
LWE with Quantum Amplitudes: 

Algorithm, Hardness, and Oblivious Sampling

Yilei Chen    Zihan Hu    Qipeng Liu    Han Luo Yaxin Tu

Tsinghua             EPFL                UCSD             Tsinghua      Princeton

https://arxiv.org/abs/2310.00644



Lattice problems that are conjectured hard against 

quantum computers:

• Short vector problems (SVP)

• Short integer solution (SIS)

• Learning with errors (LWE)

Are they really hard for 

quantum computers?



In this talk

• Intro to learning with errors (LWE) and its quantum 

variant “Solve |LWE>” (S|LWE>). 

• S|LWE> for Gaussian amplitudes: hardness and 

algorithm.

• S|LWE> for specific amplitudes: algorithm and 

application to oblivious sampling.



In this talk

• Intro to learning with errors (LWE) and its quantum 

variant “Solve |LWE>” (S|LWE>). 

• S|LWE> for Gaussian amplitudes: hardness and 

algorithm.

• S|LWE> for specific amplitudes: algorithm and 

application to oblivious sampling.



What is learning with errors (LWE)?

s = [ s1 , s2 , s3 , s4 ] is the secret vector.

Given an oracle O_s( ). Over one click, returns a random linear 

combination of the secret, plus a small amount of noise.



What is learning with errors (LWE)?

s = [ s1 , s2 , s3 , s4 ] is the secret vector.

Given an oracle O_s( ). Over one click, returns a random linear 

combination of the secret, plus a small amount of noise.

(think of ≈ as + or - a small number)

34 s1 + 12 s2 + 39 s3 + 16 s4 ≈ 38
63 s1 + 29 s2 + 17 s3 +  7 s4 ≈ 22

9 s1 + 31 s2 + 52 s3 + 14 s4 ≈  1
54 s1 + 18 s2 + 43 s3 + 61 s4 ≈ 59
19 s1 + 27 s2 + 53 s3 + 13 s4 ≈ 15

…
24 s1 + 50 s2 +  3 s3 + 36 s4 ≈ 58

LWE: given the coefficients, the answers, find the secret vector.

mod 67



Learning with errors (formal)

s = [ s1 , s2 , … , sn ] is the secret vector.

Given samples of the form

a1 , y1 =  <s, a1> + e1 mod q

a2 , y2 =  <s, a2> + e2 mod q

…

am , ym =  <s, am> + em mod q

Goal: find the secret vector (or the error vector).

Typical parameters: q = O(n2), m = poly(n), |e| < n.

Typical error distribution: 

Gaussian



If you quantumly solve the LWE 

problem, you quantumly solve 

Approximate SIVP, SIS, EDCP 

problems, etc.



Shortest Integer 
Solution

(extrapolated) 
Dihedral Coset

Learning with 
Errors

[ Ajtai 96 ]

[ Regev 02 ]

[ BKSW 18 ]

[ Regev 05 ]

[ SSTX 09 ]

[ Regev 02 ]

obvious

obvious

obvious

Approximate Shortest Vector Problem 

A B
A reduces to B, i.e., if there is an 

Alg for B, there is an Alg for A

classical

quantum



How to use Quantum 
to solve LWE?



Make LWE 
Quantum?



Solve|LWE> !



Learning with errors (formal)

s = [ s1 , s2 , … , sn ] is the secret vector.

Given samples of the form

a1 , y1 =  <s, a1> + e1 mod q

a2 , y2 =  <s, a2> + e2 mod q

…

am , ym =  <s, am> + em mod q

Goal: find the secret vector (or the error vector).

Typical parameters: q = O(n2), m = poly(n), |e| < n.

Typical error distribution: 

Gaussian



Solve |Learning with errors> (S|LWE>)

s = [ s1 , s2 , … , sn ] is the secret vector.

Given quantum samples of the form



Solve |Learning with errors> (S|LWE>)

s = [ s1 , s2 , … , sn ] is the secret vector.

Given quantum samples of the form

a1 , |y1> = ∑e_1 ∊ [0, ..., q-1] f(e1) | <s, a1> + e1 mod q >

a2 , |y2> = ∑e_2 ∊ [0, ..., q-1] f(e2) | <s, a2> + e2 mod q >

…

am , |ym> = ∑e_m ∊ [0, ..., q-1] f(em) | <s, am> + em mod q >

Goal: find the secret vector (or the error vector).

