
Fully Homomorphic Encryption
with Chosen-Ciphertext Security

from LWE
Rupeng Yang

UOW

Zuoxia Yu

UOW

Willy Susilo

UOW

UNIVERSITY OF WOLLONGONG, AUSTRALIA

Fully Homomorphic Encryption

𝙴𝚗𝚌pk(⋅) 𝙳𝚎𝚌sk(⋅)m ct 𝙲(m)

𝙺𝚎𝚢𝙶𝚎𝚗(1λ)

𝙴𝚟𝚊𝚕pk(𝙲, ⋅)

ct′￼

IND-CPA Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b)

b′￼

Why FHE Is Useful

X

pk, 𝙴𝚗𝚌pk(X)

𝙴𝚟𝚊𝚕pk(𝙲, ct)

𝙲

Y

Why FHE Is Useful

X

pk, 𝙴𝚗𝚌pk(X)

𝙴𝚟𝚊𝚕pk(𝙲, ct)

𝙲

Y

Can I know the results?

Yes, but…

The IND-CPA security is not sufficient!

We need security with decryption queries!

IND-CCA2 Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b)

b′￼

ct ≠ ct*
𝙳𝚎𝚌sk(ct)

IND-CCA2 Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b)

b′￼

𝙳𝚎𝚌sk(ct)
However, here can be evaluated from

; so, there is no hope to achieve IND-

CCA2 security for FHE!

ct

ct*

ct ≠ ct*

IND-CCA1 Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b)

b′￼

𝙳𝚎𝚌sk(ct)
ct ≠ ct*

IND-CCA1 Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b)

b′￼

[LMSV 11] Jake Loftus, Alexander May, Nigel P Smart, and Frederik Vercauteren. On CCA-secure somewhat homomorphic encryption. In SAC, 2011.

[BSW 12] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: homomorphic encryption for restricted computations. In ITCS, 2012.

[CRRV 17] Ran Canetti, Srinivasan Raghuraman, Silas Richelson, and Vinod Vaikuntanathan. Chosen-ciphertext secure fully homomorphic encryption.
In PKC, 2017.

[MN 24] Mark Manulis and J´erˆome Nguyen. Fully homomorphic encryption beyond IND-CCA1 security: Integrity through verifiability. In EUROCRYPT,
2024.

FHE schemes with IND-CCA1
Security are constructed in
p re v i o u s w o r k s [L M S V 1 1 ,
BSW12, CRRV17, MN24], but
they either rely on knowledge
assumptions or need the random
oracle.

Beyond CCA1 Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b)

b′￼

𝙳𝚎𝚌sk(ct)
[MN 24] shows that post-challenge
queries are possible if the query is
independent of the challenge ciphertext.

[MN 24] Mark Manulis and J´erˆome Nguyen. Fully homomorphic encryption beyond IND-CCA1 security: Integrity through verifiability. In EUROCRYPT,
2024.

ct ≠ ct*

VCCA Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b)

b′￼

ct
 or

 if depends on
𝙳𝚎𝚌sk(ct)
⊥ ct ct*

How to check if depends on ?

• Definition: Assume that is possible

• Construction: Extract all details of the

computation that outputs ; that is
possible if the computation is proved
by a ZK-SNARK.

ct ct*

ct

FHE with Decryption Queries

= known from standard assumption

= Impossible
= known from non-standard assumption

CPA

CCA1

VCCA

CCA2

State-of-the-art:

• FHE with CPA security is possible from

standard (circular-secure) LWE assumptions.

• But if we hope to have security with decryption

queries, we must rely on non-standard
assumptions such as knowledge assumptions
or need the random oracle.

The Problem:

How to construct FHE schemes with CCA1
security (or even more) from (circular-secure) LWE
assumptions in the standard model?

Our Results

= known from standard assumption

= Impossible
= known from non-standard assumption

CPA

CCA1

VCCA

CCA2

The Problem:

How to construct FHE schemes with CCA1
security (or even more) from (circular-secure) LWE
assumptions in the standard model?

Our Results:

1. We show how to construct FHE with IND-

CCA1 security from circular-secure LWE.

Our Results

= known from standard assumption

= Impossible
= known from non-standard assumption

IV-CCA

CPA

CCA1

VCCA

CCA2

The Problem:

How to construct FHE schemes with CCA1
security (or even more) from (circular-secure) LWE
assumptions in the standard model?

