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2-DNF: bilinear maps [Boneh-Goh-Nissim’05]







Can we build HE from group-based assumptions,
for a larger class of functionality?



This Work: Sometimes-Decryptable HE



This Work: Sometimes-Decryptable HE

f
][]



This Work: Sometimes-Decryptable HE




This Work: Sometimes-Decryptable HE

Sometimes-Decryptable: Pr[Decrypt correct| > 2~ ~A° where c € (0,1)

Formal Definition: later



This Work: Sometimes-Decryptable HE

/ 5 i
. '"e'?'rx?t-* f(x)orl:

Sometimes-Decryptable: Pr|Decrypt correct| > 2-2° where ¢ € (0,1)

Formal Definition: later



This Work: Sometimes-Decryptable HE

f -
é . il f(x)orl

Sometimes-Decryptable: Pr|Decrypt correct| > 2-2° where ¢ € (0,1)

Formal Definition: later




This Work: Sometimes-Decryptable HE

/ 5 i
. '"e'?'rx?t-* f(x)orl:

Sometimes-Decryptable: Pr|Decrypt correct| > 2-2° where ¢ € (0,1)

Formal Definition: later



This Work: Sometimes-Decryptable HE

v
1
~
=
—
©

-

Sometimes-Decryptable: Pr|Decrypt correct| > 2-2° where ¢ € (0,1)

Formal Definition: later

Decryption/Extraction only in the Security Proof:
Sometimes extractable commitment — statistical Zaps [Kalai-Khurana-Sahai’18]
Somewhere extractable commitment [Hubacek-Wichs’15], predicate-extractable
commitment [Brakerski-Brodsky-Kalai-Lombardi-Paneth’23] - SNARGs
Correlation intractable hash [Canetti-Chen-Holmgren-Lombardi-Rothblum-Rothblum-Wichs,
Peikert-Shiehian’19] = NIZKs/SNARGs
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there exists a sometimes-decryptable homomorphic encryption for TC.

(TC?: constant-depth threshold circuits)
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CRS: Common Reference String

‘x eL”

Succinct: |Proof| « Iw\
(x, w)

8.
Vv '/ X

* Completeness: Vx € L, the honestly generated proofis accepted.

* Soundness: foranyx & L, and any PPT. adversary, the cheating proof
should be rejected.
Many applications: delegation of computation, blockchain and cryptocurrency, etc.
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Assuming sub-exponential hardness of DDH, there exists a SNARG for any NP
language that has a poly-size TC® Frege Logic proof of non-membership.

(a subclass of NP N coNP)

Prior work on SNARGs via Logic Proofs of Non-membership:
[Jain-J’22] from 10, [J-Kalai-Lombardi-Vaikuntanathan’24] from LWE

Example: DDH Language

f(g,h,g°,h’)|s €Z,g,h € G}
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Implication: Monotone-Policy Batch Arguments

CRS

“f(1x,eL, -r 1x,er) = 17 f: @ monotone circuit

p & Succinct: |Proof| K k - |w|

X1 o0e Xpey W1 ... Wy I

* Priorwork: [Brakerski-Brodsky-Kalai-Paneth’23] Monotone Policy BARGs from LWE
* Concurrent: [Nassar-Waters-Wu’24] from sub-exp DDH (different approach),
or poly-hard k-Lin in pairing groups

X1 e Xpp



Application (2): Monotone-Policy BARGs

Assuming sub-exponential hardness of DDH, there exists a monotone-
policy BARGs for all polynomial-size monotone circuits.

More in the paper: Predicate-Extractable hash and
Correlation-Intractable hash from sub-exp DDH.
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We will define the properties of s-HE step by step.

Gen(lﬂ) — (pk, sk,Pred) Only privately computable

| X \ L CT If Pred(CT) = 1, then
pk Dec(CT) = f(x).

Sometimes Decryptable (attempt) S )
«  Pr[Pred(CT*) = 1] > 274

(for malicious CT) opT | ———>
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CTy, CT, Pr[Pred(CT,) = 1] > u

>

We can’t conclude Pr[Pred(CT;) A Pred(CT,)] > u?
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Avoid Composition via Multi-bit Evaluation

X > | f(x)

2

y > 1 g() Dk

New Issue: we lost ‘gate-by-gate’ structure in HE evaluation——
Can’t talk about ‘intermediate ciphertext’ fora gatein f, g.
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CT; = (header, payload;)

( p Eval also outputs intermediate CT for each gate

Header-Payload Structure

b CT = (header, payload)

neaders are the same for all gates

CT, = (header, pay]()adz) (Implicit in many FHE constructions)

Pred now only depends on header: Pred(header) =1 => Dec correct.

How to locally certify the correctness of intermediate ciphertexts?
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We generate a SNARG proof to certify the
correctness for each intermediate ciphertext.




Summary of Definition for s-HE
Gen(14) - (pk,sk,Pred) Pred : privately computable

Homomorphic Evaluation

* Header-payload structure: CT = (header, payload)

* |f Pred(header) = 1, then decryption is correct.

e Sometimes Decryptable for Malicious CT:

| k

p C
header™ PI‘[Pred(header*) — 1] S 24
PPT. — >

e SNARGs for local correctness of intermediate CT
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Eval(pk, CT, f)
Represent f: {0,1}"* - {0,1}* as f4, ..., f» € {0,1}"
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HE for Linear Functions: Decryption

Eval(pk, CT, f)

fT r fT r

header

* Decryption: divide payload by header

payload

, 8el g
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SNARGs for Local Correctness

Prove this Part via SNARGs for Linear relations from sub-exp DDH
[Choudhuri-Garg-Jain-J-Zhang’23]
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Prove this Part via SNARGs for Linear relations from sub-exp DDH
[Choudhuri-Garg-Jain-J-Zhang’23]

fi..0..follr fi..0.f5|7|Si

0..fT..0|lr 0..fT.0|r|si+ fi -m
‘g g

The verifier can compute by itself in time poly(input arity of i-th output)
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Bootstrap from Linear Functions to TCY (high-level)

Evaluated ciphertext

fr r fr r S + fr

“share conversion”
[Boyle-Gilboa-Ishai’16]

Additive decryption: Decryption = binary payload @ BGl(header” s)

|—> s-HE for a layer of Threshold Gates —— s-HE for full TC®
[Jain-)’21] techniques
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» Sometimes-decryptable HE for TC® from sub-exp DDH

* Applications:

» SNARGSs from sub-exp DDH for languages that has poly-size TC° Frege
proof of non-membership

* Monotone-Policy BARGs from sub-exp DDH

Take away

Canreplace FHE in “proof-system applications” (e.g. NIZK/SNARG)
to achieve constructions from DDH In pairing-free groups!




Thank you!

Q&A



