Maliciously-secure PIR (almost) for free

Brett Falk

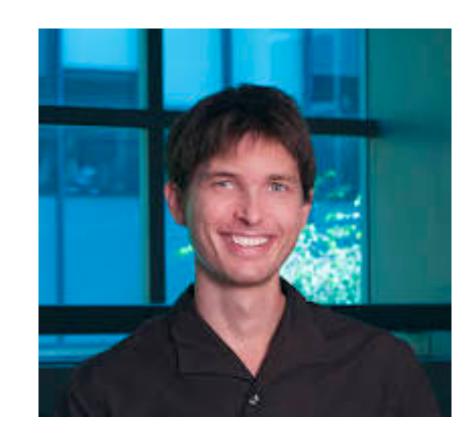
Pratyush Mishra

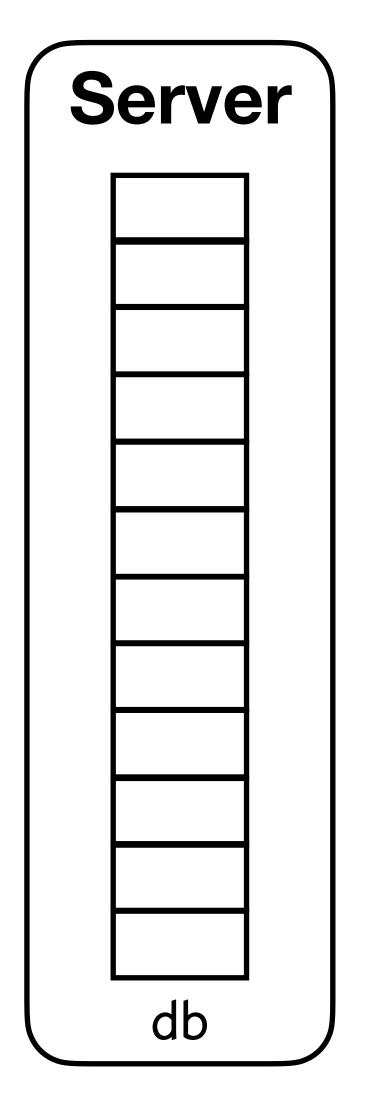
Matan Shtepel

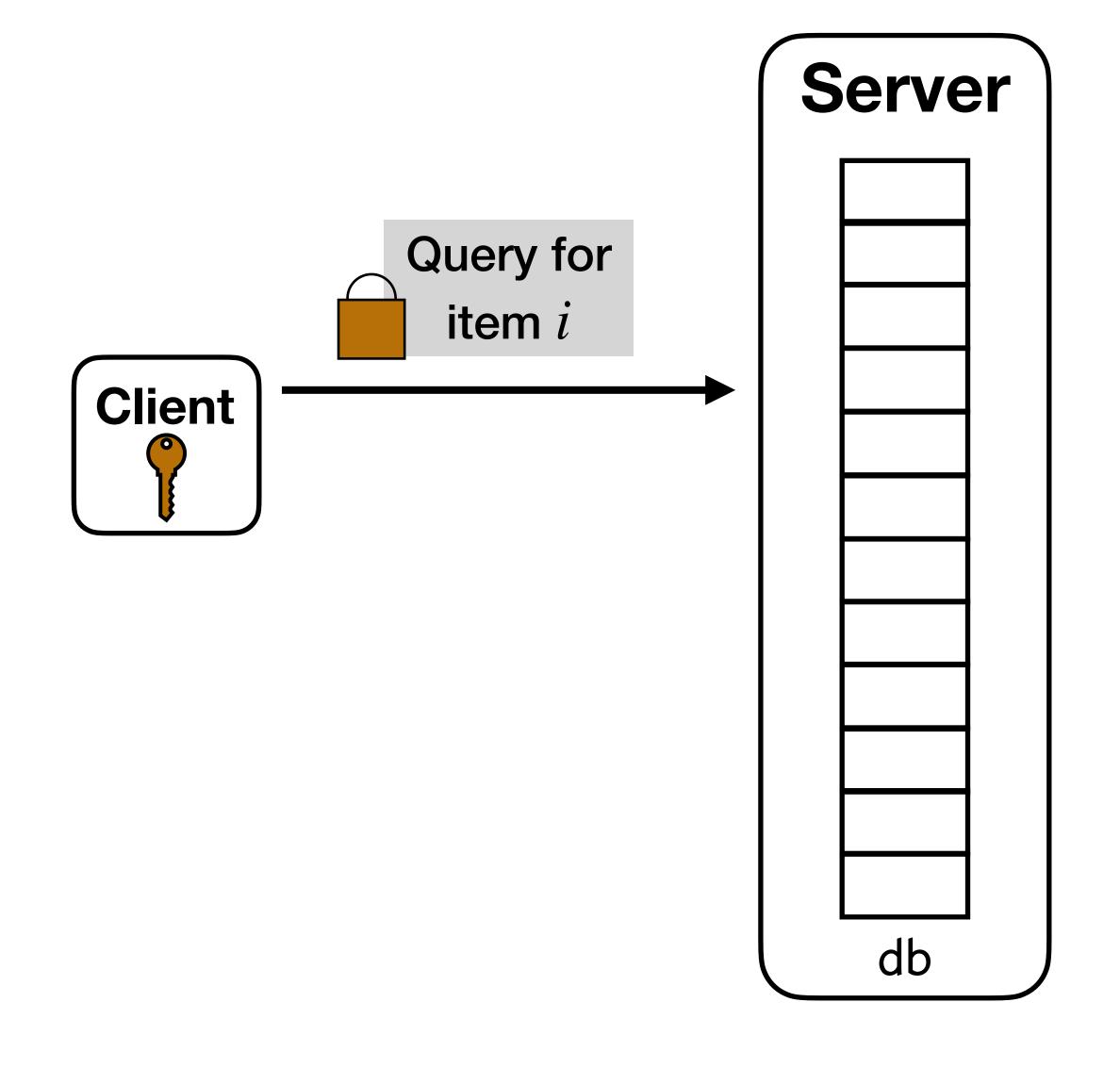
UPenn