Reference [ CLZ22 ].

f: the error 
amplitude!



Solve |Learning with errors> (S|LWE>)

Gaussian           Laplacian    Bounded uniform    sin(x)/x

f

DFT(f)



In this talk

• Intro to learning with errors (LWE) and its quantum 

variant “Solve |LWE>” (S|LWE>). 

• S|LWE> for Gaussian amplitudes: hardness and 

algorithm.

• S|LWE> for specific amplitudes: algorithm and 

application to oblivious sampling.



Shortest Integer 
Solution

(extrapolated) 
Dihedral Coset

Learning with 
Errors

[ Ajtai 96 ]

[ Regev 02 ]

[ BKSW 18 ]

[ Regev 05 ]

[ SSTX 09 ]

[ Regev 02 ]

obvious

obvious

obvious

Approximate Shortest Vector Problem 

Does [ BKSW 18 ] work for S|LWE>?



(extrapolated) 
Dihedral Coset

Learning with 
Errors[ BKSW 18 ]

Does [ BKSW 18 ] work for S|LWE>?

Problem: the reduction in 

[ BKSW 18 ] only reduces (extrapolated) 

Dihedral Coset Problem to the classical 

LWE problem.



Reduction from LWE to S|LWE>

Step 1. Prepare

∑j ∊ [0, ..., q-1] ρ(j) |j> ∑v ∊ [0, ..., q-1]^n ρ(v) |v> ∑x ∊ [0, ..., q-1]^m ρ(x) |x>



Reduction from LWE to S|LWE>

Step 1. Prepare

∑j ∊ [0, ..., q-1] ρ(j) |j> ∑v ∊ [0, ..., q-1]^n ρ(v) |v> ∑x ∊ [0, ..., q-1]^m ρ(x) |x>

[ BKSW 18 ] uses uniform distribution 
over a bounded sphere here.



Reduction from LWE to S|LWE>

Step 1. Prepare

∑j ∊ [0, ..., q-1] ρ(j) |j> ∑v ∊ [0, ..., q-1]^n ρ(v) |v> ∑x ∊ [0, ..., q-1]^m ρ(x) |x>

    ->  For classical LWE instance y = AT s + e , add AT v – j ⋅ y to 

|x>, get

∑v, x ( ∑j ρ(j) ρ(x + j ⋅ e) |j> |v + j ⋅ s> ) | AT v + x >

[ BKSW 18 ] uses uniform distribution 
over a bounded sphere here.



Reduction from LWE to S|LWE>

Step 1. Prepare

∑j ∊ [0, ..., q-1] ρ(j) |j> ∑v ∊ [0, ..., q-1]^n ρ(v) |v> ∑x ∊ [0, ..., q-1]^m ρ(x) |x>

    ->  For classical LWE instance y = AT s + e , add AT v – j ⋅ y to 

|x>, get

∑v, x ( ∑j ρ(j) ρ(x + j ⋅ e) |j> |v + j ⋅ s> ) | AT v + x >

    ->  Measure AT v + x , get EDCP state with unknown center

∑j ρ(j - c) |j> |v + j ⋅ s>

[ BKSW 18 ] uses uniform distribution 
over a bounded sphere here.

The success probability 1 – exp(-n), 
while in [ BKSW 18 ] it is 1 – 1/poly(n).



Reduction from LWE to S|LWE>

Step 2. 

    ->  Measure AT v + x , get EDCP state with unknown center

∑j ρ(j - c) |j> |v + j ⋅ s>



Reduction from LWE to S|LWE>

Step 2. 

    ->  Measure AT v + x , get EDCP state with unknown center

∑j ρ(j - c) |j> |v + j ⋅ s>

    ->  QFT on 2nd register, get

∑a ∑j e
2π i <a, v + j ⋅ s> /q ρ(j - c) |j> |a>



Reduction from LWE to S|LWE>

Step 2. 

