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Interactive (sublinear comm.)

Local

Similar for OT
Other correlations (Beaver triples) VOLE
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Pseudorandom Correlation Generators
(PCGs)

Sublinear communication, compelling computation

State of the art for generating correlated randomness

Correlated randomness is essential for MPC
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Vector Oblivious Linear Evaluation (VOLE)

 Can we amortize this cost?

VOLENeed many correlations for MPC



LPN Syndrome Decoding (SD)



LPN Syndrome Decoding (SD)



LPN Syndrome Decoding (SD)

Transpose of a parity check matrix

Uniform
Weight t sparse
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LPN and SD are equivalent

Syndrome Decoding (SD)

Used for PCGs



Syndrome Decoding (SD)

Known to be false for some choices of G and e
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Noise Distributions

Bernoulli - classic, sample ei with Bert/n

Exact - fixes Hamming weight to t

Regular - t same-size blocks, each a random unit vector

All of these improve for 1 instance

     We amortize the cost of         across q SD instances 
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We define SLPN similarly



Stationary Syndrome Decoding (SSD)

We cryptanalyze for Gi 

with high minimum distance and regular ei
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How Does SSD Help with PCGs?

OT at each level

SSD allows for reusing OTs across all q noise vectors

Better cache and memory utilization



Presentation Outline

SSD’s Resilience to Linear Attacks

Other Linear Attacks

SSD’s Resilience to Algebraic Attacks

Experimental Evaluation 



Linear Attacks
Gaussian Eliminations [BKW00, Lyu05, LF06, EKM17]

Information Set Decoding [Pra62, Ste88, FS09, BLP11, MMT11, BJMM12, 
MO15, EKM17, BM18]

Cover Sets [ZW16, BV16, BTV16, GJL20]

Statistical Decoding Attacks [AJ01, FKI06, Ove06, DAT17]

Generalized Birthday Attacks [Wag02, Kir11]

Linearization Attacks [BM97, Saa07]

Low Weight Code [Zic17]

…



Linear Attacks
Gaussian Eliminations [BKW00, Lyu05, LF06, EKM17]

Information Set Decoding [Pra62, Ste88, FS09, BLP11, MMT11, BJMM12, 
MO15, EKM17, BM18]

Cover Sets [ZW16, BV16, BTV16, GJL20]

Statistical Decoding Attacks [AJ01, FKI06, Ove06, DAT17]

Generalized Birthday Attacks [Wag02, Kir11]

Linearization Attacks [BM97, Saa07]

Low Weight Code [Zic17]

…
Tedious to go through each attack
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Linear Test Framework

LPN

 Is              biased?



High-Level Proof Template

For SLPN with regular noise

Given equivalence of SLPN and SSD, security for 
SSD is straightforward
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High-Level Proof Template

Differs from plain LPN 
with regular noise
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High-Level Proof Template

codeword v 

Need to show          has negligible bias
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High-Level Proof Template

codeword v 

Regular LPN with    
noise



High-Level Proof Template
Consider canonical representation for q > 1:
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High-Level Proof Template

v is not a concatenation of q codewords

is uniform because s is not mapped to 0 
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High-Level Proof Template

v is a concatenation of q codewords



Other Linear Attacks

Explored new attacks that could be 
considered linear but do not fit into 

the linear test framework
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Algebraic Attacks
Solve for e1 , …, eq in a polynomial system

Adapted [BØ23]’s attack to use SSD’s additional structure

Bounds on the running time of XL algorithm

We do not find q > 1 reduces security (for PCG parameters)

Not competitive with linear attacks
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Polynomial System

Linear 
Same for 
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Polynomial System
Can we multiply 2 elements in the blocks such that their output is 0?

They just cannot be in the same row

Quadratic



Polynomial System

In     , we also add field equations



High-Level Approach
Construct the system of polynomials F={f1, …, fp }
Apply the XL Algorithm [CKPS00]
1. Map the non-linear system to a linear system

a. Multiply each fi by arbitrary monomials so the resulting 
polynomials are of degree ≤ d

b. Linearize F by treating its monomials as new variables 
and save their coefficients in the Macaulay matrix.

2. Solve using standard techniques (Gaussian elimination)
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Apply the XL Algorithm [CKPS00]
1. Map the non-linear system to a linear system

a. Multiply each fi by arbitrary monomials so the resulting 
polynomials are of degree ≤ d

b. Linearize F by treating its monomials as new variables 
and save their coefficients in the Macaulay matrix

2. Solve using standard techniques (Gaussian elimination)
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For XL to succeed we need to produce enough new equations

d determines:

Size of Macaulay matrix

Cost of Gaussian elimination

Key cost of XL

   Computing d is the key challenge (from Hilbert series)



Experimental Evaluation

Implemented OT and VOLE from SD/SSD

Reduce communication 6-18x

Reduce runtime 1.5x



Work in Submission
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Work in Submission

Our new work significantly accelerates multiplication by G

Thus, the cost of generating        becomes even more significant

Another work closely relies on SSD to generate Beaver triples
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Stationary Syndrome Decoding (SSD)

Allows reusing noisy coordinates of e across q SD instances

Significant impact on PCG Performance

Excited to see novel applications of SSD

We invite the community to analyze SSD and its variants


