
State Machine Replication Among Strangers,
Fast and Self-Sufficient
https://ia.cr/2025/616

CRYPTO ’25
1Texas A&M University, 2University of Edinburgh, 3IOG

Juan Garay1, Aggelos Kiayias2,3, Yu Shen2

https://ia.cr/2025/616

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

“Among Strangers” (a.k.a. The Permissionless Model)

The “traditional” distributed system.
Nodes are known a priori.
As in most deployed networks of computers.

The “permissionless” model.
Nodes do NOT know each other (not even their exact number!)
Nodes come and go.
Anyone can join.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 2 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Blockchains (Ledger Consensus/State Machine Replication)

Consistency: ∀i, j ∈ H, t ≤ t′ : Logi[t] ⪯ Log∗j [t′].
Liveness: (∀i ∈ H : tx ∈ Ii[t]) =⇒ (∀i ∈ H : tx ∈ Logi[t + u]).1

More properties are of interest: fast settlement, fairness, self timekeeping, etc.

1 Logj[t] = Log of Pi at time t; Log∗
i [t] = with transactions in progress. Ii[t] = transaction input of Pi at time t consistent with Logi[t].

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 3 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Blockchains (Ledger Consensus/State Machine Replication)

Consistency: ∀i, j ∈ H, t ≤ t′ : Logi[t] ⪯ Log∗j [t′].
Liveness: (∀i ∈ H : tx ∈ Ii[t]) =⇒ (∀i ∈ H : tx ∈ Logi[t + u]).1

More properties are of interest: fast settlement, fairness, self timekeeping, etc.

1 Logj[t] = Log of Pi at time t; Log∗
i [t] = with transactions in progress. Ii[t] = transaction input of Pi at time t consistent with Logi[t].

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 3 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Transaction Settlement Time

Honest parties (“miners”) always choose the longest (heaviest) chain they received.
If a party wants to erase a transaction, it has to find a longer chain!
If transaction is “sufficiently deep,” it cannot do this unless it has a “majority of hashing power.”

G B1 B2 B3 B5 B6

B4

For example, Bitcoin transactions are considered as settled after 6 blocks.

To be cryptographically secure, transactions are settled after polylog(κ) rounds [GKL17].

Permissioned SMR protocols can achieve (expected-)constant settlement time (i.e., “fast”).

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 4 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Transaction Settlement Time

Honest parties (“miners”) always choose the longest (heaviest) chain they received.
If a party wants to erase a transaction, it has to find a longer chain!
If transaction is “sufficiently deep,” it cannot do this unless it has a “majority of hashing power.”

G B1 B2 B3 B5 B6

B4

For example, Bitcoin transactions are considered as settled after 6 blocks.

To be cryptographically secure, transactions are settled after polylog(κ) rounds [GKL17].

Permissioned SMR protocols can achieve (expected-)constant settlement time (i.e., “fast”).

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 4 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Transaction Settlement Time

Honest parties (“miners”) always choose the longest (heaviest) chain they received.
If a party wants to erase a transaction, it has to find a longer chain!
If transaction is “sufficiently deep,” it cannot do this unless it has a “majority of hashing power.”

G B1 B2 B3 B5 B6

B4

For example, Bitcoin transactions are considered as settled after 6 blocks.

To be cryptographically secure, transactions are settled after polylog(κ) rounds [GKL17].

Permissioned SMR protocols can achieve (expected-)constant settlement time (i.e., “fast”).

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 4 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Fairness in Accessing SMR

An intriguing question: Who can insert symbols to the permissionless SMR?
A special symbol needs to be included to grant access.
In Bitcoin: “coinbase” transactions.

Fairness: Any honest party gets a chance to introduce a coinbase transaction with probability in
proportion to her computational power.
Bitcoin does not achieve fairness.

Network delay can create forks.
Malicious parties can discard honest blocks (e.g., block withholding attacks).
Bitcoin has bad “chain quality” (cf. [GKL15]).

