Sometimes-Decryptable Homomorphic Encryption from Sub-exponential DDH

Abhishek Jain

NTT and Johns Hopkins University

Zhengzhong Jin

Northeastern University

Many Applications: computing over encrypted data

Many Applications: computing over encrypted data

Prior Work

Many Applications: computing over encrypted data

Prior Work

Fully homomorphism:

Many Applications: computing over encrypted data

Prior Work

Fully homomorphism:

Lattice [Gentry'09, Dijk-Gentry-Halevi-Vaikuntanathan'10, Brakerski-Vaikuntanathan'11, Brakerski-Gentry-Vaikuntanathan'12, Gentry-Sahai-Waters'13], iO [Canetti-Lin-Tessaro-Vaikuntanathan'15, Jain-Lin-Sahai'21, Jain-Lin-Sahai'22,

Ragavan-Vafa-Vaikuntanathan'24]

Many Applications: computing over encrypted data

Prior Work

- Fully homomorphism:
 - Lattice [Gentry'09, Dijk-Gentry-Halevi-Vaikuntanathan'10, Brakerski-Vaikuntanathan'11, Brakerski-Gentry-Vaikuntanathan'12, Gentry-Sahai-Waters'13], iO [Canetti-Lin-Tessaro-Vaikuntanathan'15, Jain-Lin-Sahai'21, Jain-Lin-Sahai'22,
 - Ragavan-Vafa-Vaikuntanathan'24]
- 2-DNF: bilinear maps [Boneh-Goh-Nissim'05]

Can we build HE from group-based assumptions, for a larger class of functionality?

Formal Definition: later

Formal Definition: later

Formal Definition: later

Useful When: **Decryption is only needed in security proof** e.g. proof systems

Formal Definition: later

Formal Definition: later

Decryption/Extraction only in the Security Proof:

- Sometimes extractable commitment → statistical Zaps [Kalai-Khurana-Sahai'18]
- Somewhere extractable commitment [Hubacek-Wichs'15], predicate-extractable commitment [Brakerski-Brodsky-Kalai-Lombardi-Paneth'23] → SNARGs
- Correlation intractable hash [Canetti-Chen-Holmgren-Lombardi-Rothblum-Rothblum-Wichs, Peikert-Shiehian'19] → NIZKs/SNARGs

Our Result

Assuming sub-exponential hardness of Decisional Diffie-Hellman (DDH), there exists a sometimes-decryptable homomorphic encryption for TC⁰.

Our Result

Assuming sub-exponential hardness of Decisional Diffie-Hellman (DDH), there exists a sometimes-decryptable homomorphic encryption for TC⁰.

(TC⁰: constant-depth threshold circuits)

CRS: Common Reference String

1

CRS: Common Reference String

1

CRS: Common Reference String

• Completeness: $\forall x \in L$, the honestly generated proof is accepted.

- Completeness: $\forall x \in L$, the honestly generated proof is accepted.
- Soundness: for any $x \notin L$, and any PPT. adversary, the cheating proof should be rejected.

CRS: Common Reference String

- Completeness: $\forall x \in L$, the honestly generated proof is accepted.
- Soundness: for any $x \notin L$, and any PPT. adversary, the cheating proof should be rejected.

Many applications: delegation of computation, blockchain and cryptocurrency, etc.

Assuming sub-exponential hardness of DDH, there exists a SNARG for any NP language that has a poly-size TC⁰ Frege Logic proof of non-membership.

Assuming sub-exponential hardness of DDH, there exists a SNARG for any NP language that has a poly-size TC⁰ Frege Logic proof of non-membership.

(a subclass of NP \cap coNP)

Assuming sub-exponential hardness of DDH, there exists a SNARG for any NP language that has a poly-size TC⁰ Frege Logic proof of non-membership.

(a subclass of NP \cap coNP)

Prior work on SNARGs via Logic Proofs of Non-membership: [Jain-J'22] from iO, [J-Kalai-Lombardi-Vaikuntanathan'24] from LWE

Assuming sub-exponential hardness of DDH, there exists a SNARG for any NP language that has a poly-size TC⁰ Frege Logic proof of non-membership.