Our Results:

1. We show how to construct FHE with IND-

CCA1 security from circular-secure LWE.

2. We define a new security called input-verifiable

CCA (IV-CCA) security and construct FHE with
IV-CCA security from circular-secure LWE.

• The IV-CCA security is strictly stronger than

the CCA1 security, but is weaker than the
VCCA security.

Our Results

• We construct FHE schemes with IND-CCA1 security from circular-
secure LWE.

• We define a new security notion called IV-CCA security, which lies
between IND-CCA1 security and VCCA security.

• We construct FHE schemes with IV-CCA security from circular-secure
LWE.

Warmup: The Naor-Yung Paradigm

𝙺𝚎𝚢𝙶𝚎𝚗(1λ) :
(sk1, pk1) ← 𝖥𝖧𝖤 . 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
(sk2, pk2) ← 𝖥𝖧𝖤 . 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
crs ← 𝖹𝖪 . 𝚂𝚎𝚝𝚞𝚙(1λ)
PK = (pk1, pk2, crs)
SK = sk1

𝙴𝚗𝚌(PK, m) :
c1 = 𝖥𝖧𝖤 . 𝙴𝚗𝚌(pk1, m)
c2 = 𝖥𝖧𝖤 . 𝙴𝚗𝚌(pk2, m)
π ← 𝖹𝖪 . 𝙿𝚛𝚘𝚟𝚎(crs,

c1 & c2 encrypt m)
CT = (c1, c2, π)

If is valid:

Output

Output

𝙳𝚎𝚌(SK, CT) :
π

𝖥𝖧𝖤 . 𝙳𝚎𝚌(sk1, ct1)
⊥

Warmup: The Naor-Yung Paradigm

𝙺𝚎𝚢𝙶𝚎𝚗(1λ) :
(sk1, pk1) ← 𝖥𝖧𝖤 . 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
(sk2, pk2) ← 𝖥𝖧𝖤 . 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
crs ← 𝖹𝖪 . 𝚂𝚎𝚝𝚞𝚙(1λ)
PK = (pk1, pk2, crs)
SK = sk1

𝙴𝚗𝚌(PK, m) :
c1 = 𝖥𝖧𝖤 . 𝙴𝚗𝚌(pk1, m)
c2 = 𝖥𝖧𝖤 . 𝙴𝚗𝚌(pk2, m)
π ← 𝖹𝖪 . 𝙿𝚛𝚘𝚟𝚎(crs,

c1 & c2 encrypt m)
CT = (c1, c2, π)

If is valid:

Output

Output

𝙳𝚎𝚌(SK, CT) :
π

𝖥𝖧𝖤 . 𝙳𝚎𝚌(sk1, ct1)
⊥

𝙴𝚟𝚊𝚕(PK, 𝙲, ⃗CT = (⃗c1, ⃗c2, ⃗π)) :
c′￼1 = 𝖥𝖧𝖤 . 𝙴𝚟𝚊𝚕(pk1, 𝙲, ⃗c1)
c′￼2 = 𝖥𝖧𝖤 . 𝙴𝚟𝚊𝚕(pk2, 𝙲, ⃗c2)
π′￼← ???

Warmup: The Naor-Yung Paradigm

The problem: How to generate the proof for an evaluated ciphertext?

• The direct generation needs the randomness of the encryption as a witness. 🙁🙁🙁

• We can prove that the two ciphertext components are evaluated from ciphertexts encrypting the same

message using the same circuit. 😀

• But the proof size will usually be a polynomial in the circuit size. 🙁🙁🙁

• We can use a SNARG to generate a succinct proof 😀😀😀

• The SNARG can prove succinct proof whose size is independent of the statement/witness size

• But a general SNARG relies on either random oracle or non-falsifiable assumptions 🙁

𝙺𝚎𝚢𝙶𝚎𝚗(1λ) :
(sk1, pk1) ← 𝖥𝖧𝖤 . 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
(sk2, pk2) ← 𝖥𝖧𝖤 . 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
crs ← 𝖹𝖪 . 𝚂𝚎𝚝𝚞𝚙(1λ)
PK = (pk1, pk2, crs)
SK = sk1