    ->  Measure AT v + x , get EDCP state with unknown center

∑j ρ(j - c) |j> |v + j ⋅ s>

    ->  QFT on 2nd register, get

∑a ∑j e
2π i <a, v + j ⋅ s> /q ρ(j - c) |j> |a>

    ->  Measure a, then QFT on 1st register, get

∑e ρ(e) exp( 2π i ce/q ) |<s, -a> + e mod q>

S|LWE> state with unknown phase.



[ Regev 05 ]

Approximate Shortest Vector Problem 

Learning with 
Errors

We also provide another 

reduction from LWE to 

S|LWE> with unknown phase, 

quantizing [ Regev 05 ]

See Appendix, or Section 6 in 

our full version.



The unknown phase 
turns out to be crucial 

because…



Subexponential time algo for S|LWE>

s = [ s1 , s2 , … , sn ] is the secret vector.

Given subexponential many samples of the form

aj , |yj> = ∑e_j ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q >

Our work. A subexponential time quantum algorithm for 

solving S|LWE> with completely known amplitudes.

(the amplitude f can be anything as long as DFT(f) has more 

than one non-negligible points, including Gaussian and 

Gaussian with known phase)



Subexponential time algo for S|LWE>

s = [ s1 , s2 , … , sn ] is the secret vector.

Given subexponential many samples of the form

aj , |yj> = ∑e_j ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q >

Idea. Apply QFT on the S|LWE> samples 

    ->  ∑k DFT(f)(k) e2π i k<s, a>/q |k>



Subexponential time algo for S|LWE>

s = [ s1 , s2 , … , sn ] is the secret vector.

Given subexponential many samples of the form

aj , |yj> = ∑e_j ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q >

Idea. Apply QFT on the S|LWE> samples 

    ->  ∑k DFT(f)(k) e2π i k<s, a>/q |k>

    -> Apply quantum rejection sampling to get

|0> + e2π i <s, a>/q |1> 



Subexponential time algo for S|LWE>

s = [ s1 , s2 , … , sn ] is the secret vector.

Given subexponential many samples of the form

aj , |yj> = ∑e_j ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q >

Idea. Apply QFT on the S|LWE> samples 

    ->  ∑k DFT(f)(k) e2π i k<s, a>/q |k>

    -> Apply quantum rejection sampling to get

|0> + e2π i <s, a>/q |1> 

    -> Use Kuperberg sieve: given a, |0> + e2π i <s, a>/q |1> , find s. 

         (needs 2𝑂( 𝑛⋅log 𝑞) many samples, time 2𝑂( 𝑛⋅log 𝑞))



In this talk

• Intro to learning with errors (LWE) and its quantum 

variant “Solve |LWE>” (S|LWE>). 

• S|LWE> for Gaussian amplitudes: hardness and 

algorithm.

• S|LWE> for specific amplitudes: algorithm and 

application to oblivious sampling.



Efficient algorithm for S|LWE> 

s = [ s1 , s2 , … , sn ] is the secret vector.

Given sample of the form:

aj, |yj> = ∑e_j ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q > 



Efficient algorithm for S|LWE> 

s = [ s1 , s2 , … , sn ] is the secret vector.

Given sample of the form:

aj, |yj> = ∑e_j ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q > 

Our work. A poly(n, log q) time quantum algorithm for solving 

S|LWE> using only m = Õ (n) samples, for a specific amplitude f: 

f(e) =  ρσ(e) ⋅ exp(-π i e^2/p)



Efficient algorithm for S|LWE> 

s = [ s1 , s2 , … , sn ] is the secret vector.

Given sample of the form:

aj, |yj> = ∑e_j ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q > 

Our work. A poly(n, log q) time quantum algorithm for solving 

S|LWE> using only m = Õ (n) samples, for a specific amplitude f: 

Gaussian of width σ,
satisfying some mild restrictions 

f(e) =  ρσ(e) ⋅ exp(-π i e^2/p)



Efficient algorithm for S|LWE> 

s = [ s1 , s2 , … , sn ] is the secret vector.

Given sample of the form:

aj, |yj> = ∑e_j ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q > 

Our work. A poly(n, log q) time quantum algorithm for solving 

S|LWE> using only m = Õ (n) samples, for a specific amplitude f: 

Unit-length complex number,
Gaussian rotation

Gaussian of width σ,
satisfying some mild restrictions 

f(e) =  ρσ(e) ⋅ exp(-π i e^2/p)



Efficient algorithm for S|LWE> 

s = [ s1 , s2 , … , sn ] is the secret vector.