(a subclass of NP \cap coNP)

Prior work on SNARGs via Logic Proofs of Non-membership: [Jain-J'22] from iO, [J-Kalai-Lombardi-Vaikuntanathan'24] from LWE

Example: DDH Language $\{(g, h, g^s, h^s)|s \in \mathbb{Z}, g, h \in \mathbb{G}\}$

Implication: Monotone-Policy Batch Arguments

CRS

1

CRS

V

CRS

"
$$f(1_{x_1 \in L}, \dots, 1_{x_k \in L}) = 1$$
", f : a monotone circuit

$$x_1 \dots x_k, w_1 \dots w_k$$

V

CRS

"
$$f(1_{x_1 \in L}, \dots, 1_{x_k \in L}) = 1$$
", f : a monotone circuit

 $x_1 \dots x_k, w_1 \dots w_k$

Succinct: $|Proof| \ll k \cdot |w|$

CRS

"
$$f(1_{x_1 \in L}, \dots, 1_{x_k \in L}) = 1$$
", f : a monotone circuit

$$x_1 ... x_k, w_1 ... w_k$$

Succinct: $|Proof| \ll k \cdot |w|$

$$x_1 \dots x_k$$

Prior work: [Brakerski-Brodsky-Kalai-Paneth'23] Monotone Policy BARGs from LWE

- Prior work: [Brakerski-Brodsky-Kalai-Paneth'23] Monotone Policy BARGs from LWE
- Concurrent: [Nassar-Waters-Wu'24] from sub-exp DDH (different approach),
 or poly-hard k-Lin in pairing groups

Application (2): Monotone-Policy BARGs

Assuming sub-exponential hardness of DDH, there exists a monotone-policy BARGs for all polynomial-size monotone circuits.

More in the paper: Predicate-Extractable hash and

Correlation-Intractable hash from sub-exp DDH.

Formal Definition of Sometimes-Decryptable HE

Formal Definition of Sometimes-Decryptable HE

Construction of Sometimes-Decryptable HE

Formal Definition of Sometimes-Decryptable HE

Construction of Sometimes-Decryptable HE

$$Gen(1^{\lambda}) \rightarrow (pk, sk, Pred)$$

$$Gen(1^{\lambda}) \rightarrow (pk, sk, Pred)$$
 Only **privately** computable

Gen
$$(1^{\lambda}) \rightarrow (pk, sk, Pred)$$
 Only **privately** computable

$$Gen(1^{\lambda}) \rightarrow (pk, sk, Pred)$$
 Only **privately** computable

$$\begin{array}{c|c} f \\ \hline x \\ \hline pk \end{array}$$

Gen
$$(1^{\lambda}) \rightarrow (pk, sk, \text{Pred})$$
 Only **privately** computable

$$\begin{array}{c|c} x & f \\ \hline pk & \end{array}$$
 CT
$$\begin{array}{c|c} \text{If } \operatorname{Pred}(\operatorname{CT}) = 1, \text{ then} \\ \operatorname{Dec}(\operatorname{CT}) = f(x). \end{array}$$

If
$$Pred(CT) = 1$$
, then $Dec(CT) = f(x)$.

$$\begin{array}{c|c} f \\ \hline x \\ \hline pk \end{array}$$

If
$$Pred(CT) = 1$$
, then $Dec(CT) = f(x)$.

We will define the properties of s-HE step by step.

Gen
$$(1^{\lambda}) \rightarrow (pk, sk, Pred)$$
 Only **privately** computable

$$\begin{array}{c|c} f \\ \hline x \\ \hline pk \end{array}$$

If
$$Pred(CT) = 1$$
, then $Dec(CT) = f(x)$.

