How to Tolerate Typos in

Strong Asymmetric PAKE

August 20th, 2025
Work done at

2Qregon State University

lan McQuoid!, Mike Rosulek?, Jiayu Xu?

Auth Problem — Password-over-TLS

@® Passwords form the most common method of human authentication online

Alice B
password
password' password’
TLS =
- 1000 0=0
. Eail ——\ s Fail 10000=0
e uccess/Failure s uccess/Failure pr——
<)

Assuming secure and server-authenticated channels, password auth is easy!

2/51

Auth Problem — Goals

Goals

Securely derive a key

Assuming only a shared password

3/51

Password-Authenticated Key Exchange [PAKE]

@® \We can achieve authentication with Password-Authenticated Key Exchange

(PAKE)

@ When 7 # 7/, the participants get independent keys (k, k')

Alice

k/

PAKE

Bob

4/51

PAKE — Server Compromise

@ Server stores 7 in the clear

@ \What happens if server's storage is stolen?

k' PAKE k

5/51

PAKE — Server Compromise

@ |Instead of 7, store some transformation o ()

@® If 7 =7, then k = k’ (and independently sampled otherwise)

6/51

PAKE — Server Compromise

@® Bob needs some information to authenticate Alice

@ As intuition, consider a publicly salted hash o : 7 — s, H(s;)

Alice Bob
. s, H(s;)

s, m H(s;)

i aPAKE K

7 /51

PAKE — Server Compromise

@® Bob needs some information to authenticate Alice

@ As intuition, consider a publicly salted hash H(s;)

G s, H(s;)

s, H(s;)
o aPAKE K

Unfortunately, some non-inevitable attacks still exist

8/51

aPAKE — Precomputation

° Mallory performs precomputation to help invert the mapping
Lookup Table

Password ~ Server Storage

1 H(S;ﬂ'l)

) H(S;7T2)

9/51

aPAKE — Precomputation

° Mallory performs precomputation to help invert the mapping
a Mallory steals Bob's storage H(s;)
e Mallory checks her table for H(s;)

Lookup Table

Password Server Storage

™ H(s; m1)

) H(S;ﬂ'2)

H(s; m;) = H(s;)

aPAKE — Precomputation

° Mallory performs precomputation to help invert the mapping
a Mallory steals Bob's storage H(s;)
e Mallory checks her table for H(s;)

Lookup Table

Password Server Storage

™ H(s; m1)

) H(S;ﬂ'2)

H(s; m;) = H(s;)

Can we stop Mallory from precomputing H?

Auth Problem — Goals

@ Can we interactively evaluate H(s;) and hide s?
Goals

1) Securely derive a key

2) Assuming only a shared password

3 Protecting against server compromise

4

12/51

saPAKE — [JKX18]

@ Strong aPAKE [JKX18] addresses the precomputation problem.

@® Add an interactive step to aPAKE: Oblivious Psuedorandom Functions

[OPRF].
Alice Bob
. 5, 0(OPRF,(r))
o OPRF o
o o(OPRF4())
k' aPAKE k

13/51

@® As intuition for the different PAKE classes:

Storage Post-compromise Effort

PAKE Plaintext Password 0(1)

aPAKE Publicly Salted Hash O(log |Dictionary|)
saPAKE Privately Salted Hash O(|Dictionary|)

14/51

(sa)PAKE — Point Equality

@® saPAKE provides most of our requirements

O Securely derive a key
O Assuming only a shared password

O Protecting against server compromise

15/51

(sa)PAKE — Point Equality

@® saPAKE provides most of our requirements

O Securely derive a key
O Assuming only a shared password

O Protecting against server compromise

@ but (sa)PAKE authenticates a very specific function: point equality

16/51

(sa)PAKE — Point Equality

Alice Bob
i ~ 7/o(r)/o(OPRF(7))
K (sa)PAKE k

k = k' exactly when 7 = 7’/

17/51

(sa)PAKE — Point Equality

Alice Bob
i ~ w/o(n)/o(OPRF(m))
K (sa)PAKE k

k = k" exactly when 7w = 7’

Can we extend saPAKE to handle typos as well?

