Stationary Syndrome Decoding for Improved PCGs

Stan Peceny (Now at Stealth Software Technologies)

Joint work with:

Vlad Kolesnikov, Srini Raghuraman, Peter Rindal

Local

 $[\Delta \mathbf{e}] = \mathbf{B} + \mathbf{C}$

 $|\mathbf{G}\Delta\mathbf{e}|$

Local

Interactive (sublinear comm.)

G

G

Pseudorandom Correlation Generators (PCGs)

Sublinear communication, compelling computation

State of the art for generating correlated randomness

Pseudorandom Correlation Generators (PCGs)

Sublinear communication, compelling computation

State of the art for generating correlated randomness

Correlated randomness is essential for MPC

LPN Syndrome Decoding (SD)

Syndrome Decoding (SD)

LPN

Syndrome Decoding (SD)

Transpose of a parity check matrix

m

$$(\mathbf{A},\mathbf{b}) pprox (\mathbf{A},\$)$$

Syndrome Decoding (SD)

m

Syndrome Decoding (SD)

 $(\mathbf{A},\mathbf{b}) \approx (\mathbf{A},\$)$

Syndrome Decoding (SD) m $(\mathbf{A},\mathbf{b}) \approx (\mathbf{A},\$)$ $(\mathbf{G},\mathbf{b}) \approx (\mathbf{G},\$)$

LPN and SD are equivalent

LPN and SD are equivalent

Used for PCGs

Syndrome Decoding (SD)

Known to be false for some choices of **G** and **e**

e

Bernoulli - classic, sample **e**_i with Ber_{t/n}

Exact - fixes Hamming weight to t

Bernoulli - classic, sample **e**_i with Ber_{t/n}

Exact - fixes Hamming weight to t

Regular - t same-size blocks, each a random unit vector

Bernoulli - classic, sample **e**_i with Ber_{t/n}

Exact - fixes Hamming weight to t

Regular - t same-size blocks, each a random unit vector

All of these improve for 1 instance

Bernoulli - classic, sample **e**_i with Ber_{t/n}

Exact - fixes Hamming weight to t

Regular - t same-size blocks, each a random unit vector

All of these improve for 1 instance

We amortize the cost of $[\Delta \mathbf{e}]$ across q SD instances

Stationary Syndrome Decoding (SSD)

Noisy coordinates reused

Noise in red in \mathbb{F}_7

Stationary Syndrome Decoding (SSD)

Noise in red in \mathbb{F}_7

Stationary Syndrome Decoding

Stationary Syndrome Decoding

Stationary Syndrome Decoding (SSD)

We cryptanalyze for **G**_i

with high minimum distance and regular **e**_i

SSD allows for reusing OTs across all q noise vectors

SSD allows for reusing OTs across all q noise vectors

Better cache and memory utilization

Presentation Outline

SSD's Resilience to Linear Attacks

Other Linear Attacks

SSD's Resilience to Algebraic Attacks

Experimental Evaluation

Linear Attacks

Gaussian Eliminations [BKW00, Lyu05, LF06, EKM17]

Information Set Decoding [Pra62, Ste88, FS09, BLP11, MMT11, BJMM12, MO15, EKM17, BM18]

Cover Sets [ZW16, BV16, BTV16, GJL20]

Statistical Decoding Attacks [AJ01, FKI06, Ove06, DAT17]

Generalized Birthday Attacks [Wag02, Kir11]

Linearization Attacks [BM97, Saa07]

Low Weight Code [Zic17]

. . .

Linear Attacks

Gaussian Eliminations [BKW00, Lyu05, LF06, EKM17]

Information Set Decoding [Pra62, Ste88, FS09, BLP11, MMT11, BJMM12, MO15, EKM17, BM18]

Cover Sets [ZW16, BV16, BTV16, GJL20]

Statistical Decoding Attacks [AJ01, FKI06, Ove06, DAT17]

Generalized Birthday Attacks [Wag02, Kir11]

Linearization Attacks [BM97, Saa07]

Low Weight Code [Zic17]

Tedious to go through each attack

. . .