Fast Fairness: Fairness in expected-constant time.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 5 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Fairness in Accessing SMR

An intriguing question: Who can insert symbols to the permissionless SMR?
A special symbol needs to be included to grant access.
In Bitcoin: “coinbase” transactions.

Fairness: Any honest party gets a chance to introduce a coinbase transaction with probability in
proportion to her computational power.

Bitcoin does not achieve fairness.
Network delay can create forks.
Malicious parties can discard honest blocks (e.g., block withholding attacks).
Bitcoin has bad “chain quality” (cf. [GKL15]).

Fast Fairness: Fairness in expected-constant time.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 5 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Fairness in Accessing SMR

An intriguing question: Who can insert symbols to the permissionless SMR?
A special symbol needs to be included to grant access.
In Bitcoin: “coinbase” transactions.

Fairness: Any honest party gets a chance to introduce a coinbase transaction with probability in
proportion to her computational power.
Bitcoin does not achieve fairness.

Network delay can create forks.
Malicious parties can discard honest blocks (e.g., block withholding attacks).
Bitcoin has bad “chain quality” (cf. [GKL15]).

Fast Fairness: Fairness in expected-constant time.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 5 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Fairness in Accessing SMR

An intriguing question: Who can insert symbols to the permissionless SMR?
A special symbol needs to be included to grant access.
In Bitcoin: “coinbase” transactions.

Fairness: Any honest party gets a chance to introduce a coinbase transaction with probability in
proportion to her computational power.
Bitcoin does not achieve fairness.

Network delay can create forks.
Malicious parties can discard honest blocks (e.g., block withholding attacks).
Bitcoin has bad “chain quality” (cf. [GKL15]).

Fast Fairness: Fairness in expected-constant time.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 5 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

“Self-Sufficient” Protocols

Hardware clocks are drifting clocks.
Crystal oscillator drfits by 10 seconds within a day/week/month.
Network time protocol (NTP) is typically adopted to synchronize software clocks (“global clock”).

https://commons.wikimedia.org/w/index.php?curid=31253284

An SMR protocol is said to be self-sufficient if it keeps its own time under the mere assumption
that parties have drifting local clocks.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 6 / 29

https://commons.wikimedia.org/w/index.php?curid=31253284

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

“Self-Sufficient” Protocols

Hardware clocks are drifting clocks.
Crystal oscillator drfits by 10 seconds within a day/week/month.
Network time protocol (NTP) is typically adopted to synchronize software clocks (“global clock”).

https://commons.wikimedia.org/w/index.php?curid=31253284

An SMR protocol is said to be self-sufficient if it keeps its own time under the mere assumption
that parties have drifting local clocks.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 6 / 29

https://commons.wikimedia.org/w/index.php?curid=31253284

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Clocks in Bitcoin

Bitcoin miners use their system clock (synced by NTP) to insert block timestamps.
If system clock is out-of-sync (when difference from median peer clocks exceeds 10 minutes),
a warning2 is pop-up for human operator.

Bitcoin is NOT self-sufficient.

2 https://github.com/bitcoin/bitcoin/blob/v29.0/src/node/timeoffsets.cpp

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 7 / 29

https://github.com/bitcoin/bitcoin/blob/v29.0/src/node/timeoffsets.cpp

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Clocks in Bitcoin

Bitcoin miners use their system clock (synced by NTP) to insert block timestamps.
If system clock is out-of-sync (when difference from median peer clocks exceeds 10 minutes),
a warning2 is pop-up for human operator.

Bitcoin is NOT self-sufficient.

2 https://github.com/bitcoin/bitcoin/blob/v29.0/src/node/timeoffsets.cpp

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 7 / 29

https://github.com/bitcoin/bitcoin/blob/v29.0/src/node/timeoffsets.cpp

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Prior Work

Fast settlement
Fast settlement for non-conflicting transactions (Prism [Bag+19], Ledger Combiner [Fit+20]).
Slow settlement for conflicting transactions (Smart contract, Bitcoin Script).

