
Homomorphic Encryption for Large Integers
from Nested Residue Number Systems

Dan Boneh and Jaehyung Kim

Jaehyung Kim Large Integer FHE Aug 20th, 2025 1 / 25



The Big Picture

In some applications of fully homomorphic encryption (FHE), we need
computations over a prescribed large modulus.

We design a dedicated FHE scheme by introducing a nested CRT
structure inside RLWE.

Jaehyung Kim Large Integer FHE Aug 20th, 2025 2 / 25



Background: Fully Homomorphic Encryption (FHE)

Jaehyung Kim Large Integer FHE Aug 20th, 2025 3 / 25



Example Application: Homomorphic Signing

In the following cases, we may need large (prescribed) modulus:

Universal Thresholdizer [BGG+18]:

∀ signature
Threshold FHE
=========⇒ one-round threshold signature

Universal Blinder:

∀ signature
Verifiable FHE
=========⇒ one-round blind signature

When thresholdizing/blinding well known signature schemes like ECDSA
and Schnorr, one needs arithmetic over some large elliptic curve primes
(e.g. 256 or 384 bit).

Jaehyung Kim Large Integer FHE Aug 20th, 2025 4 / 25



Which FHE scheme to choose?

SIMD Plaintext Space

BGV/BFV ✓ Zp

CGGI/DM ✗ {0, 1}
CKKS ✓ C

Problem of BGV/BFV

The noise growth is proportional the plaintext modulus p.a

aOne may consider using the generalized BFV [GV25, CHM+25]. They only support
cyclotomic moduli, not arbitrary moduli.

Jaehyung Kim Large Integer FHE Aug 20th, 2025 5 / 25



Discrete CKKS1

1[DMPS24, CKKL24, BCKS24, BKSS24, AKP25, KN25]
Jaehyung Kim Large Integer FHE Aug 20th, 2025 6 / 25



Discrete CKKS

Supports the following homomorphic operations:

1 Arithmetic Operations [DMPS24]: + and × over Z.

2 Look-up Table [BKSS24, AKP25]: Any function f : Zt → Zt

3 Modular Reduction [KN25]: [·]t : Z → Zt .

Jaehyung Kim Large Integer FHE Aug 20th, 2025 7 / 25



Our Construction: Ingredients

A homomorphic computer with +, ×, and [·]t over Z and R. The
computer is equipped with SIMD for a large dimension n (e.g. 215).

1 -2 6 · · · 4 -9 3

7 3 -3 · · · -2 8 -1

The computer only supports small integers (e.g. up to 8 bits).

Jaehyung Kim Large Integer FHE Aug 20th, 2025 8 / 25



Step 1: Asymmetric Modular Reduction

[KN25] evaluates a polynomial interpolation to modular reduce. We
evaluate different polynomials for each slot to allow different modular
reductions across the slots.

3 2 1 · · · 10 10 3

10 7 4 · · · -1 -3 3

%7 %5 %3 · · · %11 %13 %17

Key Idea

Leverage CRT to store a large integer within a single ciphertext.

Jaehyung Kim Large Integer FHE Aug 20th, 2025 9 / 25



First Layer CRT Encoding

In the slots, we assign moduli as follows:

p0 p0 p0 p0p1 p1 p1 p1p2 p2 p2 p2 Z4
p

The first layer CRT system, where (n, k) = (12, 3).

In particular, a ciphertext can store n/k integers of modulus p =
∏k

i=0 pi .

Checklist

✓ Homomorphic Zp computer for smooth p =
∏

i pi .

✓ Homomorphic Zpi computer (0 ≤ i < k).

Jaehyung Kim Large Integer FHE Aug 20th, 2025 10 / 25



Step 2: Homomorphic Base Conversion

To support a modular reduction by an arbitrary integer r ≫ maxi (pi ),
we rely on the fast base conversion from [HPS19].

[HPS19] converts an integer x represented under CRT moduli {pi}0≤i<k

to a modulo r representation as follows:

[x ]r =

[
k−1∑
i=0

yi · [p̂i ]r − v · [p]r

]
r

where
p :=

∏k−1
i=0 pi , p̂i := p/pi

yi :=
[
[x ]pi · p̂

−1
i

]
pi

v := ⌊
∑k−1

i=0 yi/pi⌉
.