Sometimes Decryptable (attempt)

We will define the properties of s-HE step by step.

$$Gen(1^{\lambda}) \rightarrow (pk, sk, Pred)$$
 Only **privately** computable

$$\begin{array}{c|c} f \\ \hline x \\ \hline pk \end{array}$$

If
$$Pred(CT) = 1$$
, then $Dec(CT) = f(x)$.

Sometimes Decryptable (attempt)

(for malicious CT)

We will define the properties of s-HE step by step.

$$Gen(1^{\lambda}) \rightarrow (pk, sk, Pred)$$
 Only **privately** computable

If
$$Pred(CT) = 1$$
, then $Dec(CT) = f(x)$.

Sometimes Decryptable (attempt)

(for malicious CT)

We will define the properties of s-HE step by step.

$$Gen(1^{\lambda}) \rightarrow (pk, sk, Pred)$$
 Only **privately** computable

$$x \rightarrow CT$$

If
$$Pred(CT) = 1$$
, then $Dec(CT) = f(x)$.

 $\frac{\text{Sometimes Decryptable (attempt)}}{\text{(for malicious CT)}} \stackrel{pk}{\longleftarrow} \underbrace{\frac{\text{CT}^*}{\text{CT}^*}}_{\text{PPT.}}$

We will define the properties of s-HE step by step.

$$Gen(1^{\lambda}) \rightarrow (pk, sk, Pred)$$
 Only **privately** computable

$$\begin{array}{c|c} f \\ \hline x \\ \hline pk \end{array}$$

If
$$Pred(CT) = 1$$
, then $Dec(CT) = f(x)$.

$$\begin{array}{ccc}
& & \text{Pr}[\text{Pred}(\text{CT}_1) = 1] > 2^{-\lambda^c} \coloneqq \mu \\
& & & \text{CT}_1, \text{CT}_2 & \text{Pr}[\text{Pred}(\text{CT}_2) = 1] > \mu
\end{array}$$

We can't conclude $Pr[Pred(CT_1) \land Pred(CT_2)] \ge \mu^2$

New Issue: we lost 'gate-by-gate' structure in HE evaluation—— Can't talk about 'intermediate ciphertext' for a gate in f, g.

Homomorphic Eval Provides Intermediate CT

Homomorphic Eval Provides Intermediate CT

Homomorphic Eval Provides Intermediate CT

Eval also outputs intermediate CT for each gate

Eval also outputs intermediate CT for each gate

Header-Payload Structure

CT = (header, payload)

headers are the same for all gates

Eval also outputs intermediate CT for each gate

Header-Payload Structure

CT = (header, payload)

headers are the same for all gates

(Implicit in many FHE constructions)

Eval also outputs intermediate CT for each gate

Header-Payload Structure

CT = (header, payload)

headers are the same for all gates

 $CT_2 = (header, payload_2)$

(Implicit in many FHE constructions)

Pred now only depends on header: Pred(header) = 1 => Dec correct.

Eval also outputs intermediate CT for each gate

Header-Payload Structure

CT = (header, payload)

headers are the same for all gates

 $CT_2 = (header, payload_2)$

(Implicit in many FHE constructions)

Pred now only depends on header: Pred(header) = 1 => Dec correct.

How to locally certify the correctness of intermediate ciphertexts?

We generate a SNARG proof to certify the correctness for each intermediate ciphertext.

Summary of Definition for s-HE

 $Gen(1^{\lambda}) \rightarrow (pk, sk, Pred)$ Pred: privately computable

Homomorphic Evaluation

- Header-payload structure: CT = (header, payload)
- If Pred(header) = 1, then decryption is correct.
- Sometimes Decryptable for Malicious CT:

$$\frac{pk}{\text{header}^*} \stackrel{\text{Pr[Pred(header^*)}}{\longrightarrow} = 1] > 2^{-\lambda^c}$$

SNARGs for local correctness of intermediate CT

Rest of the Talk

Formal Definition of Sometimes-Decryptable HE

Construction of Sometimes-Decryptable HE

Rest of the Talk

Formal Definition of Sometimes-Decryptable HE

Construction of Sometimes-Decryptable HE

(A variant of ElGamal)

