Sometimes-Decryptable Homomorphic Encryption
from Sub-exponential DDH

Abhishek Jain Zhengzhong Jin
NTT and Johns Hopkins University Northeastern University

Homomorphic Encryption gg (HE)

Homomorphic Encryption gg (HE)

i

Homomorphic Encryption gg (HE)

BN

Homomorphic Encryption gg (HE)

)

Homomorphic Encryption gg (HE)

] [

4

Many Applications: computing over encrypted data

Homomorphic Encryption gg (HE)

] [

4

Many Applications: computing over encrypted data

Prior Work

Homomorphic Encryption gg (HE)

] [

4

Many Applications: computing over encrypted data

Prior Work

 Fully homomorphism:

Homomorphic Encryption gg (HE)
f

Many Applications: computing over encrypted data

Prior Work

Fully homomorphism:
Lattice [Gentry’09, Dijk-Gentry-Halevi-Vaikuntanathan’10, Brakerski-Vaikuntanathan’11,
Brakerski-Gentry-Vaikuntanathan’12, Gentry-Sahai-Waters’13],

10 [Canetti-Lin-Tessaro-Vaikuntanathan’15, Jain-Lin-Sahai’21, Jain-Lin-Sahai’22,
Ragavan-Vafa-Vaikuntanathan’24]

Homomorphic Encryption gg (HE)

Many Applications: computing over encrypted data

Prior Work

Fully homomorphism:
Lattice [Gentry’09, Dijk-Gentry-Halevi-Vaikuntanathan’10, Brakerski-Vaikuntanathan’11,
Brakerski-Gentry-Vaikuntanathan’12, Gentry-Sahai-Waters’13],
10 [Canetti-Lin-Tessaro-Vaikuntanathan’15, Jain-Lin-Sahai’21, Jain-Lin-Sahai’22,
Ragavan-Vafa-Vaikuntanathan’24]

2-DNF: bilinear maps [Boneh-Goh-Nissim’05]

Can we build HE from group-based assumptions,
for a larger class of functionality?

This Work: Sometimes-Decryptable HE

This Work: Sometimes-Decryptable HE

f
][]

This Work: Sometimes-Decryptable HE

This Work: Sometimes-Decryptable HE

Sometimes-Decryptable: Pr[Decrypt correct| > 2~ ~A° where c € (0,1)

Formal Definition: later

This Work: Sometimes-Decryptable HE

/ 5 i
. '"e'?'rx?t-* f(x)orl:

Sometimes-Decryptable: Pr|Decrypt correct| > 2-2° where ¢ € (0,1)

Formal Definition: later

This Work: Sometimes-Decryptable HE

f -
é . il f(x)orl

Sometimes-Decryptable: Pr|Decrypt correct| > 2-2° where ¢ € (0,1)

Formal Definition: later

This Work: Sometimes-Decryptable HE

/ 5 i
. '"e'?'rx?t-* f(x)orl:

Sometimes-Decryptable: Pr|Decrypt correct| > 2-2° where ¢ € (0,1)

Formal Definition: later

This Work: Sometimes-Decryptable HE

v
1
~
=
—
©

-

Sometimes-Decryptable: Pr|Decrypt correct| > 2-2° where ¢ € (0,1)

Formal Definition: later

Decryption/Extraction only in the Security Proof:
Sometimes extractable commitment — statistical Zaps [Kalai-Khurana-Sahai’18]
Somewhere extractable commitment [Hubacek-Wichs’15], predicate-extractable
commitment [Brakerski-Brodsky-Kalai-Lombardi-Paneth’23] - SNARGs
Correlation intractable hash [Canetti-Chen-Holmgren-Lombardi-Rothblum-Rothblum-Wichs,
Peikert-Shiehian’19] = NIZKs/SNARGs

Our Result

Assuming sub-exponential hardness of Decisional Diffie-Hellman (DDH),
there exists a sometimes-decryptable homomorphic encryption for TC.