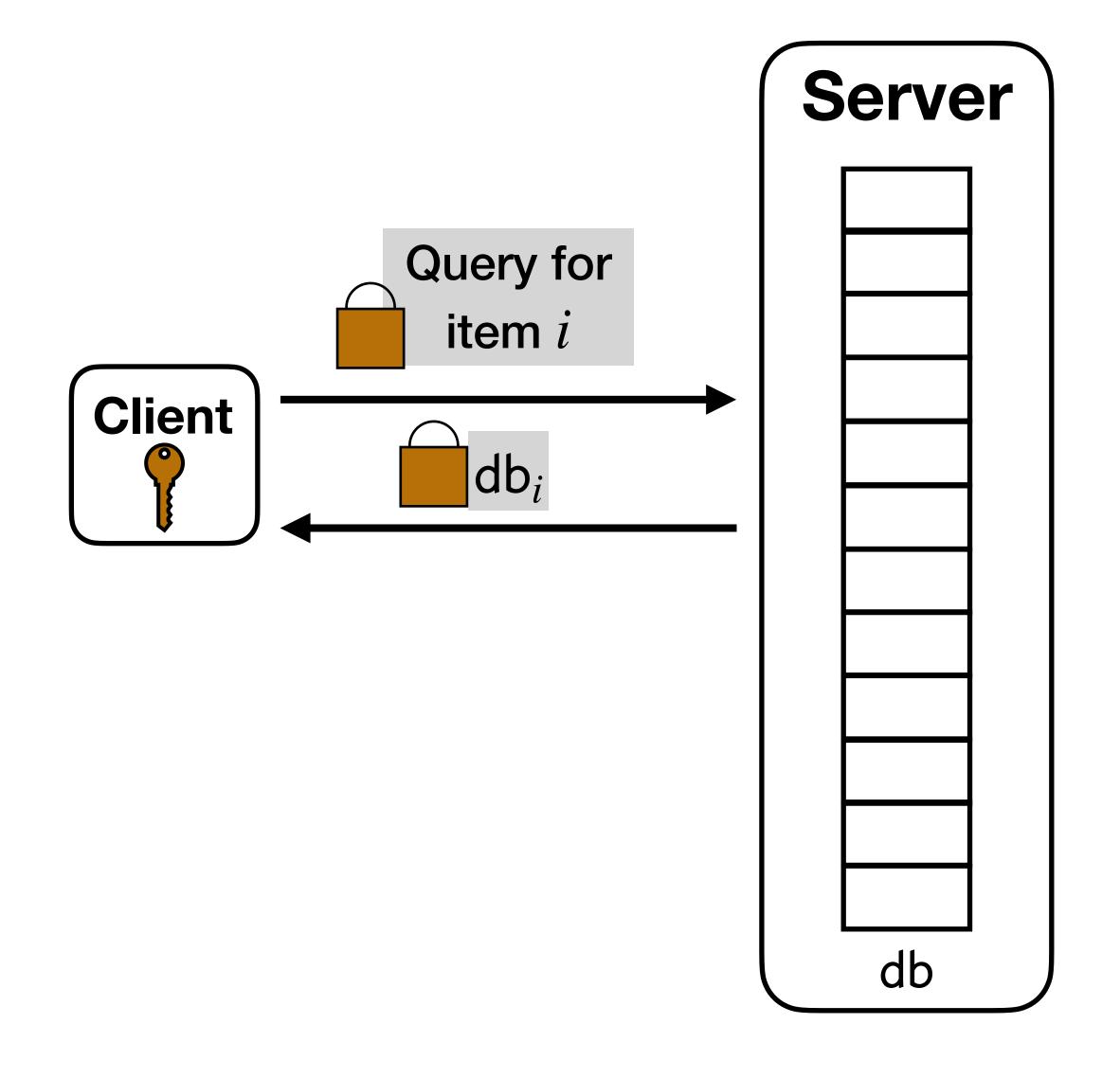
UPenn

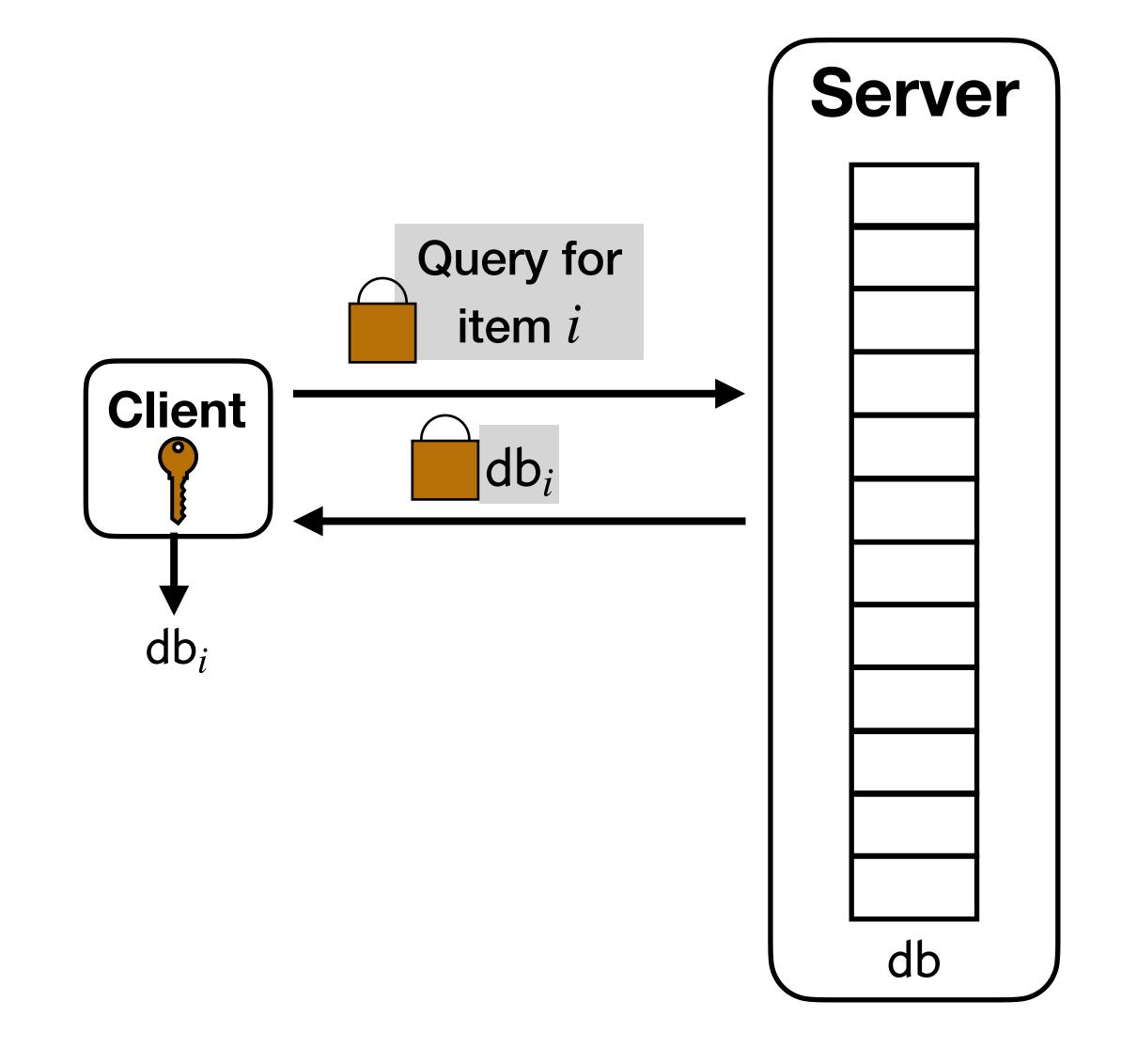
CMU

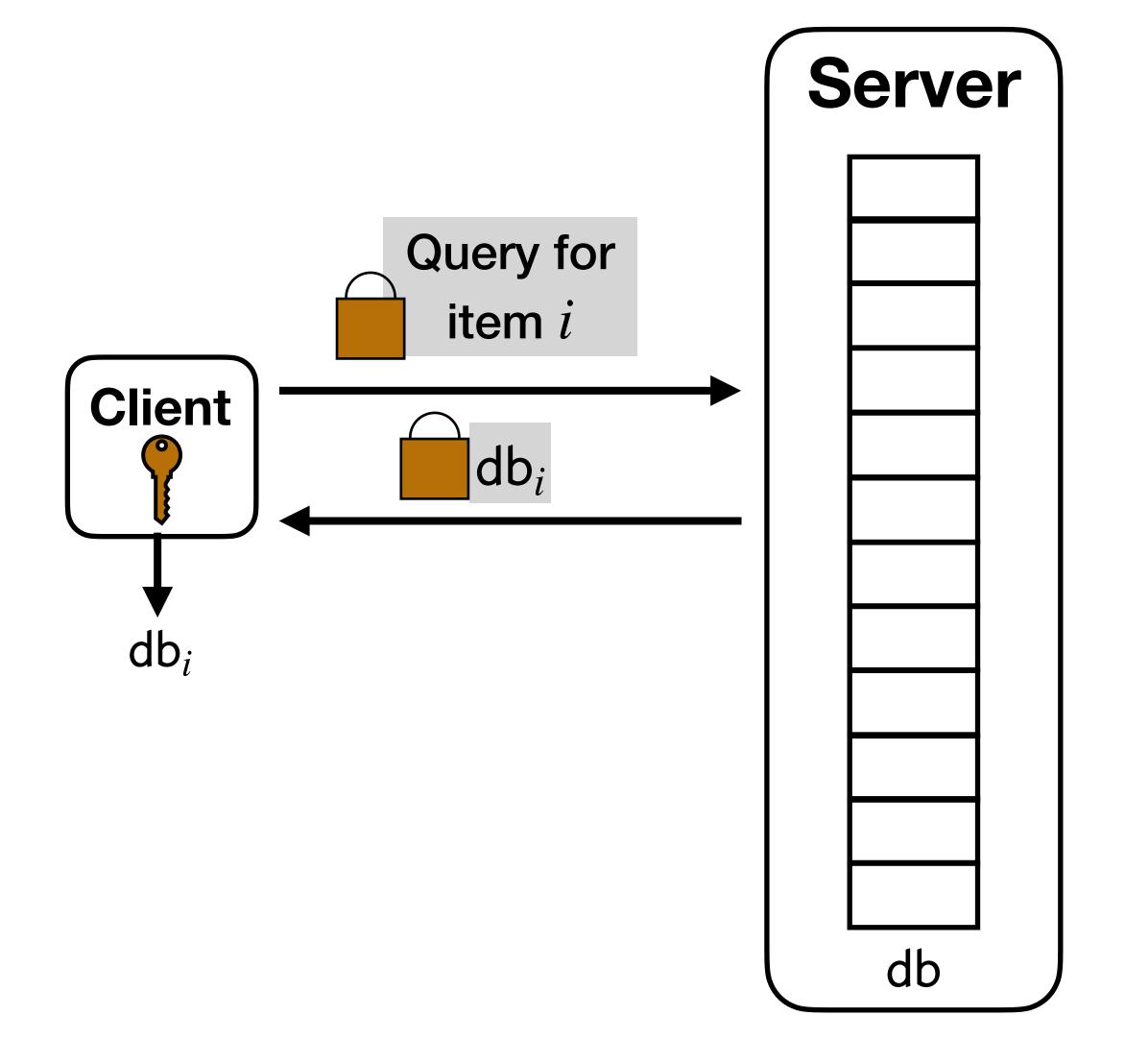