Jaehyung Kim Large Integer FHE Aug 20th, 2025 11 / 25



Step 2: Homomorphic Base Conversion

As the last [·]r cannot be evaluated easily, we instead compute

k−1∑
i=0

yi · [p̂i ]r − v · [p]r = [x ]r + re

for some small e. Since we cannot directly store this big integer, we keep
our CRT representation. In terms of modulo pi computation, we compute

k−1∑
j=0

yj · [[p̂j ]r ]pi − v · [[p]r ]pi .

Jaehyung Kim Large Integer FHE Aug 20th, 2025 12 / 25



Step 2: Homomorphic Base Conversion

k−1∑
j=0

yj · [[p̂j ]r ]pi − v · [[p]r ]pi .

This can be written as2

1 Arithmetic over pi (0 ≤ i < k).

2 Real number computation (to compute
∑k−1

i=0 yi/pi )

3 Rounding (to compute v)

Interestingly, the rounding is free due to the nature of discrete CKKS.

Checklist

✓ Homomorphic Zr computer (r <
√
p).

2Recall that v = ⌊
∑k−1

i=0 yi/pi⌉.
Jaehyung Kim Large Integer FHE Aug 20th, 2025 13 / 25



Problem: Not enough small primes

Now we have modulo r arithmetic for a large integer r .
This seems to solve our initial goal, but...

Not enough small primes

The CRT moduli pi for 0 ≤ i < k need to be coprime to each other.
However, there is only a limited number of mutually coprime moduli.

For instance, there are 31 primes less than 128 which can represent at
most 27 × 34 × 53 × · · · < (27)31 = 2217.

Jaehyung Kim Large Integer FHE Aug 20th, 2025 14 / 25



Step 3: Second Layer CRT Encoding

We may use different r across the (Zp) slots, providing a second layer
CRT system. Suppose that we use r0, r1, . . . , rℓ−1.

p0 p0 p0 p0p1 p1 p1 p1p2 p2 p2 p2

r0 r0r1 r1

Z4
p

Z2
r

The second layer CRT system, where (n, k , ℓ) = (12, 3, 2).

Then we have n
kℓ many Zr slots where r =

∏ℓ−1
i=0 ri .

Checklist

✓ Homomorphic Zr computer (r =
∏

i ri ).

✓ Homomorphic Zri computer (0 ≤ i < ℓ).

Jaehyung Kim Large Integer FHE Aug 20th, 2025 15 / 25



Step 4: Second Layer Base Conversion

To take a larger modular reduction by s ∈ Z>0, we simulate the
homomorphic base conversion in Step 2. To do this, we need

Arithmetic Operations over Zri : ✓

Problems

Real Number Arithmetic: We no longer have a baseline
homomorphic real number computer.

Rounding: We no longer can rely on the nature of discrete CKKS.

⇒ we refer to our paper for details.

Checklist

✓ Homomorphic Zs computer (s <
√
r , r =

∏
i ri ).

Jaehyung Kim Large Integer FHE Aug 20th, 2025 16 / 25



Summary

p0 p0 p0 p0p1 p1 p1 p1p2 p2 p2 p2

r0 r0r1 r1

s s

Z4
p

Z2
r

Z2
s

A visualization of the nested CRT system.

Observe that

log s ≈ 1

2

∑
j

log rj ≈
1

4

∑
j

∑
i

log pi ≤
n

4
log t = O(n)

where t is the maximum plaintext modulus that supports modular
reduction from [KN25].

Jaehyung Kim Large Integer FHE Aug 20th, 2025 17 / 25



Experiments

All experiments in single threaded CPU (Apple M4 Max), satisfying 128
bits of security according to [BTPH22].

log(r) # slots
Zr mult time

latency amortized time

960 32 18.3 sec 572 ms

7679 4 18.4 sec 4.60 sec

Smooth (Zr ) Modular Multiplication.

log(s) # slots
Zs mult time

latency amortized time

255 32 150 sec 4.67 sec

384 32 149 sec 4.66 sec

2048 4 190 sec 47.5 sec

Arbitrary (Zs ⊂ Zr ) Modular Multiplication.