Our Result

Assuming sub-exponential hardness of Decisional Diffie-Hellman (DDH),
there exists a sometimes-decryptable homomorphic encryption for TC.

(TC?: constant-depth threshold circuits)

Application: Succinct Non-interactive ARGuments
(SNARGS)

CRS: Common Reference String

-

Application: Succinct Non-interactive ARGuments
(SNARGS)

CRS: Common Reference String

‘x € L” <

Application: Succinct Non-interactive ARGuments
(SNARGS)

CRS: Common Reference String

“x € L”

e

Application: Succinct Non-interactive ARGuments
(SNARGS)

CRS: Common Reference String

“x € L”

e

Application: Succinct Non-interactive ARGuments
(SNARGS)

CRS: Common Reference String

“x € L”

e

Succinct: |Proof| < |w]

Application: Succinct Non-interactive ARGuments
(SNARGS)

CRS: Common Reference String

“x € L”

e

Succinct: |Proof| < |w]

v/ X

Application: Succinct Non-interactive ARGuments
(SNARGS)

CRS: Common Reference String

‘x eL”

a.
V' /X

* Completeness: Vx € L, the honestly generated proof is accepted.

Succinct: |Proof| « Iw\
(x, w)

Application: Succinct Non-interactive ARGuments
(SNARGS)

CRS: Common Reference String

‘x eL”

Succinct: |Proof| « \w\

8.
Vv '/ X

* Completeness: Vx € L, the honestly generated proof is accepted.

(x, w)

* Soundness: foranyx & L, and any PPT. adversary, the cheating proof
should be rejected.

Application: Succinct Non-interactive ARGuments
(SNARGS)

CRS: Common Reference String

‘x eL”

Succinct: |Proof| « Iw\
(x, w)

8.
Vv '/ X

* Completeness: Vx € L, the honestly generated proofis accepted.

* Soundness: foranyx & L, and any PPT. adversary, the cheating proof
should be rejected.
Many applications: delegation of computation, blockchain and cryptocurrency, etc.

Application (1): SNARGs

Assuming sub-exponential hardness of DDH, there exists a SNARG for any NP
language that has a poly-size TC® Frege Logic proof of non-membership.

Application (1): SNARGs

Assuming sub-exponential hardness of DDH, there exists a SNARG for any NP
language that has a poly-size TC® Frege Logic proof of non-membership.

(a subclass of NP N coNP)

Application (1): SNARGs

Assuming sub-exponential hardness of DDH, there exists a SNARG for any NP
language that has a poly-size TC® Frege Logic proof of non-membership.

(a subclass of NP N coNP)

Prior work on SNARGs via Logic Proofs of Non-membership:
[Jain-J’22] from 10, [J-Kalai-Lombardi-Vaikuntanathan’24] from LWE

Application (1): SNARGs

Assuming sub-exponential hardness of DDH, there exists a SNARG for any NP
language that has a poly-size TC® Frege Logic proof of non-membership.

(a subclass of NP N coNP)

Prior work on SNARGs via Logic Proofs of Non-membership:
[Jain-J’22] from 10, [J-Kalai-Lombardi-Vaikuntanathan’24] from LWE