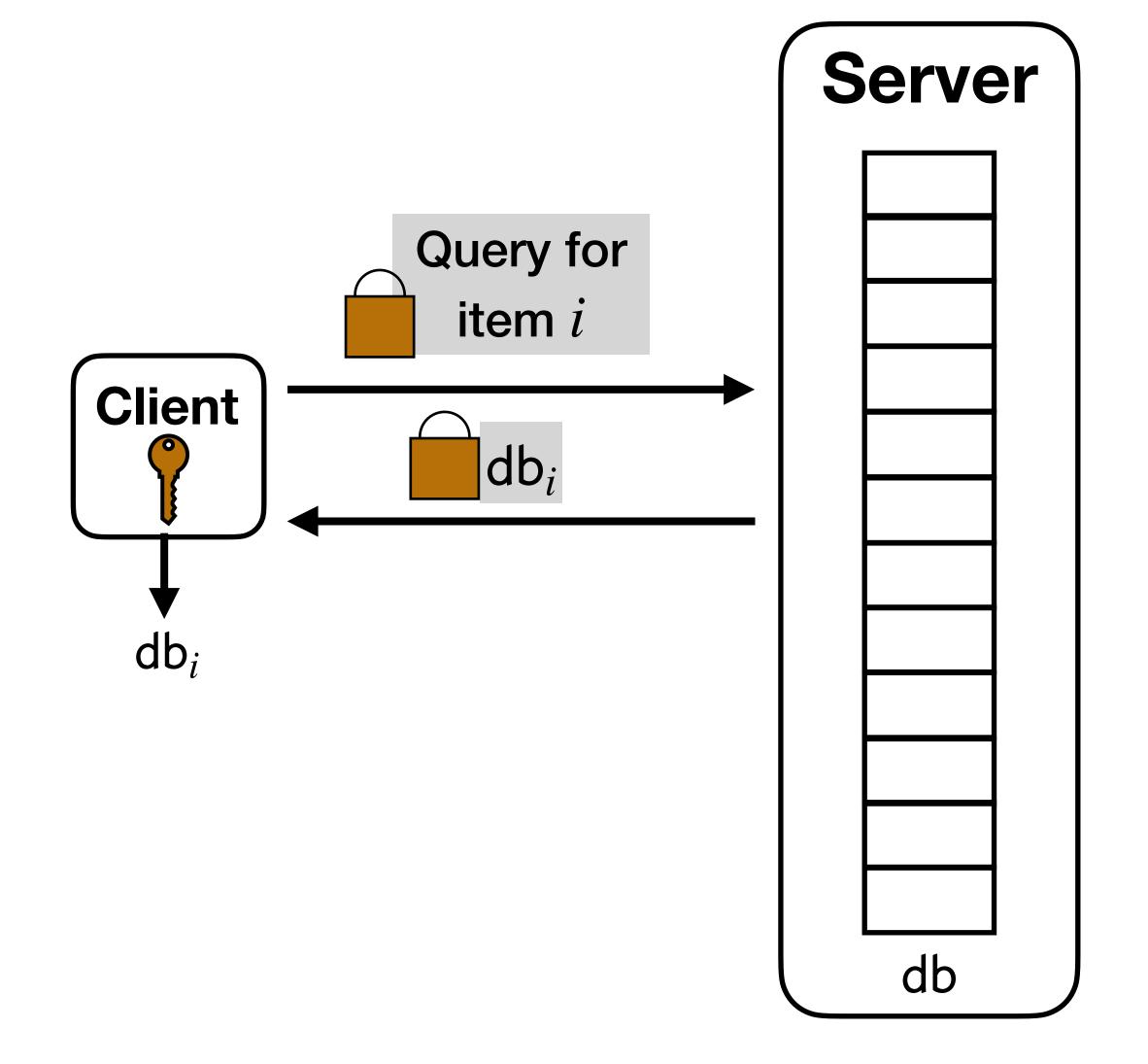




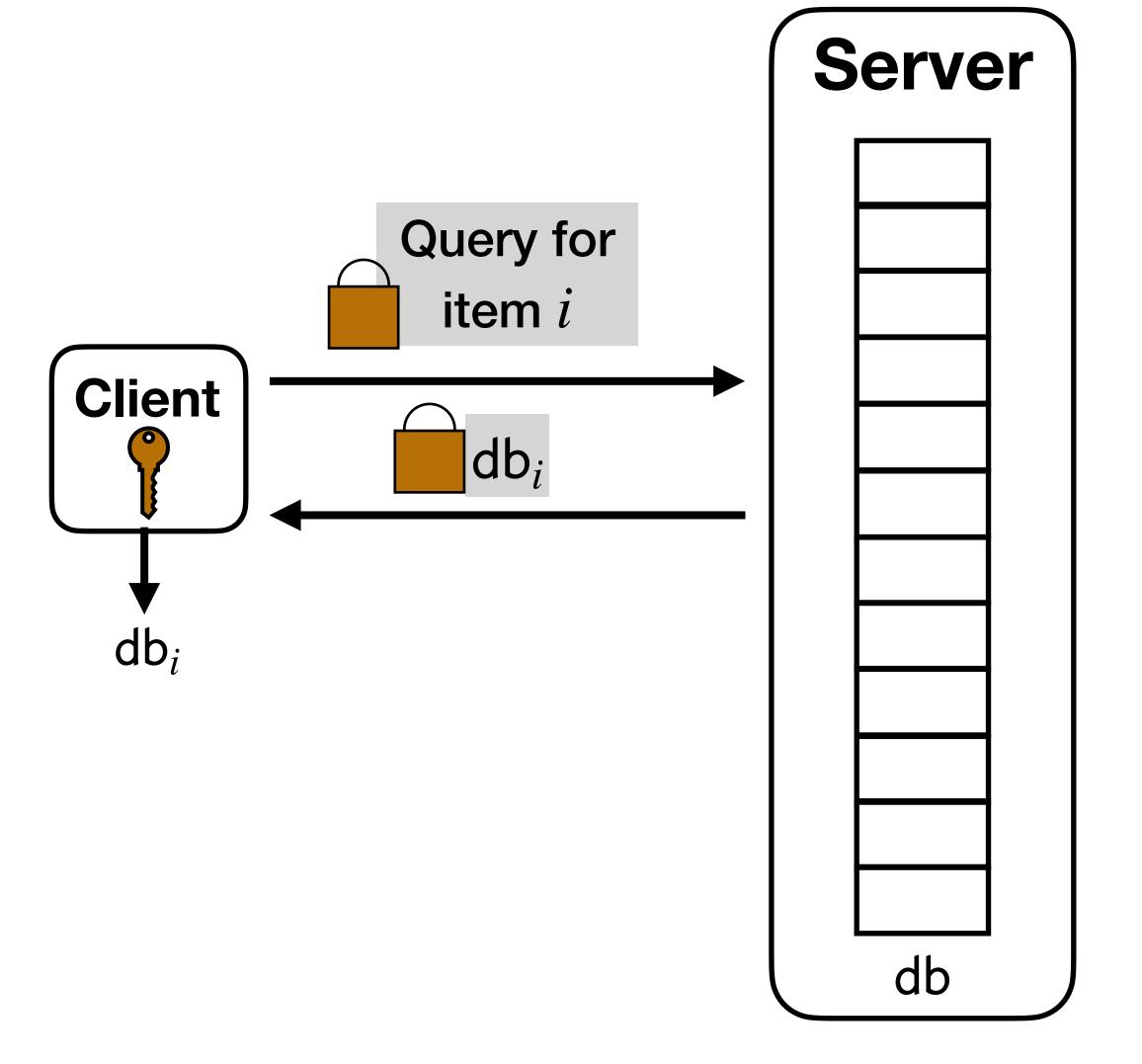


Properties:

