 
Group Actions. 



Quantum State Group Actions
• A quantum state group action will consist of:


• A classical group action .

• A collection of states .

• Distinguished starting element . 

• QPT procedure :  produces .

• QPT procedure Act ( ) produces 

. 


(𝔾, X, ⋆ )
ψ = ( |ψx > ∈ ℋ)x∈X

x* ∈ X
Start |ψx*

>
g ∈ 𝔾, |ψx > ∈ ℋ

|ψg⋆x > = g ⋆ |ψx >
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Quantum State Group Actions
• A quantum state group action will consist of:


• A classical group action .

• A collection of states .

•Distinguished starting element . 

•QPT procedure :  produces .

•QPT procedure Act ( ) produces 
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• Assume:

•  is a bijection. 


• Orthogonal if:
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(𝔾, X, ⋆ )
ψ = ( |ψx > )x∈X

x* ∈ X
Start |ψx*

>
g ∈ 𝔾, |ψx > ∈ ℋ

|ψg⋆x > = g ⋆ |ψx >
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Quantum State Group Actions
• A quantum state group action will consist of:


• A classical group action .

• A collection of states .

•Distinguished starting element . 

•QPT procedure :  produces .

•QPT procedure Act ( ) produces . 


• Assume:

•  is a bijection. 


• Orthogonal if:

• .


• Remark:  is not necessarily clonable, hard problems on quantum group 
action parametrized by number of copies. 

(𝔾, X, ⋆ )
ψ = ( |ψx > )x∈X

x* ∈ X
Start |ψx*

>
g ∈ 𝔾, |ψx > ∈ ℋ |ψg⋆x > = g ⋆ |ψx >

(g, x) → (g ⋆ x, x)

∀x, y ∈ X :< ψx |ψy > = 0

|ψg⋆x*
>



Quantum State Group Actions
• -DDH: 


  


• - Discrete log:




Hard (without parametrization by ) if -hard for all polynomials .


ℓ
|ψa >⊗ℓ |ψb >⊗ℓ |ψa+b >⊗ℓ ≈ |ψa >⊗ℓ |ψb >⊗ℓ |ψc >⊗ℓ

ℓ
Pr[g ← 𝒜( |ψg⋆x*

>⊗ℓ )] ≤ negl

ℓ ℓ ℓ
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• Generalized Matrix Problem (GMP): 


• Family of matrix assumptions parameterized by .
M ∈ ℤn×m
N



Quantum State Group Actions
• Generalized Matrix Problem (GMP): 


• Family of matrix assumptions parameterized by .

• Consider 


• - output , .


• - output ,  is uniformly 
random. 


             (not ).


M ∈ ℤn×m
N

𝒟0 |ψg1
> , … |ψgn

> g = (g1, …gn) = M ⋅ s, s ∈ ℤm
N

𝒟1 |ψg1
> , … |ψgn

> g = (g1, …gn)

𝒟0 ≈ 𝒟1,  given M s, g
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• Consider 
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• - output ,  is uniformly 
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             (not ).
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Quantum State Group Actions
• Generalized Matrix Problem (GMP): 


• Family of matrix assumptions parameterized by .

• Consider 


• - output , .


• - output ,  is uniformly random. 

             (not ).


• DDH- special case of GMP with       


• Linear Hidden Shift assumption: Generalizing GMP to non-uniform 
, uniformly random .


• Extended Linear Hidden Shift assumption: Generalizing GMP to structured 
.

M ∈ ℤn×m
N

𝒟0 |ψg1
> , … |ψgn

> g = (g1, …gn) = M ⋅ s, s ∈ ℤm
N

𝒟1 |ψg1
> , … |ψgn

> g = (g1, …gn)
𝒟0 ≈ 𝒟1,  given M s, g

M = [
1 0
0 1
1 1]

s ∈ {0,1}m M

M
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Main Results 
• A Hash based construction of Quantum State group actions 

• Generalized matrix assumption

• DDH assumption

• Linear hidden shift assumption


Unconditionally hard 
when 


Hash is  wise 
independent. 

k

Computationally hard 
when H is Lossy 

function (w/o trapdoor, 
assume LWE)

Unconditionally hard 
w/ query bounded 
security in QROM.

Orthogonal 



Main Results 
• An attack in the “many copy” regime: 
• When hash based construction is orthogonal: query bounded , 

computationally inefficient quantum coset sampling attacks 
[EH00, EHK04] on classical group actions generalize given 
multiple copies. 




Main Results 
• Unifying Quantum Money: 

• [Zha24]: constructed Quantum Money from abelian GA.


Generalize construction to quantum state group actions + instantiate 
w/ Hash based construction


[Zha19]: Quantum Money construction from non collapsing hash 
functions. 




Hash Based Quantum State Group Action
• Ingredients: , : efficiently constructible state, 

superposition over elements in .
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• Ingredients: , : efficiently constructible state, 

superposition over elements in .