Fast fairness
Fairness in polylog(κ) rounds (Fruitchain [PS17]).

Self Timekeeping
Clock synchronization with imperfect clocks (Timekeeper [GKS22]).

[Bag+19] Vivek Kumar Bagaria, Sreeram Kannan, David Tse, Giulia C. Fanti, and Pramod Viswanath. “Prism: Deconstructing the Blockchain to Approach Physical Limits”. CCS ’19.

[Fit+20] Matthias Fitzi, Peter Gazi, Aggelos Kiayias, and Alexander Russell. “Ledger Combiners for Fast Settlement”. TCC ’20.

[PS17] Rafael Pass and Elaine Shi. “FruitChains: A Fair Blockchain”. PODC ’17.

[GKS22] Juan A. Garay, Aggelos Kiayias, and Yu Shen. “Permissionless Clock Synchronization with Public Setup”. TCC ’22.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 8 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Proofs of Work (aka “Crypto Puzzles”)

Moderately hard functions: Spam mitigation, denial of service protection, …

Most impactful application: Design of blockchain protocols such as Bitcoin

si−1

xi−1
ctri−1

)
G
(si

xi
ctri

)
G
(H(·) < T

proof-of-work

Hash(ctri−1;Hash(si−1, xi−1)) < T
Random oracle

(RO)

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 9 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

1/2 Consensus (a.k.a. BA) Protocol [GKL15]

Parties mine PoWs for each block — as in standard Bitcoin backbone protocol.
Parties mine PoWs for each input (value + nonce); they keep transmitting “PoW-ed” inputs
until they are recorded on chain.

block #k+1

val3

block #k

val1
val2

block #k+2

val4
val5

· · · · · ·

After the blockchain grows sufficiently, chop off the last polylog(κ) blocks and return the median
value among unique inputs in the common prefix.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. “The Bitcoin Backbone Protocol: Analysis and Applications”. Eurocrypt ’15.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 10 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

2x1 PoWs: Composition of PoW-based Protocols

h← G(x, s)
if H(h, ctr) < T then …

Naïve double PoW (Not secure!)

h′ ← G(x′, s′)
if H(h′, ctr′) < T′ then …

Given ((x, s), ctr)
Verify H(G(x, s), ctr) < T

Given ((x′, s′), ctr′)
Verify H(G(x′, s′), ctr′) < T′

h← G(x, s)
h′ ← G(x′, s′)

w← H(h, h′, ctr)

if w < T then …
if [w]R < T′ then …

2×1 PoW

Given ((x, s), (∗, ∗), ctr)
Verify H(G(x, s),G(∗, ∗), ctr) < T

Given ((∗, ∗), (x′, s′), ctr′)
Verify H(G(∗, ∗),G(x′, s′), ctr′) < T′

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 11 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Parallel Blockchains

Basic Idea: Extend 2×1 PoW to m×1 PoW.

Fully independent when m = Θ(polylogκ).

G m

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 12 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Parallel Blockchains (Cont’d)

Basic Idea: Extend 2×1 PoW to m×1 PoW.

Fully independent when m = Θ(polylogκ).
We can run PoW BAs in parallel.

2×1 PoW (block + transaction) in each instance.

000000 · · · 101110 011000 · · · 001011 · · · · · · 000000 · · · 000000 010111 · · · 000000
κ/m κ/m κ/m κ/m

κ

B1 Bm−1 IBm−1 IBm

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 13 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Phase-based Parallel Chains

In [GKL15] (honest-majority PoW consensus in polylog(κ) rounds):
Agreement and validity with overwhelming prob. after polylog rounds.
Agreement and validity with constant prob. after constant rounds.

With sufficently many parallel chains:

Agreement and validity with prob. β
=

Agreement and validity on β fraction of chains

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. “The Bitcoin Backbone Protocol: Analysis and Applications”. Eurocrypt ’15.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 14 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

King Consensus [BGP89; FG03]

Proceeds in phases until termination (In each phase each party has an input bit).

