
Stationary Syndrome Decoding
for Improved PCGs

Stan Peceny (Now at Stealth Software Technologies)

Joint work with:
Vlad Kolesnikov, Srini Raghuraman, Peter Rindal

VOLE

Vector Oblivious Linear Evaluation (VOLE)

Vector Oblivious Linear Evaluation (VOLE)

VOLE

Interactive (sublinear comm.)

Vector Oblivious Linear Evaluation (VOLE)

VOLE

Interactive (sublinear comm.)

Vector Oblivious Linear Evaluation (VOLE)

VOLE

Vector Oblivious Linear Evaluation (VOLE)

Interactive (sublinear comm.)

Local

VOLE

Vector Oblivious Linear Evaluation (VOLE)

Interactive (sublinear comm.)

Local

Similar for OT
VOLE

Vector Oblivious Linear Evaluation (VOLE)

Interactive (sublinear comm.)

Local

Similar for OT
Other correlations (Beaver triples) VOLE

Pseudorandom Correlation Generators
(PCGs)

Sublinear communication, compelling computation

State of the art for generating correlated randomness

Pseudorandom Correlation Generators
(PCGs)

Sublinear communication, compelling computation

State of the art for generating correlated randomness

Correlated randomness is essential for MPC

Vector Oblivious Linear Evaluation (VOLE)

VOLE

Vector Oblivious Linear Evaluation (VOLE)

Need many correlations for MPC VOLE

Vector Oblivious Linear Evaluation (VOLE)

 Can we amortize this cost?

VOLENeed many correlations for MPC

LPN Syndrome Decoding (SD)

LPN Syndrome Decoding (SD)

LPN Syndrome Decoding (SD)

Transpose of a parity check matrix

Uniform
Weight t sparse

LPN Syndrome Decoding (SD)

LPN Syndrome Decoding (SD)

Generator

LPN Syndrome Decoding (SD)

LPN

LPN and SD are equivalent

Syndrome Decoding (SD)

LPN

LPN and SD are equivalent

Syndrome Decoding (SD)

Used for PCGs

Syndrome Decoding (SD)

Known to be false for some choices of G and e

Noise Distributions

Bernoulli - classic, sample ei with Bert/n

Exact - fixes Hamming weight to t

Noise Distributions

Bernoulli - classic, sample ei with Bert/n

Exact - fixes Hamming weight to t

Regular - t same-size blocks, each a random unit vector

Noise Distributions

Bernoulli - classic, sample ei with Bert/n

Exact - fixes Hamming weight to t

Regular - t same-size blocks, each a random unit vector

All of these improve for 1 instance

Noise Distributions

Bernoulli - classic, sample ei with Bert/n

Exact - fixes Hamming weight to t

Regular - t same-size blocks, each a random unit vector

All of these improve for 1 instance

 We amortize the cost of across q SD instances

Stationary Syndrome Decoding (SSD)

0

0
0

0
0

0

0

0
0

0
0

0

0

0
0

0
0

0
0 1 4

Noise in red in

3 1 6

6 2 0
3 4 3

Noisy coordinates reused

Stationary Syndrome Decoding (SSD)

0

0
0

0
0

0

0

0
0

0
0

0

0

0
0

0
0

0
0 1 4Uniform, can be 0

3 1 6

6 2 0
3 4 3

Noise in red in

Stationary Syndrome Decoding

Stationary Syndrome Decoding

We define SLPN similarly

Stationary Syndrome Decoding (SSD)

We cryptanalyze for Gi

with high minimum distance and regular ei

How Does SSD Help with PCGs?

How Does SSD Help with PCGs?

How Does SSD Help with PCGs?

OT at each level

How Does SSD Help with PCGs?

OT at each level

SSD allows for reusing OTs across all q noise vectors

How Does SSD Help with PCGs?

OT at each level

SSD allows for reusing OTs across all q noise vectors

Better cache and memory utilization

Presentation Outline

SSD’s Resilience to Linear Attacks

Other Linear Attacks

SSD’s Resilience to Algebraic Attacks

Experimental Evaluation

Linear Attacks
Gaussian Eliminations [BKW00, Lyu05, LF06, EKM17]

Information Set Decoding [Pra62, Ste88, FS09, BLP11, MMT11, BJMM12,
MO15, EKM17, BM18]

Cover Sets [ZW16, BV16, BTV16, GJL20]

Statistical Decoding Attacks [AJ01, FKI06, Ove06, DAT17]

Generalized Birthday Attacks [Wag02, Kir11]

Linearization Attacks [BM97, Saa07]

Low Weight Code [Zic17]

…

Linear Attacks
Gaussian Eliminations [BKW00, Lyu05, LF06, EKM17]

Information Set Decoding [Pra62, Ste88, FS09, BLP11, MMT11, BJMM12,
MO15, EKM17, BM18]

Cover Sets [ZW16, BV16, BTV16, GJL20]

Statistical Decoding Attacks [AJ01, FKI06, Ove06, DAT17]

Generalized Birthday Attacks [Wag02, Kir11]

Linearization Attacks [BM97, Saa07]

Low Weight Code [Zic17]

…
Tedious to go through each attack

Linear Test Framework

LPN

Linear Test Framework

LPN

Linear Test Framework

LPN

 Is biased?