Example: DDH Language

f(g,h,g°,h’)|s €Z,g,h € G}

Implication: Monotone-Policy Batch Arguments

CRS

' &

Implication: Monotone-Policy Batch Arguments

CRS

' &

X1 e0e Xpey W1 ... Wy

Implication: Monotone-Policy Batch Arguments

CRS

“f(1x,eL, -r 1x,er) = 17, f: @ monotone circuit

' &

X1 o0e Xpey W1 ... Wy

implication: Monotone-Policy Batch Arguments

CRS

“f(1x,eL, -r 1x,er) = 17, f: @ monotone circuit

p & Succinct: |Proof| K k - |w|

X1 o0e Xpey W1 ... Wy I

implication: Monotone-Policy Batch Arguments

CRS

“f(1x,eL, -r 1x,er) = 17, f: @ monotone circuit

p & Succinct: |Proof| K k - |w|

X1 o0e Xpey W1 ... Wy I

Implication: Monotone-Policy Batch Arguments

CRS

“f(1x,eL, -r 1x,er) = 17, f: @ monotone circuit

Succinct: |Proof k- |w N
P | | < k- |wi ; %
X1 e0e Xpey W1 ... W I X1 e X

* Priorwork: [Brakerski-Brodsky-Kalai-Paneth’23] Monotone Policy BARGs from LWE

Implication: Monotone-Policy Batch Arguments

CRS

“f(1x,eL, -r 1x,er) = 17 f: @ monotone circuit

p & Succinct: |Proof| K k - |w|

X1 o0e Xpey W1 ... Wy I

* Priorwork: [Brakerski-Brodsky-Kalai-Paneth’23] Monotone Policy BARGs from LWE
* Concurrent: [Nassar-Waters-Wu’24] from sub-exp DDH (different approach),
or poly-hard k-Lin in pairing groups

X1 e Xpp

Application (2): Monotone-Policy BARGs

Assuming sub-exponential hardness of DDH, there exists a monotone-
policy BARGs for all polynomial-size monotone circuits.

More in the paper: Predicate-Extractable hash and
Correlation-Intractable hash from sub-exp DDH.

Rest of the lalk

Rest of the lalk

Formal Definition of
Sometimes-Decryptable HE

Rest of the lalk

Formal Definition of Construction of
Sometimes-Decryptable HE Sometimes-Decryptable HE

Rest of the lalk

Formal Definition of
Sometimes-Decryptable HE

Defining Sometimes-Decryptable HE (s-HE)

Defining Sometimes-Decryptable HE (s-HE)

We will define the properties of s-HE step by step.

Defining Sometimes-Decryptable HE (s-HE)

We will define the properties of s-HE step by step.
Gen(ll) — (pk, sk, Pred)

Defining Sometimes-Decryptable HE (s-HE)

We will define the properties of s-HE step by step.

Gen(lﬂ) — (pk, sk,Pred) Only privately computable

Defining Sometimes-Decryptable HE (s-HE)

We will define the properties of s-HE step by step.

Gen(lﬂ) — (pk, sk,Pred) Only privately computable

ES

P

Defining Sometimes-Decryptable HE (s-HE)

We will define the properties of s-HE step by step.

Gen(lﬂ) — (pk, sk,Pred) Only privately computable

B
X —> (CT
pk

Defining Sometimes-Decryptable HE (s-HE)

We will define the properties of s-HE step by step.

Gen(lﬂ) — (pk, sk,Pred) Only privately computable

| X \ f > CT If Pred(CT) = 1, then
pk Dec(CT) = f(x).

Defining Sometimes-Decryptable HE (s-HE)

We will define the properties of s-HE step by step.

Gen(lﬂ) — (pk, sk,Pred) Only privately computable

| X \ L CT If Pred(CT) = 1, then
pk Dec(CT) = f(x).

Defining Sometimes-Decryptable HE (s-HE)

We will define the properties of s-HE step by step.

Gen(lﬂ) — (pk, sk,Pred) Only privately computable

| X \ L CT If Pred(CT) = 1, then
pk Dec(CT) = f(x).

Sometimes Decryptable (attempt

Defining Sometimes-Decryptable HE (s-HE)

We will define the properties of s-HE step by step.

Gen(lﬂ) — (pk, sk,Pred) Only privately computable

| X \ L CT If Pred(CT) = 1, then
pk Dec(CT) = f(x).

Sometimes Decryptable (attempt

(for malicious CT)

Defining Sometimes-Decryptable HE (s-HE)

We will define the properties of s-HE step by step.

Gen(lﬂ) — (pk, sk,Pred) Only privately computable

| X \ L CT If Pred(CT) = 1, then
pk Dec(CT) = f(x).

Sometimes Decrvyptable (attempt a;
(for malicious CT)

Defining Sometimes-Decryptable HE (s-HE)

We will define the properties of s-HE step by step.