𝙴𝚗𝚌(PK, m) :
c1 = 𝖥𝖧𝖤 . 𝙴𝚗𝚌(pk1, m)
c2 = 𝖥𝖧𝖤 . 𝙴𝚗𝚌(pk2, m)
π ← 𝖹𝖪 . 𝙿𝚛𝚘𝚟𝚎(crs,

c1 & c2 encrypt m)
CT = (c1, c2, π)

If is valid:

Output

Output

𝙳𝚎𝚌(SK, CT) :
π

𝖥𝖧𝖤 . 𝙳𝚎𝚌(sk1, ct1)
⊥

𝙴𝚟𝚊𝚕(PK, 𝙲, ⃗CT = (⃗c1, ⃗c2, ⃗π)) :
c′￼1 = 𝖥𝖧𝖤 . 𝙴𝚟𝚊𝚕(pk1, 𝙲, ⃗c1)
c′￼2 = 𝖥𝖧𝖤 . 𝙴𝚟𝚊𝚕(pk2, 𝙲, ⃗c2)
π′￼← ???

Warmup: The Naor-Yung Paradigm

The problem: How to generate the proof for an evaluated ciphertext?

• The direct generation needs the randomness of the encryption as a witness. 🙁🙁🙁

• We can prove that the two ciphertext components are evaluated from ciphertexts encrypting the same

message using the same circuit. 😀

• But the proof size will usually be a polynomial in the circuit size. 🙁🙁🙁

• We can use a SNARG to generate a succinct proof 😀😀😀

• The SNARG can prove succinct proof whose size is independent of the statement/witness size

• But a general SNARG relies on either random oracle or non-falsifiable assumptions 🙁

𝙺𝚎𝚢𝙶𝚎𝚗(1λ) :
(sk1, pk1) ← 𝖥𝖧𝖤 . 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
(sk2, pk2) ← 𝖥𝖧𝖤 . 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
crs ← 𝖹𝖪 . 𝚂𝚎𝚝𝚞𝚙(1λ)
PK = (pk1, pk2, crs)
SK = sk1

𝙴𝚗𝚌(PK, m) :
c1 = 𝖥𝖧𝖤 . 𝙴𝚗𝚌(pk1, m)
c2 = 𝖥𝖧𝖤 . 𝙴𝚗𝚌(pk2, m)
π ← 𝖹𝖪 . 𝙿𝚛𝚘𝚟𝚎(crs,

c1 & c2 encrypt m)
CT = (c1, c2, π)

If is valid:

Output

Output

𝙳𝚎𝚌(SK, CT) :
π

𝖥𝖧𝖤 . 𝙳𝚎𝚌(sk1, ct1)
⊥

𝙴𝚟𝚊𝚕(PK, 𝙲, ⃗CT = (⃗c1, ⃗c2, ⃗π)) :
c′￼1 = 𝖥𝖧𝖤 . 𝙴𝚟𝚊𝚕(pk1, 𝙲, ⃗c1)
c′￼2 = 𝖥𝖧𝖤 . 𝙴𝚟𝚊𝚕(pk2, 𝙲, ⃗c2)
π′￼← ???

The Main Gap: Succinct Proof for Correctness of
Evaluated Ciphertexts from LWE

The problem: How to generate the succinct proof for the correctness of an evaluated ciphertext?

• Correctness of a ciphertext: The two ciphertext components are evaluated from ciphertexts encrypting

the same message using the same circuit.

Some Known SNARG for Special Languages from LWE:

• Index Batch NP

• Language P

• Monotone Policy batch NP

However, they are not able to prove the correctness of the evaluated ciphertexts….

So, we need to design a new SNARG for the correctness of FHE ciphertexts.

• We will start with SNARG for index batch NP (A.K.A., Index BARG), because it is also the main

building block for the remaining two special SNARGs.

• It proves:

• The proof size:

𝙲(1,w1) = 1 ∧ 𝙲(2,w2) = 1 ∧ … ∧ 𝙲(n, wn) = 1
log n ⋅ ∣ 𝙲 ∣ ≤ λ ⋅ ∣ 𝙲 ∣

The First Attempt
1
1 0 1

1 1 1 1

u0 u1

u

1 1 0 0

How to generate the proof?

1. Accumulate all ciphertexts in a Merkle-tree.

2. For each index i:

1. If : Prove that

(1) the ciphertext has a valid ZK proof;

(2) the ciphertext is accumulated in the tree.