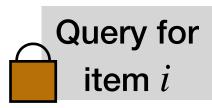
1. Correctness: client outputs db_i

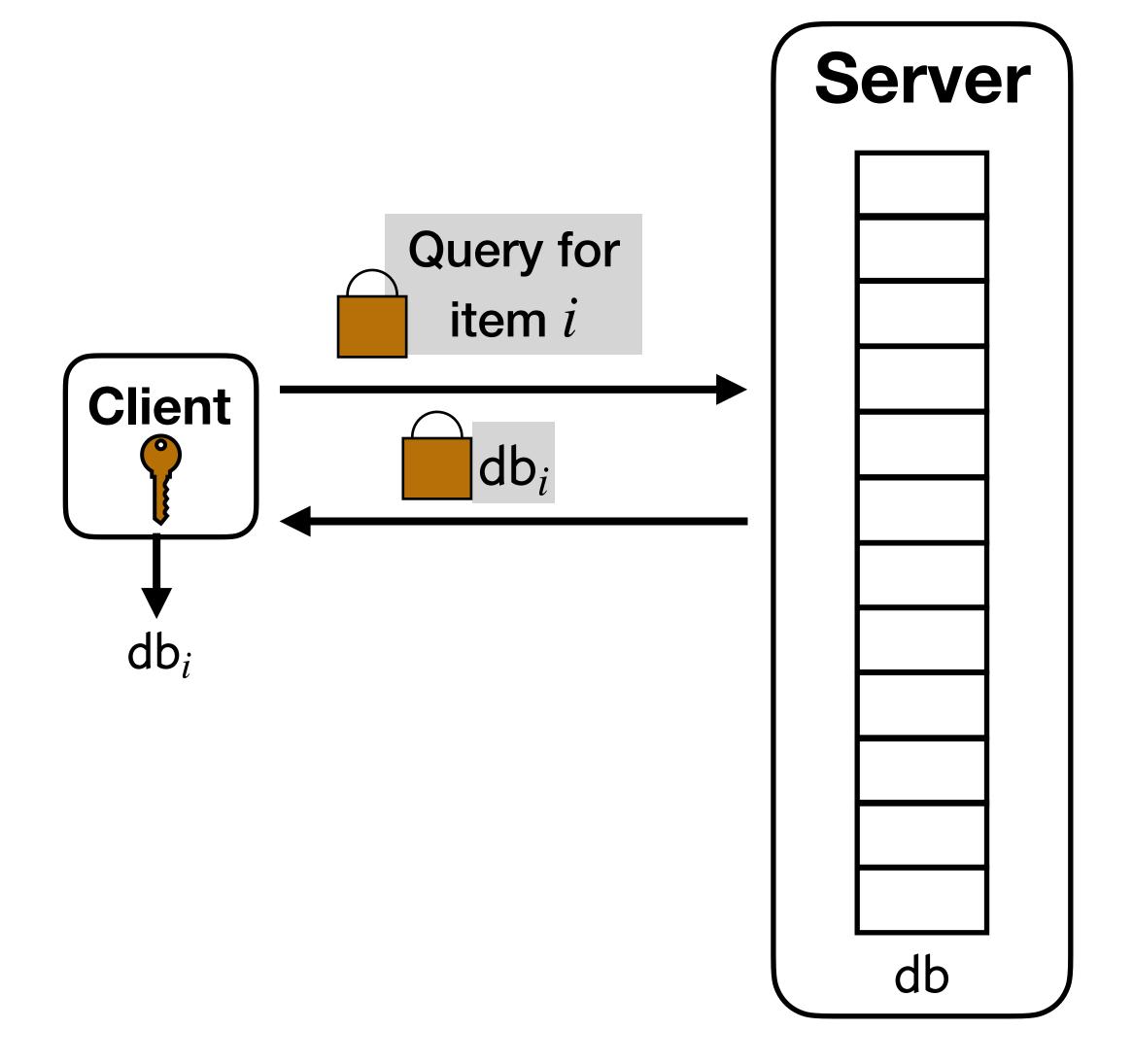


- 1. Correctness: client outputs db_i
- 2. Privacy: server does not learn i from



- 1. Correctness: client outputs db_i
- 2. Privacy: server does not learn i from

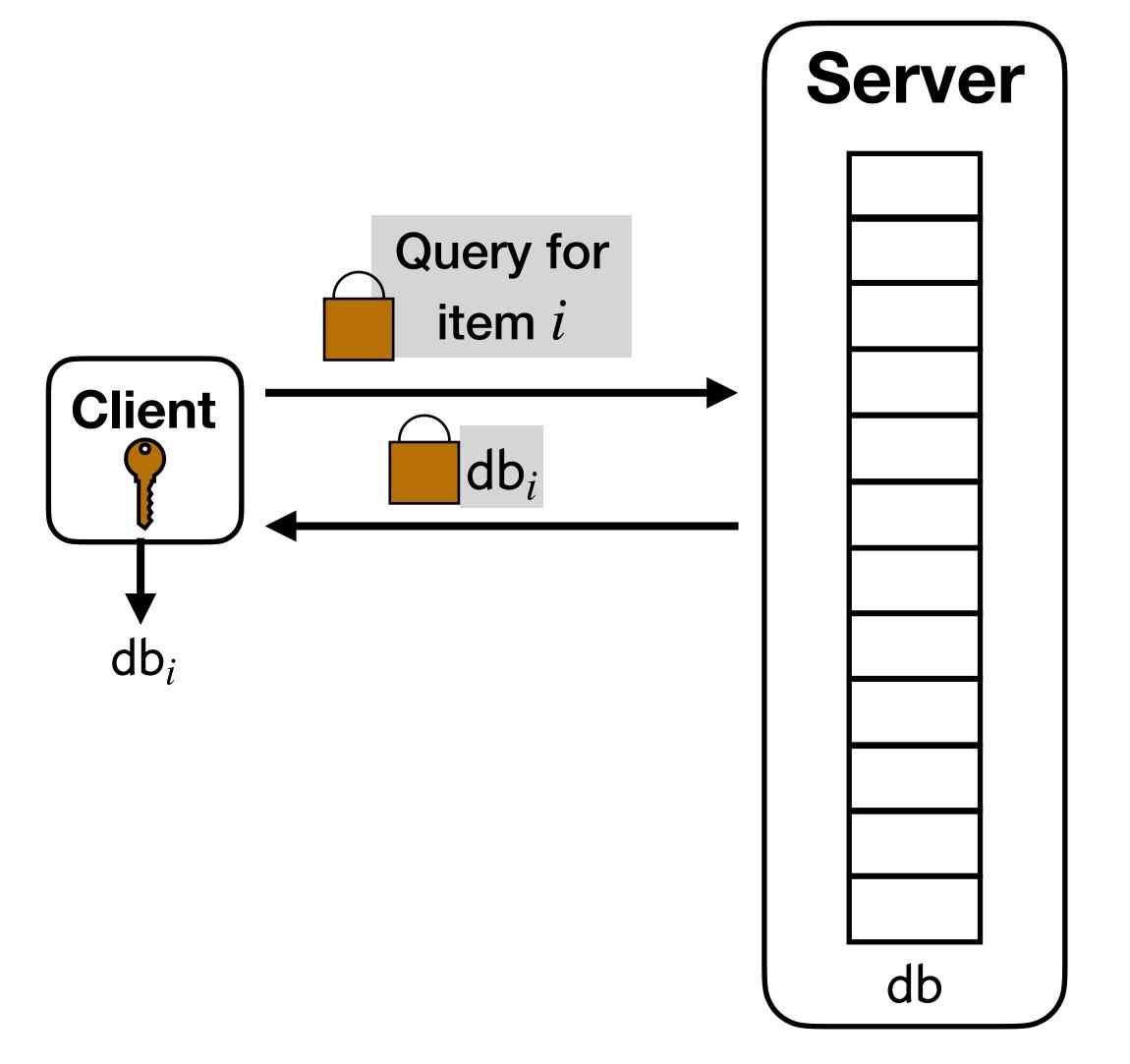




Query for

item i

- 1. Correctness: client outputs db_i
- 2. Privacy: server does not learn i from
- 3. Efficiency: communication & computation are "small"