If all honest parties start with the same bit DecideYes

Adversary decides
No

Decide

Oblivious leader election Decide

some honest
parties

No

Next phase, remaining honest parties will terminate

w.p. p

w.p. 1 − p

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 15 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Chain-King Consensus [GKS24]

Oblivious leader election (OLE) using only RO?
A simple construction: Fix the 1st chain as the ”King Chain”.

With parallel chains, adversary power is “diluted” so that he cannot always win on a specific
chain.

Chain-King Consensus

Randomized
king consensus

Phase-based
parallel chains

Fix 1st chain
as king chain

[GKS24] Juan A. Garay, Aggelos Kiayias, and Yu Shen. “Proof-of-Work-Based Consensus in Expected-Constant Time”. Eurocrypt ’24.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 16 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Chain-King Consensus [GKS24]

Oblivious leader election (OLE) using only RO?
A simple construction: Fix the 1st chain as the ”King Chain”.
With parallel chains, adversary power is “diluted” so that he cannot always win on a specific
chain.

Chain-King Consensus

Randomized
king consensus

Phase-based
parallel chains

Fix 1st chain
as king chain

[GKS24] Juan A. Garay, Aggelos Kiayias, and Yu Shen. “Proof-of-Work-Based Consensus in Expected-Constant Time”. Eurocrypt ’24.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 16 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Permissionless SMR with Fast Settlement

Decide output of king chain using input-block with minimum PoW (smallest hash).
With constant prob., an invocation of chain-king consensus outputs a batch of transactions
proposed by honest parties.

Round-preserving
sequential composition of

Chain-King Consensus

Minimum PoW output
selection rule on king chain

Fast State Machine
Replication

A few more things have been done here:
Extended the above protocol to the variable difficulty setting.
A bootstrapping algorithm to help fresh parties “catch-up” in constant time.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 17 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Permissionless SMR with Fast Settlement

Decide output of king chain using input-block with minimum PoW (smallest hash).
With constant prob., an invocation of chain-king consensus outputs a batch of transactions
proposed by honest parties.

Round-preserving
sequential composition of

Chain-King Consensus

Minimum PoW output
selection rule on king chain

Fast State Machine
Replication

A few more things have been done here:
Extended the above protocol to the variable difficulty setting.
A bootstrapping algorithm to help fresh parties “catch-up” in constant time.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 17 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Fast Fairness

Bitcoin bears bad “Chain-Quality.”

A “pre-agreement” on coinbase transactions suffices to achieve fast fairness.
In the first phase in Chain-King Consensus, parties use 2 × 1 PoW to mine their own coinbase
trasnactions, submit them to the first chain.
By the end of the phase, parties stick to the coinbase transaction with minimun hash in the first
chain their local view.
Then, a new invocation of Chain-King Consensus starts at the second phase.

For any party P with p% computational power…
With probability p%, P produces the coinbase transaction with minimum hash.
With probability (1 − ϵ), parties agree on P’s coinbase transaction on the first chain.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 18 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Fast Fairness

Bitcoin bears bad “Chain-Quality.”
A “pre-agreement” on coinbase transactions suffices to achieve fast fairness.

In the first phase in Chain-King Consensus, parties use 2 × 1 PoW to mine their own coinbase
trasnactions, submit them to the first chain.
By the end of the phase, parties stick to the coinbase transaction with minimun hash in the first
chain their local view.
Then, a new invocation of Chain-King Consensus starts at the second phase.

For any party P with p% computational power…
With probability p%, P produces the coinbase transaction with minimum hash.
With probability (1 − ϵ), parties agree on P’s coinbase transaction on the first chain.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 18 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Self Sufficiency

An SMR protocol is said to be self-sufficient if it keeps its own time under the mere assumption
that parties have drifting local clocks.

treal

tclock

Assumption: Hardware clocks run within a linear envelope3 of real time.

