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Fully Homomorphic Encryption
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IND-CPA Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b )

b′￼



Why FHE Is Useful
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Why FHE Is Useful

X

pk, 𝙴𝚗𝚌pk(X)

𝙴𝚟𝚊𝚕pk(𝙲, ct)

𝙲
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Can I know the results?

Yes, but…

The IND-CPA security is not sufficient!


We need security with decryption queries!



IND-CCA2 Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b )

b′￼

ct ≠ ct*
𝙳𝚎𝚌sk(ct)



IND-CCA2 Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b )

b′￼

𝙳𝚎𝚌sk(ct)
However,  here can be evaluated from 

; so, there is no hope to achieve IND-

CCA2 security for FHE!

ct

ct*

ct ≠ ct*



IND-CCA1 Security of FHE
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IND-CCA1 Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b )

b′￼

[LMSV 11] Jake Loftus, Alexander May, Nigel P Smart, and Frederik Vercauteren. On CCA-secure somewhat homomorphic encryption. In SAC, 2011.

[BSW 12] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: homomorphic encryption for restricted computations. In ITCS, 2012.

[CRRV 17] Ran Canetti, Srinivasan Raghuraman, Silas Richelson, and Vinod Vaikuntanathan. Chosen-ciphertext secure fully homomorphic encryption. 
In PKC, 2017.

[MN 24] Mark Manulis and J´erˆome Nguyen. Fully homomorphic encryption beyond IND-CCA1 security: Integrity through verifiability. In EUROCRYPT, 
2024.

FHE schemes with IND-CCA1 
Security are constructed  in 
p re v i o u s w o r k s [ L M S V 1 1 , 
BSW12, CRRV17, MN24], but 
they either rely on knowledge 
assumptions or need the random 
oracle.



Beyond CCA1 Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b )

b′￼

𝙳𝚎𝚌sk(ct)
[MN 24] shows that post-challenge 
queries are possible if the query is 
independent of the challenge ciphertext.

[MN 24] Mark Manulis and J´erˆome Nguyen. Fully homomorphic encryption beyond IND-CCA1 security: Integrity through verifiability. In EUROCRYPT, 
2024.

ct ≠ ct*



VCCA Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b )

b′￼

ct
 or 

 if  depends on  
𝙳𝚎𝚌sk(ct)
⊥ ct ct*

How to check if  depends on ?

• Definition: Assume that is possible

• Construction: Extract all details of the 

computation that outputs ; that is 
possible if the computation is proved 
by a ZK-SNARK.

ct ct*

ct



FHE with Decryption Queries  

= known from standard assumption

= Impossible
= known from non-standard assumption

CPA

CCA1

VCCA

CCA2

State-of-the-art:

• FHE with CPA security is possible from 

standard (circular-secure) LWE assumptions.

• But if we hope to have security with decryption 

queries, we must rely on non-standard 
assumptions such as knowledge assumptions 
or need the random oracle.


The Problem:

How to construct FHE schemes with CCA1 
security (or even more) from (circular-secure) LWE 
assumptions in the standard model?



Our Results
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The Problem:

How to construct FHE schemes with CCA1 
security (or even more) from (circular-secure) LWE 
assumptions in the standard model? 

Our Results:

1. We show how to construct FHE with IND-

CCA1 security from circular-secure LWE.



Our Results

= known from standard assumption

= Impossible
= known from non-standard assumption

IV-CCA

CPA

CCA1

VCCA

CCA2

The Problem:

How to construct FHE schemes with CCA1 
security (or even more) from (circular-secure) LWE 
assumptions in the standard model? 

Our Results:

1. We show how to construct FHE with IND-

CCA1 security from circular-secure LWE.

2. We define a new security called input-verifiable 

CCA (IV-CCA) security and construct FHE with 
IV-CCA security from circular-secure LWE.

• The IV-CCA security is strictly stronger than 

the CCA1 security, but is weaker than the 
VCCA security.



Our Results

• We construct FHE schemes with IND-CCA1 security from circular-
secure LWE. 

• We define a new security notion called IV-CCA security, which lies 
between IND-CCA1 security and VCCA security.