Given sample of the form:

aj, |yj> = ∑e_j ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q > 

Our work. A poly(n, log q) time quantum algorithm for solving 

S|LWE> using only m = Õ (n) samples, for a specific amplitude f: 

Unit-length complex number,
Gaussian rotation

Gaussian of width σ,
satisfying some mild restrictions 

f(e) =  ρσ(e) ⋅ exp(-π i e^2/p)

Carefully chosen p



Efficient algorithm for S|LWE>: Overview

Each sample of the form: 

aj, |yj> = ∑e ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q >

where f(ej) =  ρσ(ej) ⋅ exp(-π i ej
2/p) for some number p | q. 

center of |yj>



Efficient algorithm for S|LWE>: Overview

Each sample of the form: 

aj, |yj> = ∑e ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q >

where f(ej) =  ρσ(ej) ⋅ exp(-π i ej
2/p) for some number p | q. 

Plan: 
• extract |yj>’s center: <s, aj> mod q, 
• solve s mod q by Gaussian elimination.  



Efficient algorithm for S|LWE>: Overview

Each sample of the form: 

aj, |yj> = ∑e ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q >

where f(ej) =  ρσ(ej) ⋅ exp(-π i ej
2/p) for some number p | q. 

Plan: 
• extract |yj>’s center: <s, aj> mod q, 
• solve s mod q by Gaussian elimination.  

Key observation
For each c ∊ [0, ..., p-1] , define |ψc> = ∑e ∊ [0, ..., q-1] f(e)  | c + e mod q >.

When q >> p, {|ψc>}c ∊ [0, ..., p-1] are almost orthogonal. 



Efficient algorithm for S|LWE>: Overview

Each sample of the form: 

aj, |yj> = ∑e ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q >

where f(ej) =  ρσ(ej) ⋅ exp(-π i ej
2/p) for some number p | q. 

Plan: 
• extract |yj>’s center: <s, aj> mod q, 
• solve s mod q by Gaussian elimination.  

Key observation
For each c ∊ [0, ..., p-1] , define |ψc> = ∑e ∊ [0, ..., q-1] f(e)  | c + e mod q >.

When q >> p, {|ψc>}c ∊ [0, ..., p-1] are almost orthogonal. 

-> Measure |yj> in appropriate basis extracts <s, aj> mod p with high 
probability. 



Efficient algorithm for S|LWE>: Overview

Each sample of the form: 

aj, |yj> = ∑e ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q >

where f(ej) =  ρσ(ej) ⋅ exp(-π i ej
2/p) for some number p | q. 

Plan: 
• extract |yj>’s center: <s, aj> mod q, 
• solve s mod q by Gaussian elimination.  

Key observation
For each c ∊ [0, ..., p-1] , define |ψc> = ∑e ∊ [0, ..., q-1] f(e)  | c + e mod q >.

When q >> p, {|ψc>}c ∊ [0, ..., p-1] are almost orthogonal. 

-> Measure |yj> in appropriate basis extracts <s, aj> mod p with high 
probability. 
-> Caveat: only works when q >> p.



Efficient algorithm for S|LWE>: Overview

Each sample of the form: 

aj, |yj> = ∑e ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q >

where f(ej) =  ρσ(ej) ⋅ exp(-π i ej
2/p) for some number p | q. 

Plan: 
• extract |yj>’s center: <s, aj> mod q, 
• solve s mod q by Gaussian elimination.  

Key observation
For each c ∊ [0, ..., p-1] , define |ψc> = ∑e ∊ [0, ..., q-1] f(e)  | c + e mod q >.

When q >> p, {|ψc>}c ∊ [0, ..., p-1] are almost orthogonal. 

-> Measure |yj> in appropriate basis extracts <s, aj> mod p with high 
probability. 
-> Caveat: only works when q >> p.
-> Resolved by restricting to a composite number q = p1p2...pl, and 
extracting <s, aj> mod p1, ... , <s, aj> mod pl respectively. 



Efficient algorithm for S|LWE>: Overview

Each sample of the form: 

aj, |yj> = ∑e ∊ [0, ..., q-1] f(ej) | <s, aj> + ej mod q >

where f(ej) =  ρσ(ej) ⋅ exp(-π i ej
2/p) for some number p | q. 