(A variant of ElGamal)

• KeyGen: pk =
$$(g, g | S)$$
 $sk = S$

(A variant of ElGamal)

Output length for linear functions

• KeyGen: pk =
$$(g, g)$$

$$sk = S$$

(A variant of ElGamal)

Output length for linear functions

• KeyGen: pk =
$$(g, g)$$

$$sk = S$$

• Enc(pk,
$$m \in \{0,1\}^n$$
): CT = (g^r) , g^r g^r g^r g^r g^r

(A variant of ElGamal)

Output length for linear functions

m

• KeyGen:
$$pk = (g, g)$$

$$sk = S$$

• Enc(pk,
$$m \in \{0,1\}^n$$
): CT = (g^r) , g^r

Eval(pk, CT, f)

(A variant of ElGamal)

Output length for linear functions

• KeyGen:
$$pk = (g, g)$$

$$sk = S$$

• Enc(pk,
$$m \in \{0,1\}^n$$
): CT = (g^r) , g^r

Eval(pk, CT, f)

Represent $f: \{0,1\}^n \to \{0,1\}^\ell \text{ as } f_1, \dots, f_\ell \in \{0,1\}^n$

(A variant of ElGamal)

Output length for linear functions

• KeyGen:
$$pk = (g, g)$$

$$sk = S$$

• Enc(pk,
$$m \in \{0,1\}^n$$
): CT = $(g \mid r)$, $g \mid r \mid s$...

$$g = \frac{\text{Eval}(\mathsf{pk},\mathsf{CT},f)}{\mathsf{Represent}\,f\colon\{0,1\}^n \to \{0,1\}^\ell \text{ as } f_1,\dots,f_\ell \in \{0,1\}^n} \\ g = \frac{f_1^T,\dots,f_\ell^T}{r} \\$$

• Decryption: divide payload by header set g, get g

$$f_1^T, ..., f_\ell^T = f_1^T ... 0 ... f_\ell^T + 0 ... f_i^T ... 0$$

i-th Output of $Eval(f,\cdot)$		

$$\cdot g \qquad \qquad r \qquad \cdot g \qquad \qquad r \qquad \cdot g \qquad \qquad r \qquad s_i + f_i^T \cdot m$$

Prove this Part via SNARGs for Linear relations from sub-exp DDH [Choudhuri-Garg-Jain-J-Zhang'23]

$$g^{oldsymbol{f_1^T}\dots \mathbf{0}\dots f_\ell^T}$$
 , $g^{oldsymbol{f_1^T}\dots \mathbf{0}\dots f_\ell^T}$, $f^{oldsymbol{f_1^T}\dots \mathbf{0}\dots f_\ell^T}$

$$\cdot g \begin{bmatrix} \mathbf{0} \dots f_i^T \dots \mathbf{0} \\ g \end{bmatrix} \cdot g \begin{bmatrix} \mathbf{0} \dots f_i^T \dots \mathbf{0} \\ g \end{bmatrix} r + f_i^T \cdot m$$

The verifier can compute by itself in time poly(input arity of i-th output)

Additive decryption: Decryption = $\frac{1}{2}$ binary payload $\frac{1}{2}$ BGI(header $\frac{1}{2}$)

• Sometimes-decryptable HE for TC⁰ from sub-exp DDH

- Sometimes-decryptable HE for TC⁰ from sub-exp DDH
- Applications:
 - SNARGs from sub-exp DDH for languages that has poly-size TC⁰ Frege proof of non-membership
 - Monotone-Policy BARGs from sub-exp DDH

- Sometimes-decryptable HE for TC⁰ from sub-exp DDH
- Applications:
 - SNARGs from sub-exp DDH for languages that has poly-size TC⁰ Frege proof of non-membership
 - Monotone-Policy BARGs from sub-exp DDH

Take away

Can replace FHE in "proof-system applications" (e.g. NIZK/SNARG) to achieve constructions from DDH in pairing-free groups!

Thank you!

Q&A