Linear Test Framework

LPN

Linear Test Framework

Linear Test Framework

For SLPN with regular noise

Given equivalence of SLPN and SSD, security for SSD is straightforward

Differs from plain LPN with regular noise

$$q = 1$$

non-codeword v

Non-zero Uniform

Uniform

q = 1

codeword v

Zero, randomness by **s** vanishes

Zero, randomness by **s** vanishes

$$q = 1$$

codeword v

Need to show $\mathbf{v} \cdot \mathbf{e}$ has negligible bias

$$q = 1$$

codeword **v**

$$q = 1$$

codeword v

Regular LPN with
$$\leq \left(1-rac{2d}{n}
ight)^t$$

Consider canonical representation for q > 1:

v is not a concatenation of q codewords

v is not a concatenation of q codewords

 ${f v}\cdot({f As}+{f e})$ is uniform because ${f s}$ is not mapped to 0

v is a concatenation of q codewords

v is a concatenation of q codewords

$$\mathbf{v} \cdot (\mathbf{A}\mathbf{s} + \mathbf{e}) = \mathbf{v} \cdot \mathbf{e}$$

v is a concatenation of q codewords

$$\mathbf{v} \cdot (\mathbf{A}\mathbf{s} + \mathbf{e}) = \mathbf{v} \cdot \mathbf{e}$$

$$\leq \left(1 - \frac{d}{n}\right)^t$$

Other Linear Attacks

Explored new attacks that could be considered linear but do not fit into the linear test framework

Solve for \mathbf{e}_1 , ..., \mathbf{e}_q in a polynomial system

Solve for \mathbf{e}_1 , ..., \mathbf{e}_a in a polynomial system

Adapted [BØ23]'s attack to use SSD's additional structure

Solve for \mathbf{e}_1 , ..., \mathbf{e}_a in a polynomial system

Adapted [BØ23]'s attack to use SSD's additional structure

Bounds on the running time of XL algorithm

Solve for \mathbf{e}_1 , ..., \mathbf{e}_a in a polynomial system

Adapted [BØ23]'s attack to use SSD's additional structure

Bounds on the running time of XL algorithm

We do not find q > 1 reduces security (for PCG parameters)

Not competitive with linear attacks

Can we multiply 2 elements in the blocks such that their output is 0?

They just cannot be in the same row

Can we multiply 2 elements in the blocks such that their output is 0?

They just cannot be in the same row

Quadratic

In \mathbb{F}_2 , we also add field equations

Construct the system of polynomials $F=\{f_1, ..., f_p\}$ Apply the XL Algorithm [CKPS00]

Construct the system of polynomials $F=\{f_1, ..., f_p\}$

Apply the XL Algorithm [CKPS00]

1. Map the non-linear system to a linear system

2. Solve using standard techniques (Gaussian elimination)

Construct the system of polynomials $F=\{f_1, ..., f_p\}$

Apply the XL Algorithm [CKPS00]

- 1. Map the non-linear system to a linear system
 - a. Multiply each f_i by arbitrary monomials so the resulting polynomials are of degree ≤ d

2. Solve using standard techniques (Gaussian elimination)

Construct the system of polynomials F={f₁, ..., f_p}

Apply the XL Algorithm [CKPS00]

- 1. Map the non-linear system to a linear system
 - a. Multiply each f_i by arbitrary monomials so the resulting polynomials are of degree ≤ d

- b. Linearize F by treating its monomials as new variables and save their coefficients in the Macaulay matrix
- 2. Solve using standard techniques (Gaussian elimination)

Construct the system of polynomials $F=\{f_1, ..., f_p\}$

Apply the XL Algorithm [CKPS00]

- 1. Map the non-linear system to a linear system
 - a. Multiply each f_i by arbitrary monomials so the resulting polynomials are of degree ≤d)

Witness degree

- b. Linearize F by treating its monomials as new variables and save their coefficients in the Macaulay matrix
- 2. Solve using standard techniques (Gaussian elimination)

Witness Degree

For XL to succeed we need to produce enough new equations

Witness Degree

For XL to succeed we need to produce enough new equations d determines:

Size of Macaulay matrix

Cost of Gaussian elimination

Key cost of XL

Witness Degree

For XL to succeed we need to produce enough new equations d determines:

Size of Macaulay matrix

Cost of Gaussian elimination

Key cost of XL

Computing d is the key challenge (from Hilbert series)

Experimental Evaluation

Implemented OT and VOLE from SD/SSD

Reduce communication 6-18x

Reduce runtime 1.5x

Work in Submission

Our new work significantly accelerates multiplication by G

Thus, the cost of generating $[\Delta e]$ becomes even more significant

Work in Submission

Our new work significantly accelerates multiplication by G

Thus, the cost of generating $[\Delta \mathbf{e}]$ becomes even more significant

Another work closely relies on SSD to generate Beaver triples

Stationary Syndrome Decoding (SSD)

Allows reusing noisy coordinates of **e** across q SD instances Significant impact on PCG Performance

Stationary Syndrome Decoding (SSD)

Allows reusing noisy coordinates of **e** across q SD instances

Significant impact on PCG Performance

Excited to see novel applications of SSD

We invite the community to analyze SSD and its variants