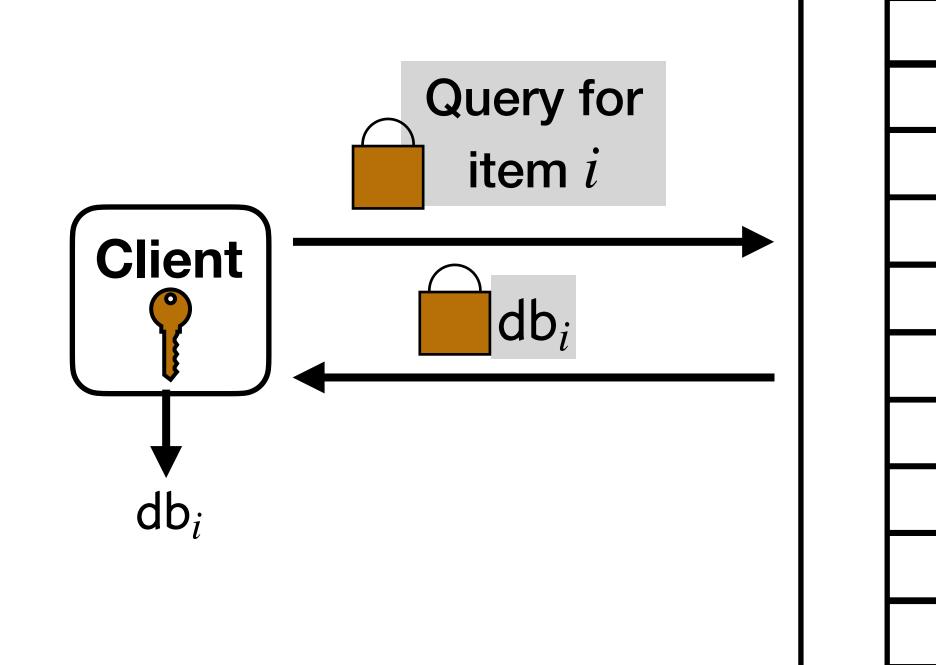


Query for

item i

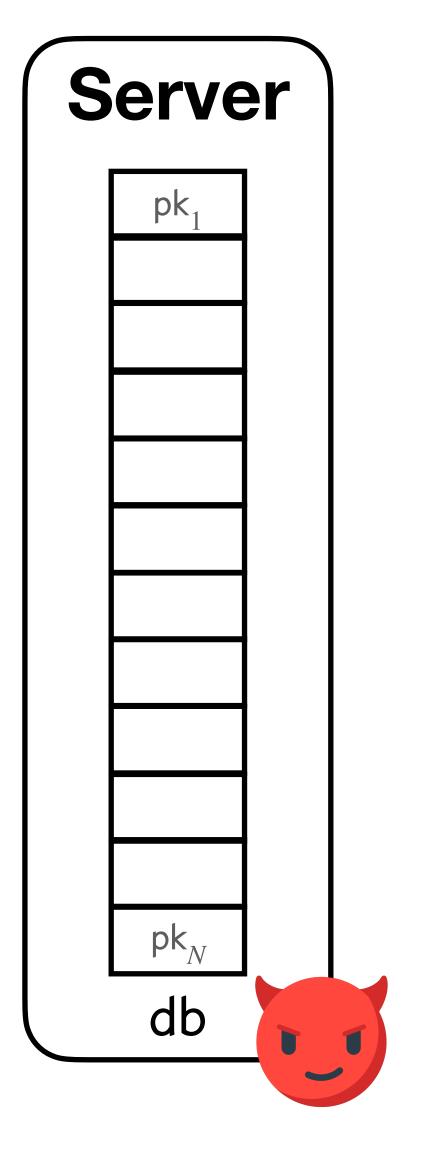
Properties:

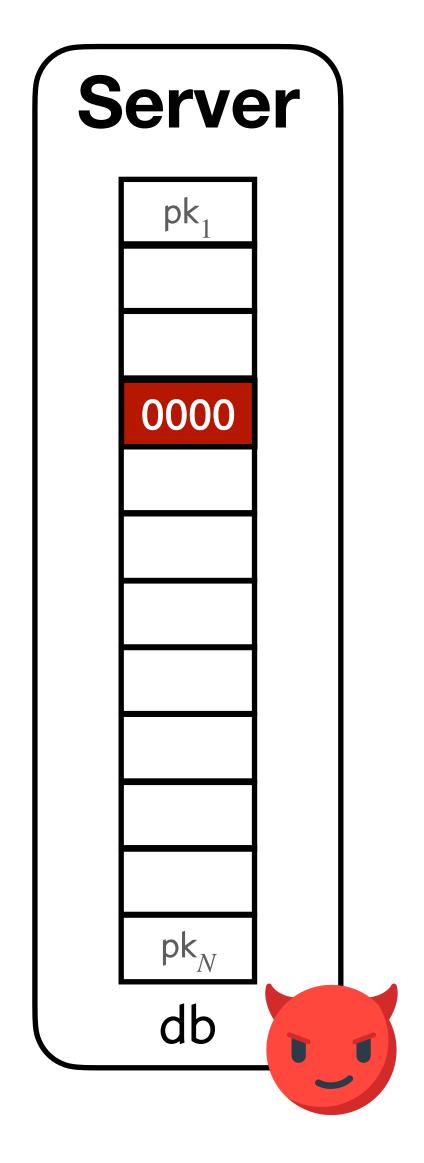
- 1. Correctness: client outputs db_i
- 2. Privacy: server does not learn i from
- 3. Efficiency: communication & computation are "small"

