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Completeness: If x ∈ L, Pr[V accepts] ≥ 1− ϵc.
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Soundness: If x ̸∈ L, then for any nuPPT cheating prover P̃,
Pr[V accepts] ≤ ϵs.
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Zero-Knowledge: There is a simulator Sim that for every x ∈ L is ϵzk
computationally indistiguishable from V’s view.
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NIZK and OWF
Key question: how “hard” are NIZKs to construct?
Do they require one-way functions?

[Ost91, OW93]: Yes∗
∗if ϵc, ϵs, and ϵzk are all negligible.

Our goal: understand what happens if the error parameters are allowed to be
large, even constant.
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Why Weak NIZKs?

Recent work [GJS19,BKP+24,BG24,AK25] has shown that we can amplify
“weak” NIZKs to get negligible errors.
▶ [BG24,AK25] only need one-way functions! (in some settings)

Viewpoint 1: understand if the hardness of constructing NIZKs is “inherent” or
only comes from needing the errors to be small.

Viewpoint 2: if weak NIZKs give one-way functions, we can amplify “for free”!
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Main Results
Suppose NP ̸⊆ ioP/poly and we have a weak NIZK for NP. Then one-way
functions exist if for any polynomial p, any of the following hold:
▶ ϵc(n) + ϵs(n) + 2ϵzk(n) < 1− 1

p(n)

▶ ϵc(n) + ϵzk(n) + 2
√

ϵs(n) < 1− 1
p(n)

▶ ϵc(n) = o(1), ϵs and ϵzk are constants, and ϵzk +
√
ϵs < 1
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Amplification Corollaries
Combining the third result with theorems from [BG24], we get “almost
unconditional” amplification as a corollary.

We can∗ amplify a weak NIZK for NP to have negligible errors if:
▶ The weak NIZK has adaptive statistical soundness, with ϵc(n) negligible, ϵs

and ϵzk constants, and ϵzk +
√
ϵs < 1.

▶ The weak NIZK has adaptive computational soundness, with ϵc(n) and ϵs(n)
negligible and ϵzk a constant less than 1.

(* as long as either NP ̸⊆ ioP/poly or NP ⊆ BPP)
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Overview of Techniques
Each parameter regime uses different techniques to show that if one-way
functions don’t exist but NP has a weak NIZK, NP ⊆ ioP/poly:

▶ ϵc(n) + ϵs(n) + 2ϵzk(n) < 1− 1
p(n)

▶ Standard techniques from [OW93]: use Universal Extrapolation to
sample a simulated proof relative to a real crs.

▶ ϵc(n) + ϵzk(n) + 2
√

ϵs(n) < 1− 1
p(n)

▶ Modify the above to reject any CRS that is “too much more likely to
be simulated”.

▶ ϵc(n) = o(1), ϵs and ϵzk are constants, and ϵzk +
√
ϵs < 1

▶ Parallel-repeat the weak NIZK a constant number of times until the
new parameters satisfy the previous result.
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CRS Checking
Our main technical insight is to modify the algorithm from [OW93] to:
▶ Estimate the probability that its CRS comes from Sim versus from Gen
▶ Reject immediately if the former is at least 1√

ϵs
times larger than the latter

This helps because one step in the [OW93] analysis involves changing only the
CRS from real to simulated:
▶ Any CRS that is “too likely simulated” contributes (almost) nothing to the

probability the algorithm accepts x ̸∈ L
▶ Any other CRS can contribute at most 1√

ϵs
times as much to this probability

in the simulated versus real case
This replaces an additive ϵzk loss with a multiplicative 1√

ϵs
loss!
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Future Directions

Can we get one-way functions from NIZKs with arbitrary (non-trivial) error
parameters?

▶ Upcoming work: can work with any ϵc(n) + ϵs(n) + ϵzk(n) < 1− 1
p(n) .

Generalization to interactive zero-knowledge?

▶ Upcoming work: some progress, but seems stuck at constant rounds.

Improvements to amplification from one-way functions:
▶ Allow ϵc (and for arguments ϵs) to be non-negligible?
▶ Make uniformity preserving?
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Thanks!
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