Jaehyung Kim Large Integer FHE Aug 20th, 2025 18 / 25



Experiments

log(t) # slots latency throughput

TFHE-rs [Zam22]
128

1
101 sec 101 sec

256 403 sec 403 sec

This paper
128 256 18.3 sec 0.0715 sec
256 128 18.3 sec 0.143 sec

Comparison with the state-of-the-art integer (bootstrapped) multiplications. Here
t denotes the plaintext modulus.

Jaehyung Kim Large Integer FHE Aug 20th, 2025 19 / 25



Takeaways

Instead of directly supporting a large modulus, we show how to build
a large integer computer from small integer computers via CRT.

Sacrificing the number of slots gives you better latency.

Q: Is there an analogue in BGV/BFV?
A: The generalized BFV [GV25, CHM+25], for cyclotomic rings.

Q: Can we do better for power-of-two?
A: Use partial DFT encoding [Kim25]

Jaehyung Kim Large Integer FHE Aug 20th, 2025 20 / 25



Thank you!

ePrint 2025/346

jaehyungkim0/CRT-FHE

Jaehyung Kim Large Integer FHE Aug 20th, 2025 21 / 25



Bibliography I

A. Alexandru, A. Kim, and Y. Polyakov.
General functional bootstrapping using CKKS.
In CRYPTO, 2025.

Y. Bae, J. H. Cheon, J. Kim, and D. Stehlé.
Bootstrapping bits with CKKS.
In EUROCRYPT, 2024.

D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R.
Rasmussen, and A. Sahai.
Threshold cryptosystems from threshold fully homomorphic
encryption.
In CRYPTO, 2018.

Y. Bae, J. Kim, D. Stehlé, and E. Suvanto.
Bootstrapping small integers with CKKS.
In ASIACRYPT, 2024.

Jaehyung Kim Large Integer FHE Aug 20th, 2025 22 / 25



Bibliography II

J.-P. Bossuat, J. Troncoso-Pastoriza, and J.-P. Hubaux.
Bootstrapping for approximate homomorphic encryption
with negligible failure-probability by using sparse-secret encapsulation.
In ACNS, 2022.

H. Cha, I. Hwang, S. Min, J. Seo, and Y. Song.
MatriGear: Accelerating Authenticated Matrix Triple Generation with
Scalable Prime Fields via Optimized HE Packing .
In IEEE S&P, 2025.

H. Chung, H. Kim, Y.-S. Kim, and Y. Lee.
Amortized large look-up table evaluation with multivariate polynomials
for homomorphic encryption.
IACR eprint 2024/274, 2024.

Jaehyung Kim Large Integer FHE Aug 20th, 2025 23 / 25



Bibliography III

N. Drucker, G. Moshkowich, T. Pelleg, and H. Shaul.
BLEACH: Cleaning errors in discrete computations over CKKS.
J. Cryptol., 2024.

R. Geelen and F. Vercauteren.
Fully homomorphic encryption for cyclotomic prime moduli.
In EUROCRYPT, 2025.

S. Halevi, Y. Polyakov, and V. Shoup.
An improved rns variant of the bfv homomorphic encryption scheme.
In CT-RSA, 2019.

J. Kim.
Faster homomorphic integer computer.
Cryptology ePrint Archive, Paper 2025/1440, 2025.

Jaehyung Kim Large Integer FHE Aug 20th, 2025 24 / 25



Bibliography IV

J. Kim and T. Noh.
Modular reduction in CKKS.
Communication in Cryptology, 2025.

Zama.
TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for
Boolean and Integer Arithmetics Over Encrypted Data, 2022.
https://github.com/zama-ai/tfhe-rs.

Jaehyung Kim Large Integer FHE Aug 20th, 2025 25 / 25

https://github.com/zama-ai/tfhe-rs

	Introduction
	Our Construction