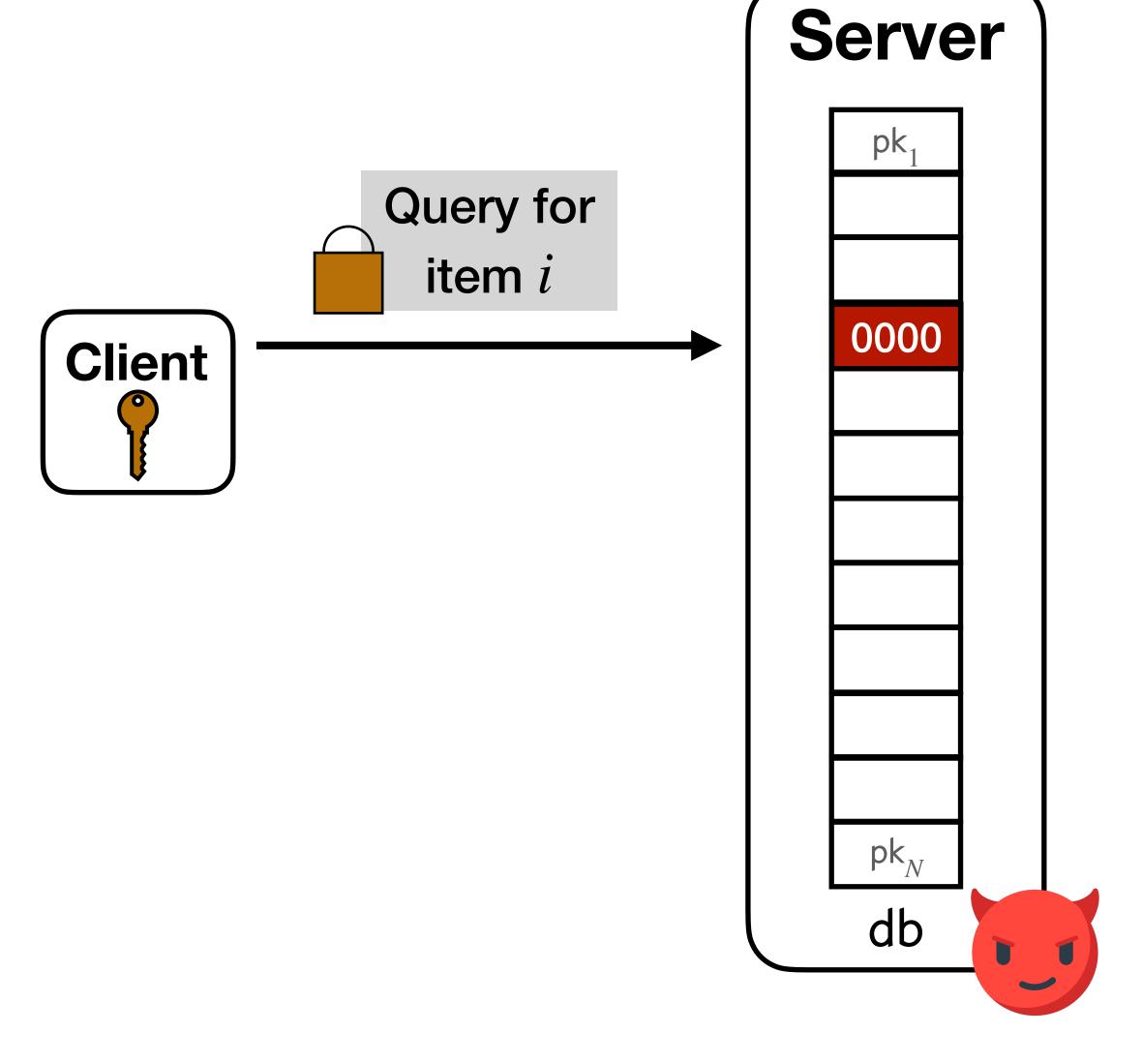


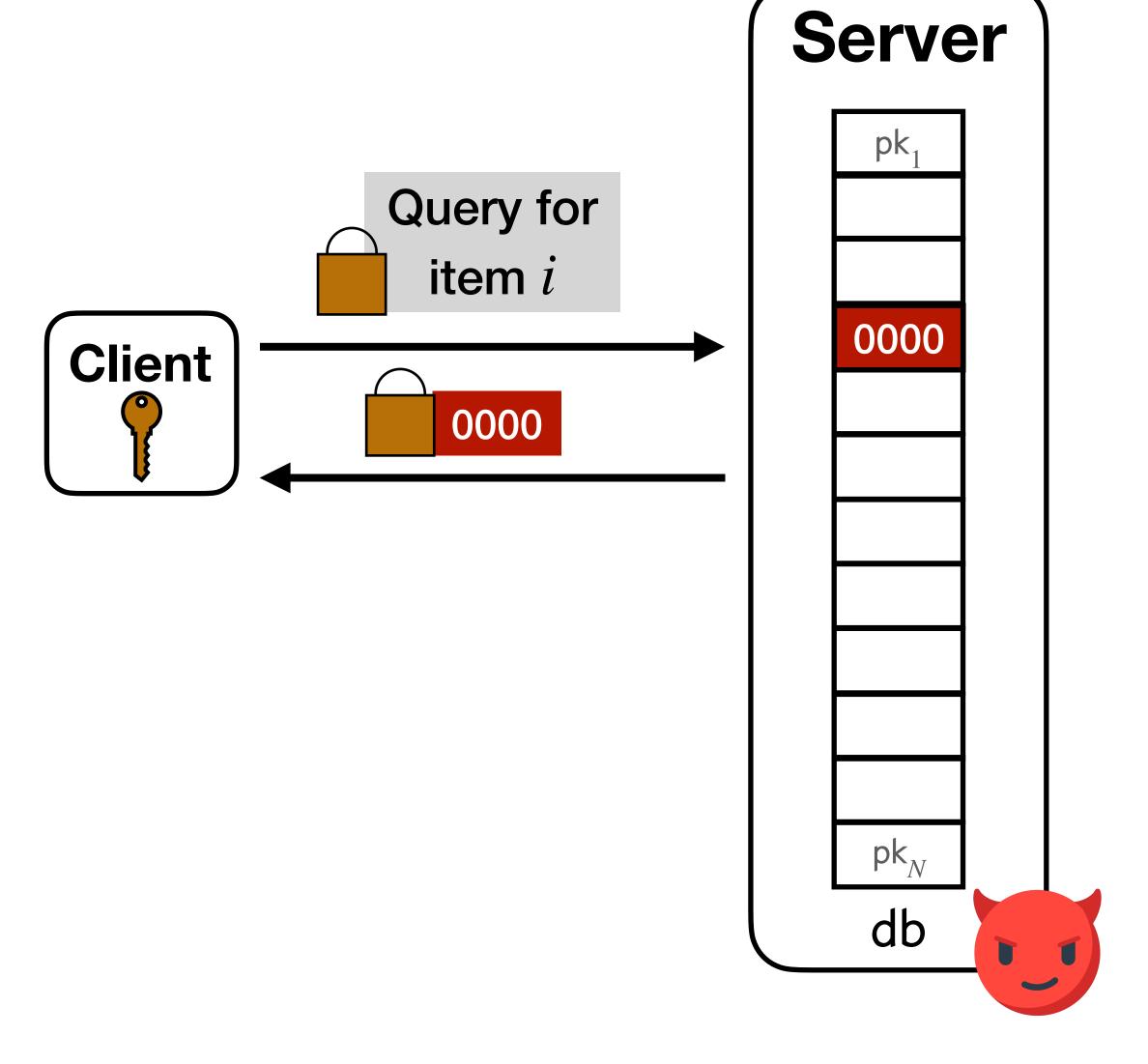
Server