3 A function f : R → R is within a (U, L)-linear envelope if and only if it holds that L · x − c ≤ f(x) ≤ U · x + c.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 19 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Clock Synchronization

Bounded Skew: Honest parties maintain close logical clocks.

Accuracy: Honest parties report logical time within a linear envelope of the real time.

T

T + ϵ

T− ϵ

treal

tlogical

Bounded Skew Accuracy

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 20 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Clock Adjustment Algorithm

Honest-majority PoW-based BA can be extended to timekeeping [GKS22].
Inputs record also timestamps (now we call them “synchronization beacons”).
Parties bookkeep the local arrival time for each beacon.

block #k+1

SB3, t3

block #k

SB1, t1

SB2, t2

block #k+2

SB4, t4

SB5, t5
· · · · · ·

SB1 SB2 SB3 SB4 SB5

P t′1 t′2 t′3 t′4 t′5

[GKS22] Juan A. Garay, Aggelos Kiayias, and Yu Shen. “Permissionless Clock Synchronization with Public Setup”. TCC ’22.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 21 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Clock Adjustment Algorithm (Cont’d)

At the end of an interval, parties adjust their local clocks:
Compute the difference between timestamp and local arrival time for each beacon on chain.
Add the median of their differences to local time.

new-clock = old-clock +med{SB.timestamp− SB.arrivalTime | SB ∈ C}

This does NOT work with drifting clocks!
To agree on beacons, interval duration needs to be set as polylog(κ)
With drifting clocks, skew = Θ(polylog(κ)).
It only works for imperfect clocks (cf. [Bad+21; GKS22]).

Solution: Use parallel blockchains to acquire a set of clock values in constant time, where a
large fraction of them are “good.”

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 22 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Clock Adjustment Algorithm (Cont’d)

At the end of an interval, parties adjust their local clocks:
Compute the difference between timestamp and local arrival time for each beacon on chain.
Add the median of their differences to local time.

new-clock = old-clock +med{SB.timestamp− SB.arrivalTime | SB ∈ C}

This does NOT work with drifting clocks!
To agree on beacons, interval duration needs to be set as polylog(κ)
With drifting clocks, skew = Θ(polylog(κ)).
It only works for imperfect clocks (cf. [Bad+21; GKS22]).

Solution: Use parallel blockchains to acquire a set of clock values in constant time, where a
large fraction of them are “good.”

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 22 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Clock Adjustment Algorithm (Cont’d)

At the end of an interval, parties adjust their local clocks:
Compute the difference between timestamp and local arrival time for each beacon on chain.
Add the median of their differences to local time.

new-clock = old-clock +med{SB.timestamp− SB.arrivalTime | SB ∈ C}

This does NOT work with drifting clocks!
To agree on beacons, interval duration needs to be set as polylog(κ)
With drifting clocks, skew = Θ(polylog(κ)).
It only works for imperfect clocks (cf. [Bad+21; GKS22]).

Solution: Use parallel blockchains to acquire a set of clock values in constant time, where a
large fraction of them are “good.”

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 22 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Clock Synchronization

Problem: A small fraction of unknown parallel chains suggest malicious clock values!

Example 1: Malicious parties suggest crazy clock values.

P1 t1 t2 t3 t4 t5 t6 t7 t8

P2 t̃3 t̃4 t̃5 t̃6 t̃7 t̃8 t̃1 t̃2

Solution*: Prune the η largest and smallest clocks.
Example 2: Malicious parties suggest confusing clock values.

P1 t3 t1 t4 t2 t5 t6 t7 t8

P2 t̃3 t̃4 t̃5 t̃6 t̃1 t̃7 t̃2 t̃8

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 23 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Clock Synchronization

Problem: A small fraction of unknown parallel chains suggest malicious clock values!
Example 1: Malicious parties suggest crazy clock values.

P1 t1 t2 t3 t4 t5 t6 t7 t8

P2 t̃3 t̃4 t̃5 t̃6 t̃7 t̃8 t̃1 t̃2

Solution*: Prune the η largest and smallest clocks.