Plan: 
• extract |yj>’s center: <s, aj> mod q, 
• solve s mod q by Gaussian elimination.  

Key observation
For each c ∊ [0, ..., p-1] , define |ψc> = ∑e ∊ [0, ..., q-1] f(e)  | c + e mod q >.

When q >> p, {|ψc>}c ∊ [0, ..., p-1] are almost orthogonal. 

-> Measure |yj> in appropriate basis extracts <s, aj> mod p with high 
probability. 
-> Caveat: only works when q >> p.
-> Resolved by restricting to a composite number q = p1p2...pl, and 
extracting <s, aj> mod p1, ... , <s, aj> mod pl respectively. 
-> Modulus Switching technique in [BLP+13] can switch to any q’ < q.



Oblivious LWE Sampling from S|LWE> 
[Reg09, CLZ22, DFS24]

Oblivious LWE Sampling: Sample (A, sA + e) without knowing s. 



Oblivious LWE Sampling from S|LWE> 
[Reg09, CLZ22, DFS24]

Oblivious LWE Sampling: Sample (A, sA + e) without knowing s. 

• We don’t know any efficient classical oblivious LWE sampler.  

• [DFS24] Efficient quantum oblivious LWE sampler. 



Oblivious LWE Sampling from S|LWE> 
[Reg09, CLZ22, DFS24]

Oblivious LWE Sampling: Sample (A, sA + e) without knowing s. 

• We don’t know any efficient classical oblivious LWE sampler.  

• [DFS24] Efficient quantum oblivious LWE sampler. 

S|LWE> algorithm Oblivious LWE Sampler



Oblivious LWE Sampling from S|LWE> 
[Reg09, CLZ22, DFS24]

Oblivious LWE Sampling: Sample (A, sA + e) without knowing s. 

• We don’t know any efficient classical oblivious LWE sampler.  

• [DFS24] Efficient quantum oblivious LWE sampler. 

S|LWE> algorithm Oblivious LWE Sampler

∑ s |s > ⨂ ∑ e f(e) |e >  



Oblivious LWE Sampling from S|LWE> 
[Reg09, CLZ22, DFS24]

Oblivious LWE Sampling: Sample (A, sA + e) without knowing s. 

• We don’t know any efficient classical oblivious LWE sampler.  

• [DFS24] Efficient quantum oblivious LWE sampler. 

S|LWE> algorithm Oblivious LWE Sampler

∑ s |s > ⨂ ∑ e f(e) |e >  

∑ s |s > ⨂ ∑ e f(e) |sA + e >  



Oblivious LWE Sampling from S|LWE> 
[Reg09, CLZ22, DFS24]

Oblivious LWE Sampling: Sample (A, sA + e) without knowing s. 

• We don’t know any efficient classical oblivious LWE sampler.  

• [DFS24] Efficient quantum oblivious LWE sampler. 

S|LWE> algorithm Oblivious LWE Sampler

∑ s |s > ⨂ ∑ e f(e) |e >  

∑ s |s > ⨂ ∑ e f(e) |sA + e >  

∑ s |0 > ⨂ ∑ e f(e) |sA + e >  

Solve s from ∑ e f(e) |sA + e >  via S|LWE> algorithm 



Oblivious LWE Sampling from S|LWE> 
[Reg09, CLZ22, DFS24]

Oblivious LWE Sampling: Sample (A, sA + e) without knowing s. 

• We don’t know any efficient classical oblivious LWE sampler.  

• [DFS24] Efficient quantum oblivious LWE sampler. 

S|LWE> algorithm Oblivious LWE Sampler

∑ s |s > ⨂ ∑ e f(e) |e >  

∑ s |s > ⨂ ∑ e f(e) |sA + e >  

∑ s |0 > ⨂ ∑ e f(e) |sA + e >  

Solve s from ∑ e f(e) |sA + e >  via S|LWE> algorithm 

Measure the second register to get sA + e, error distribution e ∼ |f|2.  