Gen(lﬂ) — (pk, sk,Pred) Only privately computable

f If Pred(CT) = 1, then
pk Dec(CT) = f(x).

Sometimes Decryptable (attempt)

(for malicious CT)

Defining Sometimes-Decryptable HE (s-HE)

We will define the properties of s-HE step by step.

Gen(lﬂ) — (pk, sk,Pred) Only privately computable

| X \ L CT If Pred(CT) = 1, then
pk Dec(CT) = f(x).

Sometimes Decryptable (attempt) S)
« Pr[Pred(CT*) = 1] > 274

(for malicious CT) opT | ———>

Issue: Probability Can’t Compose

Issue: Probability Can’'t Compose

pk
%

CT,,CT,
—_—

Issue: Probability Can’'t Compose

pk)
«<——— Pr|Pred(CTy) = 1] > i — u

CTy, CT, Pr[Pred(CT,) = 1] > u

>

Issue: Probability Can’t Compose

pk)
«<——— Pr|Pred(CTy) = 1] > i —

CTy, CT, Pr[Pred(CT,) = 1] > u

>

We can’t conclude Pr[Pred(CT;) A Pred(CT,)] > u?

Avoid Composition via Multi-bit Evaluation

Avoid Composition via Multi-bit Evaluation

X > | f(x)
pk pk

y > |1 g()
pk pk

Avoid Composition via Multi-bit Evaluation

X > | f(x)
pk pk

2

y > |1 g()
pk pk

Avoid Composition via Multi-bit Evaluation

f(x)

pk

g)

pk

2

f,9

f(x)
g)

Avoid Composition via Multi-bit Evaluation

X > | f(x)

2

y > 1 g() Dk

New Issue: we lost ‘gate-by-gate’ structure in HE evaluation——
Can’t talk about ‘intermediate ciphertext’ fora gatein f, g.

Homomorphic Eval Provides Intermediate CT

Homomorphic Eval Provides Intermediate CT

Homomorphic Eval Provides Intermediate CT

X \O/
y Q/Q
pk

Homomorphic Eval Provides Intermediate CT

CT; = (header, payload;)

Eval also outputs intermediate CT for each gate
O — O/ P 2

O/Q

CT, = (header, payload,)

Homomorphic Eval Provides Intermediate CT

CT; = (header, payload;)

(p Eval also outputs intermediate CT for each gate

Header-Payload Structure

b Cl =(header, payload)

neaders are the same for all gates

CT, = (header, payload,)

Homomorphic Eval Provides Intermediate CT

CT; = (header, payload;)

(p Eval also outputs intermediate CT for each gate

Header-Payload Structure

b Cl =(header, payload)

neaders are the same for all gates

CT, = (header, pay]()adz) (Implicit in many FHE constructions)

Homomorphic Eval Provides Intermediate CT

CT; = (header, payload;)

(p Eval also outputs intermediate CT for each gate

Header-Payload Structure

b Cl =(header, payload)

neaders are the same for all gates

CT, = (header, pay]()adz) (Implicit in many FHE constructions)

Pred now only depends on header: Pred(header) =1 => Dec correct.

Homomorphic Eval Provides Intermediate CT

CT; = (header, payload;)

(p Eval also outputs intermediate CT for each gate

Header-Payload Structure

b CT = (header, payload)

neaders are the same for all gates

CT, = (header, pay]()adz) (Implicit in many FHE constructions)

Pred now only depends on header: Pred(header) =1 => Dec correct.

How to locally certify the correctness of intermediate ciphertexts?

SNARG for Local Correctness

SNARG for Local Correctness

We generate a SNARG proof to certify the
correctness for each intermediate ciphertext.