18/51

Authentication — Handling Typos

@ Inputs can be quite errory

@ Users frequently fail to auth with “close” inputs [Cha-+16]

Alice Bob
Password password
AUTH
failure failure
)

19/51

Authentication — Handling Typos

@ Inputs can be quite errory
@ Users frequently fail to auth with “close” inputs [Cha—+16]

@ Replace (sa)PAKE point functions with fuzzy matching

Alice Bob
Password password
AUTH
“Close enough” “Close enough”
) N —

20/51

Authentication — Handling Typos

Typo Policies

Typo Policy Example
Case-reversal Password ~» pASSWORD

First Case Password ~~ password
Repeated First/Last Password ~+ PPassword

Adjacent Substitutions Password ~~ Padaword

21/51

Authentication — Handling Typos

Typo Policies

Typo Policy Example
Case-reversal Password ~~ pASSWORD

First Case Password ~~ password
Repeated First/Last Password ~~ PPassword

Adjacent Substitutions Password ~~ Padaword

Facebook corrects the first three classes

22/51

(sa) PAKE — Handling Typos

@® Fuzzy matching easily addressed in Password-over-TLS

Alice Bob

password, policy

p d password
asswor | TLS |

policy(Password)?

Success/Failure | I Success/Failure
| TLS |

Still unclear how to fuzzy match with compromise resilience

23/51

(sa)PAKE — Handling Typos

@® RQ: Is there a UC-secure saPAKE with fuzzy matching?

Alice Bob

) o(password)

Password

Fuzzy saPAKE

24 /51

(sa)PAKE — Handling Typos

Previous Work on Universal Composibility Constructions

Strict Equality Handles Typos

No Server Compromise PAKE [Can+05] fPAKE [Dup+18]
Weak Server Compromise aPAKE [GMR06] afPAKE [Erw-+20]
Strong Server Compromise saPAKE [JKX18] safPAKE

25/51

Auth Problem — Goals

Goals

Securely derive a key
Assuming only a shared password

Protecting against server compromise

And allowing fuzzy matching

26/51

Handling Typos — Naive Approach

@ Run a subsession for each possible typo

Alice Bob
Padsword — o (Password)
ki saPAKE ky
R
Padsword _ o(pASSWORD)
ki saPAKE ky
R
Pad sword @ o(password)
k}, saPAKE k,
R

27 /51

Handling Typos — Naive Approach

@® No mechanism to force the same client password in each subsession

Mallory e
password o (Password)
ki saPAKE ky
HUNTER? ~— — o(pASSWORD)
ki saPAKE ko
R
Qwerty _ : o(password)
K, saPAKE k,
R

2851

Handling Typos — Naive Approach

@ No mechanism to force the same client password in each subsession
@ Without OPRF outputs, multiple guesses impossible?

@® Try compressing all OPRFs into one

Previous guesses can still be leveraged

29/51

Handling Typos — Intuition

Alice Bob

' ———————

o OPRF |+ —
<—\—J

I —— o(p)

K aPAKE K
PUE—— —

I _ alp)

K, aPAKE k.
| -

@ Problem 1: Server can make unstructured guesses

30/51

Handling Typos — Intuition

@® Problem 1: Server can make unstructured guesses

@® Problem 2: Communication is still linear in the typo set

31/51

Handling Typos — Normalizing Passwords

@ Tell Alice how to correct her typo

OPRF(7;)
01y--+,0p —
ﬂ 5 Correction - Ll
J 10000 =0
- 1000 1= O

7 < correct(dj, 7))

oY)
o
lon

Alice

]

32/51

Handling Typos — Normalizing Passwords

@ Tell Alice how to correct her typo
@® Keyword Private Information Retrieval (kPIR) can help!

p; = OPRF(m;) i -
h J J ﬁp{p,'%(;/} 10000 =0
5 kPIR 110000
—J 10000=0

m correct(d;, ;)

Alice

33/51

Handling Typos — Normalizing Passwords

@ Individually, a protocol obliviously “normalizing” typos

=
=
o}
o
o
o

s

(=} | s20

. »
1 kPR f————

i

7 = correct(r’, &)

3451

Handling Typos — Normalizing Passwords

@® \We can compress our n aPAKE steps into one

“normalization-then-aPAKE" .

Alice Bob
ud ——
o OPRF >
— e
‘) D={n~3d}
5 kPIR
p = correct(d’, ') - a(p)
k aPAKE k
— e

35/51

Handling Typos — Verifying the Database

@® No mechanism for enforcing an honest database

@ Adversary can make independent guesses

36/51

Handling Typos — Verifying the Database

@® No mechanism for enforcing an honest database
@ Adversary can make independent guesses

@ Need to prove the server used an expected database!