Improved Oblivious LWE Sampler

Run time Sample Complexity (m)

[DFS24] poly(n, log q) Õ (nσ)

Ours poly(n, log q) Õ (n)

LWE error: 
Gaussian of width σ

Oblivious LWE Sampling: Sample (A, sA + e) without knowing s.

s = [s1, … , sn], A = [a1, … , am], e = [e1, … , em].

Improved S|LWE> Improved Oblivious LWE Sampler



Takeaways

• 2𝑂( 𝑛⋅log 𝑞)-time S|LWE> algorithm for known 

amplitudes with >1 non-negligible point in DFT.

• When 𝑞 is a power-of-2, [BJKNY25] gives 2𝑂(log 𝑛⋅log 𝑞)-

time algorithm. 

• poly(𝑛, log 𝑞)-time S|LWE> algorithm for a specific 

complex Gaussian amplitude, using Õ (n) samples.

• S|LWE> (Gaussian amplitude with a small unknown 

phase) is as hard as LWE. 



Thanks for listening!

Questions are welcome! 


	幻灯片 1: LWE with Quantum Amplitudes:  Algorithm, Hardness, and Oblivious Sampling
	幻灯片 2
	幻灯片 3: In this talk
	幻灯片 4: In this talk
	幻灯片 5: What is learning with errors (LWE)?
	幻灯片 6: What is learning with errors (LWE)?
	幻灯片 7: Learning with errors (formal)
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13: Learning with errors (formal)
	幻灯片 14: Solve |Learning with errors> (S|LWE>)
	幻灯片 15: Solve |Learning with errors> (S|LWE>)
	幻灯片 16: Solve |Learning with errors> (S|LWE>)
	幻灯片 17: In this talk
	幻灯片 18
	幻灯片 19
	幻灯片 20: Reduction from LWE to S|LWE>
	幻灯片 21: Reduction from LWE to S|LWE>
	幻灯片 22: Reduction from LWE to S|LWE>
	幻灯片 23: Reduction from LWE to S|LWE>
	幻灯片 24: Reduction from LWE to S|LWE>
	幻灯片 25: Reduction from LWE to S|LWE>
	幻灯片 26: Reduction from LWE to S|LWE>
	幻灯片 27
	幻灯片 28
	幻灯片 29: Subexponential time algo for S|LWE>
	幻灯片 30: Subexponential time algo for S|LWE>
	幻灯片 31: Subexponential time algo for S|LWE>
	幻灯片 32: Subexponential time algo for S|LWE>
	幻灯片 33: In this talk
	幻灯片 34: Efficient algorithm for S|LWE> 
	幻灯片 35: Efficient algorithm for S|LWE> 
	幻灯片 36: Efficient algorithm for S|LWE> 
	幻灯片 37: Efficient algorithm for S|LWE> 
	幻灯片 38: Efficient algorithm for S|LWE> 
	幻灯片 39: Efficient algorithm for S|LWE>: Overview
	幻灯片 40: Efficient algorithm for S|LWE>: Overview
	幻灯片 41: Efficient algorithm for S|LWE>: Overview
	幻灯片 42: Efficient algorithm for S|LWE>: Overview
	幻灯片 43: Efficient algorithm for S|LWE>: Overview
	幻灯片 44: Efficient algorithm for S|LWE>: Overview
	幻灯片 45: Efficient algorithm for S|LWE>: Overview
	幻灯片 46: Oblivious LWE Sampling from S|LWE>  [Reg09, CLZ22, DFS24]
	幻灯片 47: Oblivious LWE Sampling from S|LWE>  [Reg09, CLZ22, DFS24]
	幻灯片 48: Oblivious LWE Sampling from S|LWE>  [Reg09, CLZ22, DFS24]
	幻灯片 49: Oblivious LWE Sampling from S|LWE>  [Reg09, CLZ22, DFS24]
	幻灯片 50: Oblivious LWE Sampling from S|LWE>  [Reg09, CLZ22, DFS24]
	幻灯片 51: Oblivious LWE Sampling from S|LWE>  [Reg09, CLZ22, DFS24]
	幻灯片 52: Oblivious LWE Sampling from S|LWE>  [Reg09, CLZ22, DFS24]
	幻灯片 53: Improved Oblivious LWE Sampler
	幻灯片 54: Takeaways
	幻灯片 55: Thanks for listening!  Questions are welcome! 