Summary of Definition for s-HE
Gen(14) - (pk,sk,Pred) Pred : privately computable

Homomorphic Evaluation

* Header-payload structure: CT = (header, payload)

* |f Pred(header) = 1, then decryption is correct.

e Sometimes Decryptable for Malicious CT:

| k

p C
header™ PI‘[Pred(header*) — 1] S 24
PPT. — >

e SNARGs for local correctness of intermediate CT

Rest of the lalk

Formal Definition of Construction of
Sometimes-Decryptable HE Sometimes-Decryptable HE

Rest of the lalk

Construction of
Sometimes-Decryptable HE

Starting Point: HE for Linear Functions

Starting Point: HE for Linear Functions
(A variant of ElGamal)

Starting Point: HE for Linear Functions
(A variant of ElGamal)

S
* KeyGen:pk=(g,9) Sk = S

Starting Point: HE for Linear Functions

(A variant of ElGamal) Output length for linear functions

4 - A
S

* KeyGen:pk=(g,9) Sk = S

Starting Point: HE for Linear Functions

(A variant of ElGamal) Output length for linear functions
T
S
* KeyGen:pk=(g,9) Sk = S
m
r| |7 S + e
m

° EnC(pk: me {0,1}?'1): CT . (g J'g

Starting Point: HE for Linear Functions

(A variant of ElGamal) Output length for linear functions
T
S
* KeyGen:pk=(g,9) Sk = S
m
r| |7 S + e
m

° EnC(pk: me {0,1}?'1): CT . (g J'g
Eval(pk, CT, f)

Starting Point: HE for Linear Functions

(A variant of ElGamal) Output length for linear functions
T
S
* KeyGen:pk=(g,9) Sk = S
m
r| |7 S + e
m

* Enc(pk,m € {0,1}"):CT=(g—,g
Eval(pk, CT, f)
Represent f: {0,1}"* - {0,1} as f4, ..., f» € {0,1}"

Starting Point: HE for Linear Functions
(A variant of ElGamal)

 KeyGen: pk=(g,9

* Enc(pk, m € {0,1}"):CT=(g

il .o fo |lr

S

)

Output length for linear functions

)

sk =

AN

-

~N

S

Eval(pk, CT, f)
Represent f: {0,1}"* - {0,1}* as f4, ..., f» € {0,1}"

T T
£l fi

T
fi, o fr

HE for Linear Functions: Decryption

Eval(pk, CT, f)

£T - fr r S +

HE for Linear Functions: Decryption

Eval(pk, CT, f)

£T - fr r S +

header

HE for Linear Functions: Decryption

header

Eval(pk, CT, f)

fT

payload

HE for Linear Functions: Decryption

Eval(pk, CT, f)

fT r fT r

header

* Decryption: divide payload by header

payload

, 8el g

SNARGs for Local Correctness

m

Eval(pk, CT, f)

T T r
f]_T: ey J P f]_ :---:ff’ + flT,

SNARGs for Local Correctness

m

Eval(pk, CT, f)

T T T
flTJ ey)y fl) J'ff + flTJ

fr.o.ffl+|0.f]..0

N

—

™S
[

SNARGs for Local Correctness

SNARGs for Local Correctness

i-th Output of Eval(f,-)

SNARGs for Local Correctness

i-th Output of Eval(f,-)

fil.0.f5llr

0..fi ..0 ||r

SNARGs for Local Correctness

fil..0.f7}

0..f] ..0

i-th Output of Eval(f,-)

fi..0..f7F

Si + |f1..0..f

4

0..f;..0

S; + ffm

SNARGs for Local Correctness

fil..0.f7}

0..f] ..0

i-th Output of Eval(f,-)

fi..0..f7F

Si +f{

0. f

L

0..f;..0

S; + ffm

SNARGs for Local Correctness

fil..0.f7}

0..f] ..0

i-th Output of Eval(f,-)

fi..0..f7F

S; +|f1..0..f}

0..f;..0

S; + ffm

SNARGs for Local Correctness

fi..0.f7}

0..f] ..0

i-th Output of Eval(f,-)

fi..0..f7F

0..f;..0

SNARGs for Local Correctness

fi..0.f7}

0..f] ..0

i-th Output of Eval(f,-)

fi..0..f7F

5; A0

0..f;..0

SNARGs for Local Correctness

fil..0.f7}

0..f] ..0

i-th Output of Eval(f,-)