3751

Handling Typos — Verifying the Database

@® How do we verify the server acted honestly?

Alice Bob
' EEE—
o OPRF o
,0/
E——
D
5 kPIR
<—\—J

3851

Handling Typos — Verifying the Database

@® How could we verify the server acted honestly?

@ Client regenerates the server's messages a la Fujisaki-Okamoto

Alice Bob
' CEEEEEEEE—
o OPRF >
P
EEEE——
——— D
5w kPIR
—_— e

?

verify(v) = (D,)

39/51

Handling Typos — Verifying the Database

@® How could we verify the server acted honestly?

@ Client regenerates the server's messages a la Fujisaki-Okamoto

Alice Bob
' CEEEEEEEE—
o OPRF >
P
EEEE——
——— D
5w kPIR
—_— e

verify(v) = (D,)

Explicitly, v is an encryption of the random coins necessary to generate D

40/51

Handling Typos — safPAKE

@ With the proof, safely normalize Alice's typo?

Alice Bob
ud EEE—
o OPRF 2
o
EEE—
D
N7 kPIR
4—\—J
p N a(p)
k' aPAKE k
-— >

Technically, we also normalize the OPRF output: p, = p.

41/51

Putting Everything Together

safPAKE

1 Reuse OPRF subsession — Avoid client attacks

l

OPRF

kPIR

|

aPAKE

\

42 /51

Putting Everything Together

safPAKE

1 Reuse OPRF subsession — Avoid client attacks

2 Normalize aPAKE subsessions — Avoid linear comp/comm costs

Alice Bob
w’ EEEEEEE—
P OPRF >
p/
 CEEE—
D
P,V kPIR
‘7\—/
p PR— a(p)
k' aPAKE k
B e E—

43/51

Putting Everything Together

safPAKE

1 Reuse OPRF subsession — Avoid client attacks

2 Normalize aPAKE subsessions — Avoid linear comp/comm costs

3 Verify server's kPIR messages — Avoid server attacks

Alice Bob

w’ [

P OPRF >

p/

CEEEEEE———

- D

p,v kPIR
‘7_/

p 0 a(p)

W aPAKE K
B >

44 /51

Auth Problem — Goals

Goals

Securely derive a key
Assuming only a shared password

Protecting against server compromise

And allowing fuzzy matching

45 /51

Authentication — Handling Typos

Previous Work on Universal Composibility Constructions

Strict Equality Handles Typos

No Server Compromise PAKE [Can—+05] fPAKE [Dup-+18]
Weak Server Compromise aPAKE [GMRO06] afPAKE [Erw+20]
Strong Server Compromise saPAKE [JKX18] safPAKE (Our Result)

46/51

@ The normalization step has strong compromise guarantees

@ Future typo-tolerant password-based protocols are possible

Alice Bob
' —
o OPRF °
o
EEEE—
D
v kPIR

47 /51

.
Next Steps

@ Our protocol supports a general notion of similarity
@ But the client’'s computation is linear in the database size

@ Leveraging succinct proofs or kPIR optimization allows for larger fuzzy sets

Ours + Trivial vPIR Ours + FHE vPIR

C Cost (n+4)E, (n+3)H (n+4)E, (n+3)H, O(n)F
S Cost 3E, 2H 3E, 2H, nF
Rounds 3 5
Communication (3n+9)k + 4G O(k) + 4G + 9%
S Storage (Bn+ 1)k O(k)n+ (3n+ 1)k

Thank You

49/51

References

[Can+-05]

[Cha+16]

[Dup+18]

[Erw+20]

[GMRO6]

Ran Canetti et al. “Universally composable password-based key exchange”. In:
EUROCRYPT. 2005.

Rahul Chatterjee et al. “pASSWORD tYPOS and how to correct them
securely”. In: IEEE Security and Privacy. 2016.

Pierre-Alain Dupont et al. “Fuzzy password-authenticated key exchange”. In:
EUROCRYPT. 2018.

Andreas Erwig et al. “Fuzzy asymmetric password-authenticated key exchange”.
In: ASIACRYPT. 2020.

Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. “A method for making
password-based key exchange resilient to server compromise”. In: CRYPTO.
2006.

50/51

References

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. “OPAQUE: an asymmetric
PAKE protocol secure against pre-computation attacks”. In: EUROCRYPT.
2018.

51/51