• We construct FHE schemes with IV-CCA security from  circular-secure 
LWE.



Warmup: The Naor-Yung Paradigm













𝙺𝚎𝚢𝙶𝚎𝚗(1λ) :
(sk1, pk1) ← 𝖥𝖧𝖤 . 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
(sk2, pk2) ← 𝖥𝖧𝖤 . 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
crs ← 𝖹𝖪 . 𝚂𝚎𝚝𝚞𝚙(1λ)
PK = (pk1, pk2, crs)
SK = sk1













𝙴𝚗𝚌(PK, m) :
c1 = 𝖥𝖧𝖤 . 𝙴𝚗𝚌(pk1, m)
c2 = 𝖥𝖧𝖤 . 𝙴𝚗𝚌(pk2, m)
π ← 𝖹𝖪 . 𝙿𝚛𝚘𝚟𝚎(crs,

c1 & c2 encrypt m)
CT = (c1, c2, π)



If  is valid: 


Output 

Output 

𝙳𝚎𝚌(SK, CT ) :
π

𝖥𝖧𝖤 . 𝙳𝚎𝚌(sk1, ct1)
⊥
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𝙴𝚟𝚊𝚕(PK, 𝙲, ⃗CT = ( ⃗c1, ⃗c2, ⃗π)) :
c′￼1 = 𝖥𝖧𝖤 . 𝙴𝚟𝚊𝚕(pk1, 𝙲, ⃗c1)
c′￼2 = 𝖥𝖧𝖤 . 𝙴𝚟𝚊𝚕(pk2, 𝙲, ⃗c2)
π′￼← ???



Warmup: The Naor-Yung Paradigm

The problem: How to generate the proof for an evaluated ciphertext?

• The direct generation needs the randomness of the encryption as a witness. 🙁🙁🙁

• We can prove that the two ciphertext components are evaluated from ciphertexts encrypting the same 

message using the same circuit. 😀

• But the proof size will usually be a polynomial in the circuit size. 🙁🙁🙁

• We can use a SNARG to generate a succinct proof 😀😀😀


• The SNARG can prove succinct proof whose size is independent of the statement/witness size

• But a general SNARG relies on either random oracle or non-falsifiable assumptions 🙁
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The Main Gap: Succinct Proof for Correctness of 
Evaluated Ciphertexts from LWE

The problem: How to generate the succinct proof for the correctness of an evaluated ciphertext?

• Correctness of a ciphertext: The two ciphertext components are evaluated from ciphertexts encrypting 

the same message using the same circuit.


Some Known SNARG for Special Languages from LWE:

• Index Batch NP

• Language P

• Monotone Policy batch NP


However, they are not able to prove the correctness of the evaluated ciphertexts….


So, we need to design a new SNARG for the correctness of FHE ciphertexts. 

• We will start with SNARG for index batch NP (A.K.A., Index BARG), because it is also the main 

building block for the remaining two special SNARGs.

• It proves: 

• The proof size: 

𝙲(1,w1) = 1 ∧ 𝙲(2,w2) = 1 ∧ … ∧ 𝙲(n, wn) = 1
log n ⋅ ∣ 𝙲 ∣ ≤ λ ⋅ ∣ 𝙲 ∣



The First Attempt
1
1 0 1

1 1 1 1

u0 u1

u

1 1 0 0

How to generate the proof?

1. Accumulate all ciphertexts in a Merkle-tree.

2. For each index i:


1. If : Prove that 

(1) the ciphertext has a valid ZK proof; 

(2) the ciphertext is accumulated in the tree.


2. If : Prove that 

(1) it is generated from two priori ciphertexts.

(2) the ciphertext is accumulated in the tree. 


We can generate succinct proof for step 2 using a 
BARG.


The construction is inspired by [CJJ21]

i ≤ 2

i > 2

Arka Rai Choudhuri, Abhihsek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In FOCS, pages 68–79. IEEE, 2021.



The First Attempt
1
1 0 1

1 1 1 1

u0 u1

u

1 1 0 0

How to generate the proof?