High-Level Proof Template

For SLPN with regular noise

Given equivalence of SLPN and SSD, security for
SSD is straightforward

High-Level Proof Template

High-Level Proof Template

Differs from plain LPN
with regular noise

High-Level Proof Template

non-codeword v

High-Level Proof Template

non-codeword v

Non-zero Uniform

High-Level Proof Template

non-codeword v

Non-zero Uniform

Uniform

High-Level Proof Template

codeword v

High-Level Proof Template

codeword v

Zero, randomness by s vanishes

High-Level Proof Template

codeword v

Zero, randomness by s vanishes

High-Level Proof Template

codeword v

Need to show has negligible bias

High-Level Proof Template

codeword v

High-Level Proof Template

codeword v

Regular LPN with
noise

High-Level Proof Template
Consider canonical representation for q > 1:

High-Level Proof Template

v is not a concatenation of q codewords

High-Level Proof Template

v is not a concatenation of q codewords

is uniform because s is not mapped to 0

High-Level Proof Template

v is a concatenation of q codewords

High-Level Proof Template

v is a concatenation of q codewords

High-Level Proof Template

v is a concatenation of q codewords

Other Linear Attacks

Explored new attacks that could be
considered linear but do not fit into

the linear test framework

Algebraic Attacks
Solve for e1 , …, eq in a polynomial system

Algebraic Attacks
Solve for e1 , …, eq in a polynomial system

Adapted [BØ23]’s attack to use SSD’s additional structure

Algebraic Attacks
Solve for e1 , …, eq in a polynomial system

Adapted [BØ23]’s attack to use SSD’s additional structure

Bounds on the running time of XL algorithm

Algebraic Attacks
Solve for e1 , …, eq in a polynomial system

Adapted [BØ23]’s attack to use SSD’s additional structure

Bounds on the running time of XL algorithm

We do not find q > 1 reduces security (for PCG parameters)

Not competitive with linear attacks

Polynomial System

Polynomial System

Polynomial System

Polynomial System

Polynomial System

Polynomial System

Polynomial System

Polynomial System

Polynomial System

Polynomial System

Polynomial System

Same for

Polynomial System

Linear
Same for

Polynomial System

Encode stationary structure

Polynomial System

Encode stationary structure

Polynomial System
Can we multiply 2 elements in the blocks such that their output is 0?

Polynomial System
Can we multiply 2 elements in the blocks such that their output is 0?

Polynomial System
Can we multiply 2 elements in the blocks such that their output is 0?

Polynomial System
Can we multiply 2 elements in the blocks such that their output is 0?

Polynomial System
Can we multiply 2 elements in the blocks such that their output is 0?

They just cannot be in the same row

Polynomial System
Can we multiply 2 elements in the blocks such that their output is 0?

They just cannot be in the same row

Quadratic

Polynomial System

In , we also add field equations

High-Level Approach
Construct the system of polynomials F={f1, …, fp }
Apply the XL Algorithm [CKPS00]
1. Map the non-linear system to a linear system

a. Multiply each fi by arbitrary monomials so the resulting
polynomials are of degree ≤ d

b. Linearize F by treating its monomials as new variables
and save their coefficients in the Macaulay matrix.

2. Solve using standard techniques (Gaussian elimination)

High-Level Approach
Construct the system of polynomials F={f1, …, fp }
Apply the XL Algorithm [CKPS00]
1. Map the non-linear system to a linear system

a. Multiply each fi by arbitrary monomials so the resulting
polynomials are of degree ≤ d

b. Linearize F by treating its monomials as new variables
and save their coefficients in the Macaulay matrix

2. Solve using standard techniques (Gaussian elimination)

High-Level Approach
Construct the system of polynomials F={f1, …, fp }
Apply the XL Algorithm [CKPS00]
1. Map the non-linear system to a linear system

a. Multiply each fi by arbitrary monomials so the resulting
polynomials are of degree ≤ d

b. Linearize F by treating its monomials as new variables
and save their coefficients in the Macaulay matrix

2. Solve using standard techniques (Gaussian elimination)

High-Level Approach
Construct the system of polynomials F={f1, …, fp }
Apply the XL Algorithm [CKPS00]
1. Map the non-linear system to a linear system

a. Multiply each fi by arbitrary monomials so the resulting
polynomials are of degree ≤ d

b. Linearize F by treating its monomials as new variables
and save their coefficients in the Macaulay matrix

2. Solve using standard techniques (Gaussian elimination)

High-Level Approach
Construct the system of polynomials F={f1, …, fp }
Apply the XL Algorithm [CKPS00]
1. Map the non-linear system to a linear system

a. Multiply each fi by arbitrary monomials so the resulting
polynomials are of degree ≤ d

b. Linearize F by treating its monomials as new variables
and save their coefficients in the Macaulay matrix

2. Solve using standard techniques (Gaussian elimination)

Witness degree

Witness Degree
For XL to succeed we need to produce enough new equations

d determines:

Size of Macaulay matrix

Cost of Gaussian elimination

Key cost of XL

 Computing d is the key challenge (from Hilbert series)

Witness Degree
For XL to succeed we need to produce enough new equations

d determines:

Size of Macaulay matrix

Cost of Gaussian elimination

Key cost of XL

 Computing d is the key challenge (from Hilbert series)

Witness Degree
For XL to succeed we need to produce enough new equations

d determines:

Size of Macaulay matrix

Cost of Gaussian elimination

Key cost of XL

 Computing d is the key challenge (from Hilbert series)

Experimental Evaluation

Implemented OT and VOLE from SD/SSD

Reduce communication 6-18x

Reduce runtime 1.5x

Work in Submission

Our new work significantly accelerates multiplication by G

Thus, the cost of generating becomes even more significant

Work in Submission

Our new work significantly accelerates multiplication by G

Thus, the cost of generating becomes even more significant

Another work closely relies on SSD to generate Beaver triples

Stationary Syndrome Decoding (SSD)

Allows reusing noisy coordinates of e across q SD instances

Significant impact on PCG Performance

Stationary Syndrome Decoding (SSD)

Allows reusing noisy coordinates of e across q SD instances

Significant impact on PCG Performance

Excited to see novel applications of SSD

We invite the community to analyze SSD and its variants

