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The Big Picture

In some applications of fully homomorphic encryption (FHE), we need
computations over a prescribed large modulus.

We design a dedicated FHE scheme by introducing a nested CRT
structure inside RLWE.
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Background: Fully Homomorphic Encryption (FHE)
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Example Application: Homomorphic Signing

In the following cases, we may need large (prescribed) modulus:

Universal Thresholdizer [BGG+18]:

∀ signature
Threshold FHE
=========⇒ one-round threshold signature

Universal Blinder:

∀ signature
Verifiable FHE
=========⇒ one-round blind signature

When thresholdizing/blinding well known signature schemes like ECDSA
and Schnorr, one needs arithmetic over some large elliptic curve primes
(e.g. 256 or 384 bit).
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Which FHE scheme to choose?

SIMD Plaintext Space

BGV/BFV ✓ Zp

CGGI/DM ✗ {0, 1}
CKKS ✓ C

Problem of BGV/BFV

The noise growth is proportional the plaintext modulus p.a

aOne may consider using the generalized BFV [GV25, CHM+25]. They only support
cyclotomic moduli, not arbitrary moduli.
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Discrete CKKS1

1[DMPS24, CKKL24, BCKS24, BKSS24, AKP25, KN25]
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Discrete CKKS

Supports the following homomorphic operations:

1 Arithmetic Operations [DMPS24]: + and × over Z.

2 Look-up Table [BKSS24, AKP25]: Any function f : Zt → Zt

3 Modular Reduction [KN25]: [·]t : Z → Zt .
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Our Construction: Ingredients

A homomorphic computer with +, ×, and [·]t over Z and R. The
computer is equipped with SIMD for a large dimension n (e.g. 215).

1 -2 6 · · · 4 -9 3

7 3 -3 · · · -2 8 -1

The computer only supports small integers (e.g. up to 8 bits).
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Step 1: Asymmetric Modular Reduction

[KN25] evaluates a polynomial interpolation to modular reduce. We
evaluate different polynomials for each slot to allow different modular
reductions across the slots.

3 2 1 · · · 10 10 3

10 7 4 · · · -1 -3 3

%7 %5 %3 · · · %11 %13 %17

Key Idea

Leverage CRT to store a large integer within a single ciphertext.
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First Layer CRT Encoding

In the slots, we assign moduli as follows:

p0 p0 p0 p0p1 p1 p1 p1p2 p2 p2 p2 Z4
p

The first layer CRT system, where (n, k) = (12, 3).

In particular, a ciphertext can store n/k integers of modulus p =
∏k

i=0 pi .

Checklist

✓ Homomorphic Zp computer for smooth p =
∏

i pi .

✓ Homomorphic Zpi computer (0 ≤ i < k).
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Step 2: Homomorphic Base Conversion

To support a modular reduction by an arbitrary integer r ≫ maxi (pi ),
we rely on the fast base conversion from [HPS19].

[HPS19] converts an integer x represented under CRT moduli {pi}0≤i<k

to a modulo r representation as follows:

[x ]r =

[
k−1∑
i=0

yi · [p̂i ]r − v · [p]r

]
r

where
p :=

∏k−1
i=0 pi , p̂i := p/pi

yi :=
[
[x ]pi · p̂

−1
i

]
pi

v := ⌊
∑k−1

i=0 yi/pi⌉
.
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Step 2: Homomorphic Base Conversion

As the last [·]r cannot be evaluated easily, we instead compute

k−1∑
i=0

yi · [p̂i ]r − v · [p]r = [x ]r + re

for some small e. Since we cannot directly store this big integer, we keep
our CRT representation. In terms of modulo pi computation, we compute

k−1∑
j=0

yj · [[p̂j ]r ]pi − v · [[p]r ]pi .
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Step 2: Homomorphic Base Conversion

k−1∑
j=0

yj · [[p̂j ]r ]pi − v · [[p]r ]pi .

This can be written as2

1 Arithmetic over pi (0 ≤ i < k).

2 Real number computation (to compute
∑k−1

i=0 yi/pi )

3 Rounding (to compute v)

Interestingly, the rounding is free due to the nature of discrete CKKS.

Checklist

✓ Homomorphic Zr computer (r <
√
p).

2Recall that v = ⌊
∑k−1

i=0 yi/pi⌉.
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Problem: Not enough small primes

Now we have modulo r arithmetic for a large integer r .
This seems to solve our initial goal, but...

Not enough small primes

The CRT moduli pi for 0 ≤ i < k need to be coprime to each other.
However, there is only a limited number of mutually coprime moduli.

For instance, there are 31 primes less than 128 which can represent at
most 27 × 34 × 53 × · · · < (27)31 = 2217.
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Step 3: Second Layer CRT Encoding

We may use different r across the (Zp) slots, providing a second layer
CRT system. Suppose that we use r0, r1, . . . , rℓ−1.

p0 p0 p0 p0p1 p1 p1 p1p2 p2 p2 p2

r0 r0r1 r1

Z4
p

Z2
r

The second layer CRT system, where (n, k , ℓ) = (12, 3, 2).

Then we have n
kℓ many Zr slots where r =

∏ℓ−1
i=0 ri .

Checklist

✓ Homomorphic Zr computer (r =
∏

i ri ).

✓ Homomorphic Zri computer (0 ≤ i < ℓ).
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Step 4: Second Layer Base Conversion

To take a larger modular reduction by s ∈ Z>0, we simulate the
homomorphic base conversion in Step 2. To do this, we need

Arithmetic Operations over Zri : ✓

Problems

Real Number Arithmetic: We no longer have a baseline
homomorphic real number computer.

Rounding: We no longer can rely on the nature of discrete CKKS.

⇒ we refer to our paper for details.

Checklist

✓ Homomorphic Zs computer (s <
√
r , r =

∏
i ri ).
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Summary

p0 p0 p0 p0p1 p1 p1 p1p2 p2 p2 p2

r0 r0r1 r1

s s

Z4
p

Z2
r

Z2
s

A visualization of the nested CRT system.

Observe that

log s ≈ 1

2

∑
j

log rj ≈
1

4

∑
j

∑
i

log pi ≤
n

4
log t = O(n)

where t is the maximum plaintext modulus that supports modular
reduction from [KN25].
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Experiments

All experiments in single threaded CPU (Apple M4 Max), satisfying 128
bits of security according to [BTPH22].

log(r) # slots
Zr mult time

latency amortized time

960 32 18.3 sec 572 ms

7679 4 18.4 sec 4.60 sec

Smooth (Zr ) Modular Multiplication.

log(s) # slots
Zs mult time

latency amortized time

255 32 150 sec 4.67 sec

384 32 149 sec 4.66 sec

2048 4 190 sec 47.5 sec

Arbitrary (Zs ⊂ Zr ) Modular Multiplication.
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Experiments

log(t) # slots latency throughput

TFHE-rs [Zam22]
128

1
101 sec 101 sec

256 403 sec 403 sec

This paper
128 256 18.3 sec 0.0715 sec
256 128 18.3 sec 0.143 sec

Comparison with the state-of-the-art integer (bootstrapped) multiplications. Here
t denotes the plaintext modulus.
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Takeaways

Instead of directly supporting a large modulus, we show how to build
a large integer computer from small integer computers via CRT.

Sacrificing the number of slots gives you better latency.

Q: Is there an analogue in BGV/BFV?
A: The generalized BFV [GV25, CHM+25], for cyclotomic rings.

Q: Can we do better for power-of-two?
A: Use partial DFT encoding [Kim25]
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Thank you!

ePrint 2025/346

jaehyungkim0/CRT-FHE
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