Example 2: Malicious parties suggest confusing clock values.

P1 t3 t1 t4 t2 t5 t6 t7 t8

P2 t̃3 t̃4 t̃5 t̃6 t̃1 t̃7 t̃2 t̃8

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 23 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Clock Synchronization

Problem: A small fraction of unknown parallel chains suggest malicious clock values!
Example 1: Malicious parties suggest crazy clock values.

P1 t1 t2 t3 t4 t5 t6 t7 t8

P2 t̃3 t̃4 t̃5 t̃6 t̃7 t̃8 t̃1 t̃2

Solution*: Prune the η largest and smallest clocks.
Example 2: Malicious parties suggest confusing clock values.

P1 t3 t1 t4 t2 t5 t6 t7 t8

P2 t̃3 t̃4 t̃5 t̃6 t̃1 t̃7 t̃2 t̃8

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 23 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Clock Synchronization (Cont’d)

Solution: Apply Approximate Agreement [Dol+86] over the set of clock values.
1 Reduce: Remove the η largest and smallest elements.
2 Select: Divide the remaining clocks into chunks of η elements; for each chunk, select a

representative (the first element).
3 Return the average over clock representatives.

new-clock ≜ avg(select(reduce(⟨clock1, . . . clockm⟩, η), η)), where

clocki ≜ old-clock +med{SB.timestamp− SB.arrivalTime | SB ∈ Ci}.

Result: Clocks with bounded skews (linear w.r.t. network delay and clock drfit rate).

[Dol+86] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl. “Reaching approximate agreement in the presence of faults”. J. ACM.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 24 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Clock Synchronization (Cont’d)

Solution: Apply Approximate Agreement [Dol+86] over the set of clock values.
1 Reduce: Remove the η largest and smallest elements.
2 Select: Divide the remaining clocks into chunks of η elements; for each chunk, select a

representative (the first element).
3 Return the average over clock representatives.

new-clock ≜ avg(select(reduce(⟨clock1, . . . clockm⟩, η), η)), where

clocki ≜ old-clock +med{SB.timestamp− SB.arrivalTime | SB ∈ Ci}.

Result: Clocks with bounded skews (linear w.r.t. network delay and clock drfit rate).

[Dol+86] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl. “Reaching approximate agreement in the presence of faults”. J. ACM.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 24 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Clock Synchronization (Cont’d)

Solution: Apply Approximate Agreement [Dol+86] over the set of clock values.
1 Reduce: Remove the η largest and smallest elements.
2 Select: Divide the remaining clocks into chunks of η elements; for each chunk, select a

representative (the first element).
3 Return the average over clock representatives.

new-clock ≜ avg(select(reduce(⟨clock1, . . . clockm⟩, η), η)), where

clocki ≜ old-clock +med{SB.timestamp− SB.arrivalTime | SB ∈ Ci}.

Result: Clocks with bounded skews (linear w.r.t. network delay and clock drfit rate).

[Dol+86] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl. “Reaching approximate agreement in the presence of faults”. J. ACM.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 24 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Takeaways

In the permissionless PoW setting with drifting clocks, we achieve:

Fast Settlement
All incoming transactions are confirmed in expected-constant time.

Fast Fairness
A coinbase transaction, selected w.p. proportional to computational power, is introduced every
expected-constant-time interval.

Self-Sufficient Timekeeping
Protocol participants maintain bounded skews.
State machine exports an accurate SMR time w.r.t. real time.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 25 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

Thank You

Thank You
[GKS25] https://ia.cr/2025/616

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 26 / 29

https://ia.cr/2025/616

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

References I

[Bad+21] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. “Dynamic Ad Hoc Clock
Synchronization”. In: Advances in Cryptology – EUROCRYPT 2021, Part III. Ed. by Anne Canteaut and
François-Xavier Standaert. Vol. 12698. Lecture Notes in Computer Science. Zagreb, Croatia: Springer, Cham,
Switzerland, 2021, pp. 399–428.