2. If : Prove that

(1) it is generated from two priori ciphertexts.

(2) the ciphertext is accumulated in the tree.

We can generate succinct proof for step 2 using a
BARG.

The construction is inspired by [CJJ21]

i ≤ 2

i > 2

Arka Rai Choudhuri, Abhihsek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In FOCS, pages 68–79. IEEE, 2021.

The First Attempt
1
1 0 1

1 1 1 1

u0 u1

u

1 1 0 0

How to generate the proof?

1. Accumulate all ciphertexts in a Merkle-tree.

2. For each index i:

1. If : Prove that

(1) the ciphertext has a valid ZK proof;

(2) the ciphertext is accumulated in the tree.

2. If : Prove that

(1) it is generated from two priori ciphertexts.

(2) the ciphertext is accumulated in the tree.

We can generate succinct proof for step 2 using a
BARG.

The proof can prove the correctness of the final
ciphertext if all statements are guaranteed to be
correct.

However, …

i ≤ 2

i > 2

The Challenge
Security of the above construction relies
on global soundness, i.e., all statements
can be guaranteed to be correct.

The Challenge
Known Index BARG from LWE only has
local soundness, i.e., only one (hidden)
statement is guaranteed to be correct.

We need to know which statement to
check

Security of the above construction relies
on global soundness, i.e., all statements
can be guaranteed to be correct.

Our Solution
We need to know which statement to
check

1 1 1 1

u0 u1

u

1 1 1 0

The Merkle tree checks i f each
ciphertext is valid and record the invalid
ones. Then it copies (one of) the invalid
ciphertext into its parent node.

The check needs both secret keys and
we need to protect the secret key (and
enabling the checking) by encrypting
them using another FHE.

Then the challenger (in the proof) can
use the secret key of the additional FHE
as a trapdoor to know which ct is
invalid.

3

3

⊥

Our Solution
We need to know which statement to
check

1 1

u0 u1

u

1 1 1 0

The current modification only checks if
an invalid ct exists, but the invalid ct
may not be led by an invalid statement
at the current possible. Maybe this is
due to an invalid ciphertext at a priori
position?

We can use two Merkle Trees with check
and guarantee that:

(1) either the current statement is wrong;

(2) or the wrong statement appears

before.

This compress the space of possible
wrong statement iteratively.

2 3

3

0 1

The construction is inspired by [BBK+ 23]

[BBK+23] Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex
Lombardi, and Omer Paneth. SNARGs for monotone policy batch NP. In
CRYPTO, pages 252–283. Springer, 2023.

Our Results

• We construct FHE schemes with IND-CCA1 security from (circular-secure)
LWE.

• We define a new security notion called IV-CCA security, which lies
between IND-CCA1 security and VCCA security.

• We construct FHE schemes with IV-CCA security from (circular-
secure) LWE.

VCCA Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b)

b′￼

ct
 or

 if depends on
𝙳𝚎𝚌sk(ct)
⊥ ct ct*

How to check if depends on ?

• Definition: Assume that is possible

• Construction: Extract all details of the

computation that outputs ; that is
possible if the computation is proved
by a ZK-SNARK.

ct ct*

ct

IV-CCA Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b)

b′￼

(ct; 𝒞 = {ct1, ct2, …ctl})
 or

 if
𝙳𝚎𝚌sk(ct)
⊥ ct* ∈ 𝒞

This guarantees that is generated from
ciphertexts excluding .

The challenger also needs to ensure that
is generated from . But how to check if
is generated from .

ct
ct*

ct
𝒞 ct
𝒞

IV-CCA Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b)

b′￼

(ct; 𝒞 = {ct1, ct2, …ctl})
But how to check if is generated from .

1. Add an additional Merkle tree for all input
ciphertexts, and checks input ciphertexts in
the new tree in the index BARG.

2. Then reconstruct the Merkle tree from
and compare.

ct 𝒞

𝒞

 or
 if

𝙳𝚎𝚌sk(ct)
⊥ ct* ∈ 𝒞

Our Results

= known from standard assumption

= Impossible
= known from non-standard assumption

CPA

CCA1

VCCA

CCA2

CPA

CCA1
IV-CCA
VCCA

CCA2

Thanks for your Attention!