fi..0..f7F

S; +[f1..0...f7

0..f;..0

S; + ffm

SNARGs for Local Correctness

fil..0.f7}

0..f] ..0

i-th Output of Eval(f,-)

fi..0..f7F

0..f;..0

S; + ffm

SNARGs for Local Correctness

fil..0.f7}

0..f] ..0

i-th Output of Eval(f,-)

fi..0..f7F

0..f;..0

S; + ffm

SNARGs for Local Correctness

fil..0.f7}

0..f] ..0

i-th Output of Eval(f,-)

fi..0..f7F

0..f;..0

S; + ffm

SNARGs for Local Correctness

fil..0.f7}

0..f] ..0

i-th Output of Eval(f,-)

fi..0..f7F

0..f;..0

S; + ffm

SNARGs for Local Correctness

fi..0.f7}

0..f] ..0

i-th Output of Eval(f,-)

fi..0..f7F

0..f;..0

S; + ffm

SNARGs for Local Correctness

fi..0.f7}

0..f] ..0

i-th Output of Eval(f,-)

fi..0..f7F

0..f;..0

S; + ffm

SNARGs for Local Correctness

fi..0.f7}

0..f] ..0

i-th Output of Eval(f,-)

fi..0..f7F

0..f;..0

S; + ffm

SNARGs for Local Correctness

fi..0.f7}

f

1.0..f7F

0..f] ..0

0..f;..0

S; + ffm

SNARGs for Local Correctness

Prove this Part via SNARGs for Linear relations from sub-exp DDH
[Choudhuri-Garg-Jain-J-Zhang’23]

fi..0..follr fi..0.f5|7|Si

0..fT..0|lr 0..fT.0|r|si+ fi -m
‘g g

SNARGs for Local Correctness

Prove this Part via SNARGs for Linear relations from sub-exp DDH
[Choudhuri-Garg-Jain-J-Zhang’23]

fi..0..follr fi..0.f5|7|Si

0..fT..0|lr 0..fT.0|r|si+ fi -m
‘g g

The verifier can compute by itself in time poly(input arity of i-th output)

Bootstrap from Linear Functions to TCY (high-level)

Bootstrap from Linear Functions to TCY (high-level)

Evaluated ciphertext

fr r fr r S + fr

Bootstrap from Linear Functions to TCY (high-level)

Evaluated ciphertext

fr r fr r S + fr

“share conversion”
[Boyle-Gilboa-Ishai’16]

Bootstrap from Linear Functions to TCY (high-level)

Evaluated ciphertext

fr r fr r S + fr

“share conversion”
[Boyle-Gilboa-Ishai’16]

binary payload

Bootstrap from Linear Functions to TCY (high-level)

Evaluated ciphertext

fr r fr r S + fr

“share conversion”
[Boyle-Gilboa-Ishai’16]

Additive decryption: Decryption = binary payload @ BGl(header” s)

Bootstrap from Linear Functions to TCY (high-level)

Evaluated ciphertext

fr r fr r S + fr

“share conversion”
[Boyle-Gilboa-Ishai’16]

Additive decryption: Decryption = binary payload @ BGl(header” s)

|—> s-HE for a layer of Threshold Gates —— s-HE for full TC®
[Jain-)’21] techniques

Summary of Results

Summary of Results

e Sometimes-decryptable HE for TC® from sub-exp DDH

Summary of Results

» Sometimes-decryptable HE for TC® from sub-exp DDH

* Applications:

» SNARGSs from sub-exp DDH for languages that has poly-size TC° Frege
proof of non-membership

* Monotone-Policy BARGs from sub-exp DDH

Summary of Results

» Sometimes-decryptable HE for TC® from sub-exp DDH

* Applications:

» SNARGSs from sub-exp DDH for languages that has poly-size TC° Frege
proof of non-membership

* Monotone-Policy BARGs from sub-exp DDH

Take away

Canreplace FHE in “proof-system applications” (e.g. NIZK/SNARG)
to achieve constructions from DDH In pairing-free groups!

Thank you!

Q&A