1. Accumulate all ciphertexts in a Merkle-tree.

2. For each index i:


1. If : Prove that 

(1) the ciphertext has a valid ZK proof; 

(2) the ciphertext is accumulated in the tree.


2. If : Prove that 

(1) it is generated from two priori ciphertexts.

(2) the ciphertext is accumulated in the tree. 


We can generate succinct proof for step 2 using a 
BARG.


The proof can prove the correctness of the final 
ciphertext if all statements are guaranteed to be 
correct.


However, …

i ≤ 2

i > 2



The Challenge
Security of the above construction relies 
on global soundness, i.e., all statements 
can be guaranteed to be correct.



The Challenge
Known Index BARG from LWE only has 
local soundness, i.e., only one (hidden) 
statement is guaranteed to be correct.

We need to know which statement to 
check

Security of the above construction relies 
on global soundness, i.e., all statements 
can be guaranteed to be correct.



Our Solution
We need to know which statement to 
check

1 1 1 1

u0 u1

u

1 1 1 0

The Merkle tree checks i f each 
ciphertext is valid and record the invalid 
ones. Then it copies (one of) the invalid 
ciphertext into its parent node.

The check needs both secret keys and 
we need to protect the secret key (and 
enabling the checking) by encrypting 
them using another FHE.

Then the challenger (in the proof) can 
use the secret key of the additional FHE 
as a trapdoor to know which ct is 
invalid.

3

3

⊥



Our Solution
We need to know which statement to 
check

1 1

u0 u1

u

1 1 1 0

The current modification only checks if 
an invalid ct exists, but the invalid ct 
may not be led by an invalid statement 
at the current possible. Maybe this is 
due to an invalid ciphertext at a priori 
position? 

We can use two Merkle Trees with check 
and guarantee that:

(1) either the current statement is wrong;

(2) or the wrong statement appears 

before.

This compress the space of possible 
wrong statement iteratively.

2 3

3

0 1

The construction is inspired by [BBK+ 23]

[BBK+23] Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex 
Lombardi, and Omer Paneth. SNARGs for monotone policy batch NP. In 
CRYPTO, pages 252–283. Springer, 2023.



Our Results

• We construct FHE schemes with IND-CCA1 security from (circular-secure) 
LWE.


• We define a new security notion called IV-CCA security, which lies 
between IND-CCA1 security and VCCA security. 

• We construct FHE schemes with IV-CCA security from  (circular-
secure) LWE.



VCCA Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b )

b′￼

ct
 or 

 if  depends on  
𝙳𝚎𝚌sk(ct)
⊥ ct ct*

How to check if  depends on ?

• Definition: Assume that is possible

• Construction: Extract all details of the 

computation that outputs ; that is 
possible if the computation is proved 
by a ZK-SNARK.

ct ct*

ct



IV-CCA Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b )

b′￼

(ct; 𝒞 = {ct1, ct2, …ctl})
 or 

 if  
𝙳𝚎𝚌sk(ct)
⊥ ct* ∈ 𝒞

This guarantees that  is generated from 
ciphertexts excluding .


The challenger also needs to ensure that  
is generated from . But how to check if  
is generated from .

ct
ct*

ct
𝒞 ct
𝒞



IV-CCA Security of FHE

 (pk, sk) ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

pk

ct
𝙳𝚎𝚌sk(ct)

m*0 , m*1
ct* = 𝙴𝚗𝚌pk(m*b )

b′￼

(ct; 𝒞 = {ct1, ct2, …ctl})
But how to check if  is generated from .


1. Add an additional Merkle tree for all input 
ciphertexts, and checks input ciphertexts in 
the new tree in the index BARG.

2. Then reconstruct the Merkle tree from   
and compare.

ct 𝒞

𝒞

 or 
 if  

𝙳𝚎𝚌sk(ct)
⊥ ct* ∈ 𝒞



Our Results

= known from standard assumption

= Impossible
= known from non-standard assumption

CPA

CCA1

VCCA

CCA2

CPA

CCA1
IV-CCA
VCCA

CCA2

Thanks for your Attention!