[Bag+19] Vivek Kumar Bagaria, Sreeram Kannan, David Tse, Giulia C. Fanti, and Pramod Viswanath. “Prism: Deconstructing the
Blockchain to Approach Physical Limits”. In: ACM CCS 2019: 26th Conference on Computer and Communications
Security. Ed. by Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz. London, UK: ACM Press,
2019, pp. 585–602.

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. “Towards Optimal Distributed Consensus (Extended Abstract)”. In:
30th Annual Symposium on Foundations of Computer Science. Research Triangle Park, NC, USA: IEEE Computer
Society Press, 1989, pp. 410–415.

[Dol+86] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl. “Reaching approximate
agreement in the presence of faults”. In: J. ACM 33.3 (1986), pp. 499–516.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 27 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

References II

[FG03] Matthias Fitzi and Juan A. Garay. “Efficient player-optimal protocols for strong and differential consensus”. In: 22nd
ACM Symposium Annual on Principles of Distributed Computing. Ed. by Elizabeth Borowsky and Sergio Rajsbaum.
Boston, MA, USA: Association for Computing Machinery, 2003, pp. 211–220.

[Fit+20] Matthias Fitzi, Peter Gazi, Aggelos Kiayias, and Alexander Russell. “Ledger Combiners for Fast Settlement”. In:
TCC 2020: 18th Theory of Cryptography Conference, Part I. Ed. by Rafael Pass and Krzysztof Pietrzak. Vol. 12550.
Lecture Notes in Computer Science. Durham, NC, USA: Springer, Cham, Switzerland, 2020, pp. 322–352.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. “The Bitcoin Backbone Protocol: Analysis and Applications”. In:
Advances in Cryptology – EUROCRYPT 2015, Part II. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057. Lecture
Notes in Computer Science. Sofia, Bulgaria: Springer Berlin Heidelberg, Germany, 2015, pp. 281–310.

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. “The Bitcoin Backbone Protocol with Chains of Variable
Difficulty”. In: Advances in Cryptology – CRYPTO 2017, Part I. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10401.
Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Cham, Switzerland, 2017, pp. 291–323.

[GKS22] Juan A. Garay, Aggelos Kiayias, and Yu Shen. “Permissionless Clock Synchronization with Public Setup”. In: TCC 2022:
20th Theory of Cryptography Conference, Part III. Ed. by Eike Kiltz and Vinod Vaikuntanathan. Vol. 13749. Lecture
Notes in Computer Science. Chicago, IL, USA: Springer, Cham, Switzerland, 2022, pp. 181–211.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 28 / 29

Introduction Fast Settlement Fast Fairness Timekeeping Takeaways References

References III

[GKS24] Juan A. Garay, Aggelos Kiayias, and Yu Shen. “Proof-of-Work-Based Consensus in Expected-Constant Time”. In:
Advances in Cryptology – EUROCRYPT 2024, Part III. Ed. by Marc Joye and Gregor Leander. Vol. 14653. Lecture
Notes in Computer Science. Zurich, Switzerland: Springer, Cham, Switzerland, 2024, pp. 96–125.

[GKS25] Juan A. Garay, Aggelos Kiayias, and Yu Shen. “State Machine Replication Among Strangers, Fast and Self-sufficient”. In:
Advances in Cryptology – CRYPTO 2025. Ed. by Yael Tauman Kalai and Seny F. Kamara. Cham: Springer Nature
Switzerland, 2025, pp. 3–36.

[PS17] Rafael Pass and Elaine Shi. “FruitChains: A Fair Blockchain”. In: 36th ACM Symposium Annual on Principles of
Distributed Computing. Ed. by Elad Michael Schiller and Alexander A. Schwarzmann. Washington, DC, USA:
Association for Computing Machinery, 2017, pp. 315–324.

J. Garay, A. Kiayias, Y. Shen State Machine Replication Among Strangers CRYPTO ’25 29 / 29

	Introduction
	Fast Settlement
	Fast Fairness
	Timekeeping
	Takeaways
	References