• Underlying classical group action: , with 
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• Start: create state .


• Act ( ): 


H : R → ℤN |ϕ >
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𝔾 = X = ℤN
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Hash Based Quantum State Group Action
• Ingredients: , : efficiently constructible state, 

superposition over elements in .


• Underlying classical group action: , with . 


• Start: create state .


• Act ( ): 





H : R → ℤN |ϕ >
R

𝔾 = X = ℤN g ⋆ x = g + x

|ϕ >

g ∈ ℤN, |ψ > = ∑
r∈R

αr |r > Pg |ψ > , Pg : |r > → ωg⋅H(r)
N |r >

= ∑
r∈R

αrω
g⋅H(r)
N |r >



Hash Based Quantum State Group Action
• Ingredients: , : efficiently constructible state, 

superposition over elements in .


• Underlying classical group action: , with . 


• Start: create state .


• Act ( ): 





•  (additive notion for group operation).

H : R → ℤN |ϕ >
R

𝔾 = X = ℤN g ⋆ x = g + x

|ϕ >

g ∈ ℤN, |ψ > = ∑
r∈R

αr |r > Pg |ψ > , Pg : |r > → ωg⋅H(r)
N |r >

= ∑
r∈R

αrω
g⋅H(r)
N |r >

PgPh = Pg+h
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=





|ψg1
> |ψg2

> |ψg1+g2
>

∑
x

ωH(x)⋅g1
N |x > ∑

y

ωH(y)⋅g2
N |y > ∑

z

ωH(z)⋅(g1+g2)
N |z >



Hash Based Quantum State Group Action
• Proving DDH security of hash based construction:


=








|ψg1
> |ψg2

> |ψg1+g2
>

∑
x

ωH(x)⋅g1
N |x > ∑

y

ωH(y)⋅g2
N |y > ∑

z

ωH(z)⋅(g1+g2)
N |z > =

∑
x,y,z

ωH(x)⋅g1+H(y)⋅g2+H(z)⋅(g1+g2)
N |x, y, z >



Hash Based Quantum State Group Action
• Proving DDH security of hash based construction:


=





=





|ψg1
> |ψg2

> |ψg1+g2
>

∑
x

ωH(x)⋅g1
N |x > ∑

y

ωH(y)⋅g2
N |y > ∑

z

ωH(z)⋅(g1+g2)
N |z > =

∑
x,y,z

ωH(x)⋅g1+H(y)⋅g2+H(z)⋅(g1+g2)
N |x, y, z >

∑
x,y,z

ω(H(x)+H(z))⋅g1+(H(y)+H(z))⋅g2
N |x, y, z >



Hash Based Quantum State Group Action
• Proving DDH security of hash based construction:


=





|ψg1
> |ψg2

> |ψg1+g2
>

∑
x,y,z

ωH(x)⋅g1+H(y)⋅g2+H(z)⋅(g1+g2)
N |x, y, z > ∑

x,y,z

ωH(x)⋅g1+H(y)⋅g2+H(z)⋅g3
N |x, y, z >

|ψg1
> |ψg2

> |ψg3
> =



Hash Based Quantum State Group Action
• Proving DDH security of hash based construction:


=




Averaging over choice of , - resulting mixed states close if:

•  and

• 


are almost injective. 

|ψg1
> |ψg2

> |ψg1+g2
>

∑
x,y,z

ωH(x)⋅g1+H(y)⋅g2+H(z)⋅(g1+g2)
N |x, y, z >

g1, g2 g3
f′￼(x, y, z) = (H(x), H(y), H(z))
f(x, y, z) = (H(x) + H(z), H(y) + H(z))

∑
x,y,z

ωH(x)⋅g1+H(y)⋅g2+H(z)⋅g3
N |x, y, z >

|ψg1
> |ψg2

> |ψg3
> =



Unifying Quantum Money





[Zha24] Q-Money 
Scheme from abelian 

group actions.



Unifying Quantum Money
Plugging in hash-based quantum state group action:








|$h > = ∑
g

ωgh
N |ψg⋆x*

>

∑
r

αrω
g⋅H(r)
N |r >



Unifying Quantum Money
Plugging in hash-based quantum state group action:



|$h > = ∑
g

ωgh
N |ψg⋆x*

> = ∑
g,x

ωgh+gH(x)
N |x >
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zero’s out every term w/ !
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N |x >

h + H(x) ≠ 0
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Unifying Quantum Money
Plugging in hash-based quantum state group action:





zero’s out every term w/ !




Money state from [Zha19] with non collapsing CRHF .

|$h > = ∑
g

ωgh
N |ψg > = ∑

g,x

ωgh+gH(x)
N |x >

h + H(x) ≠ 0
= ∑

x:H(x)=−h

|x >

H