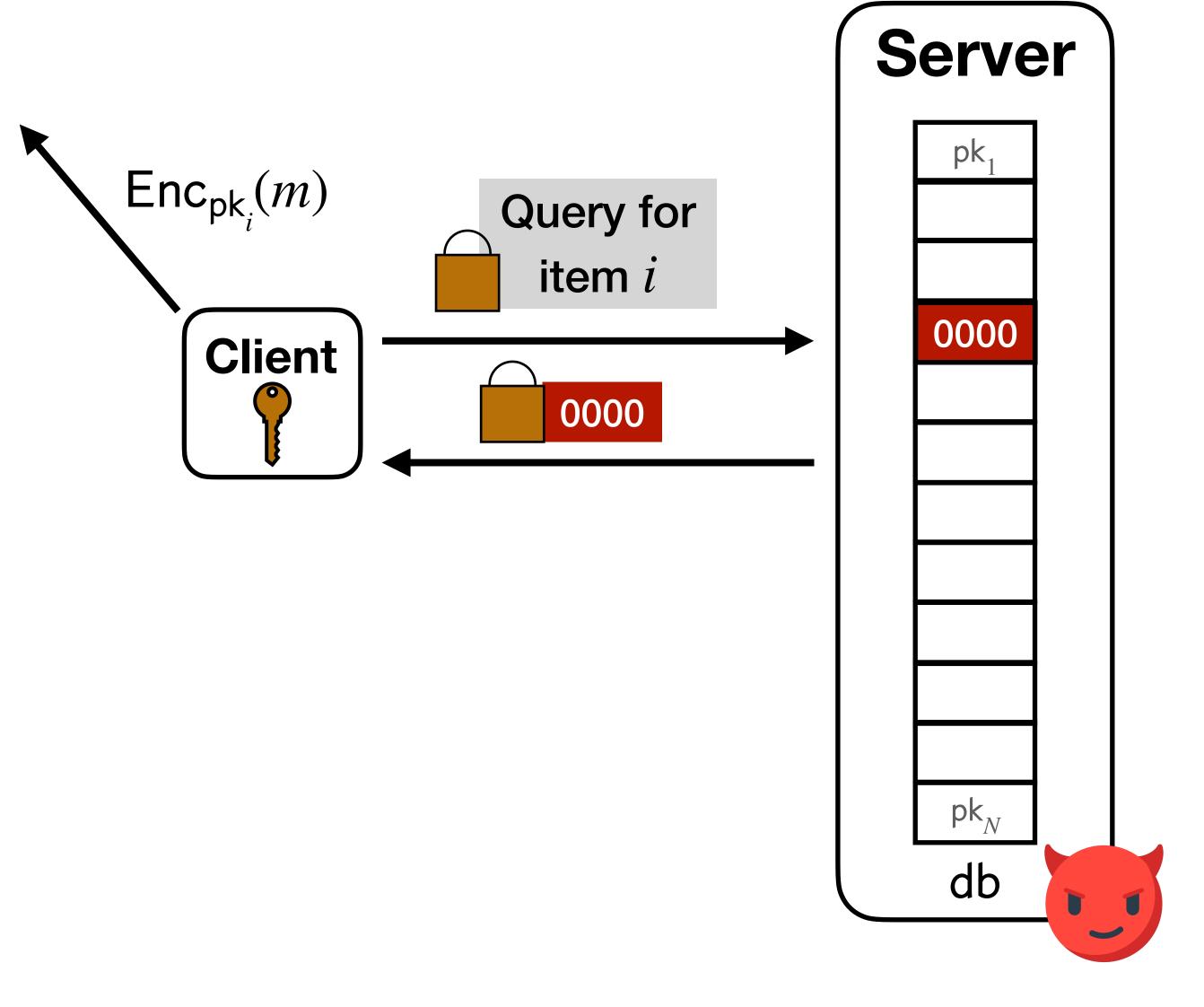
^{*} focus on single-server

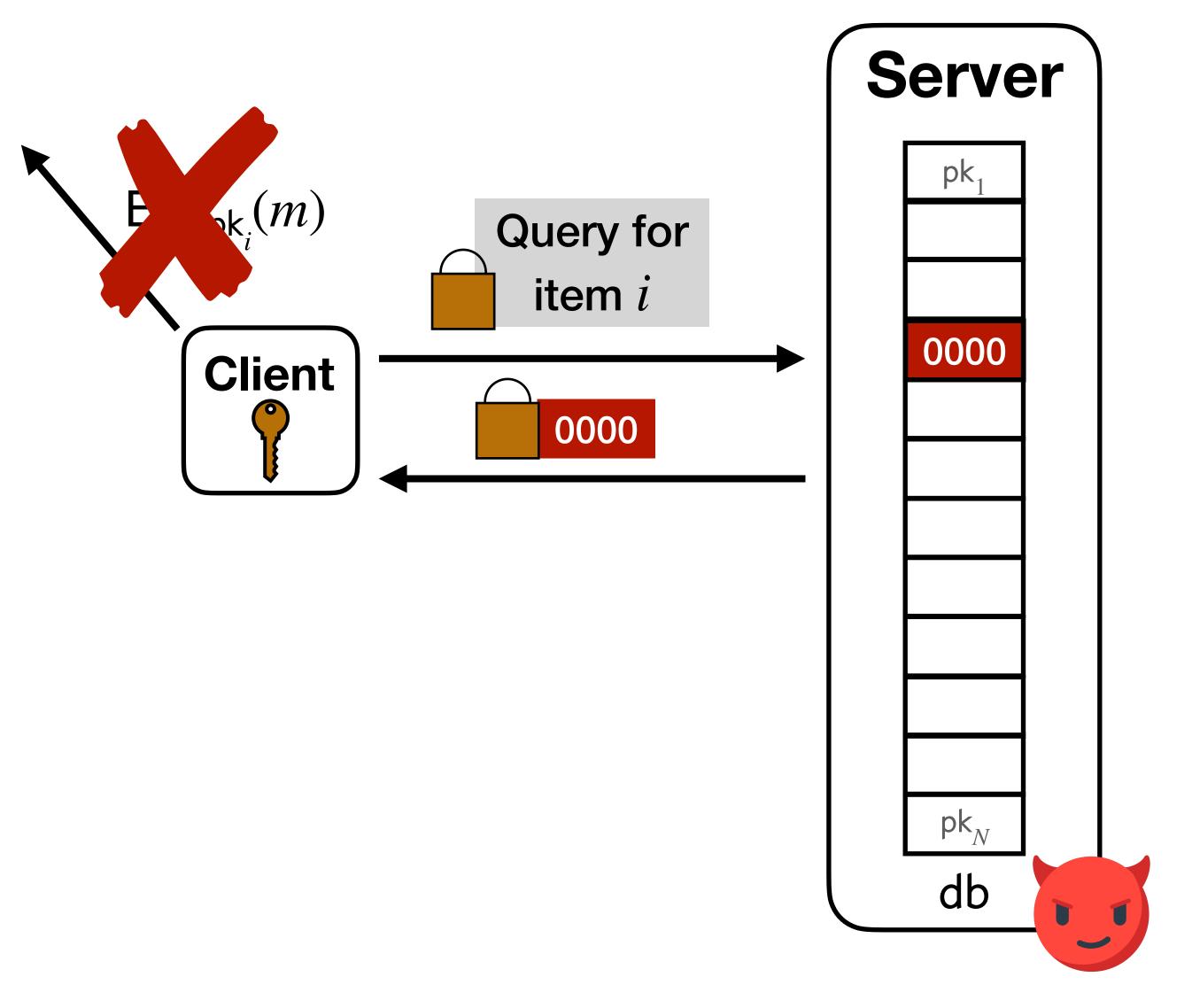






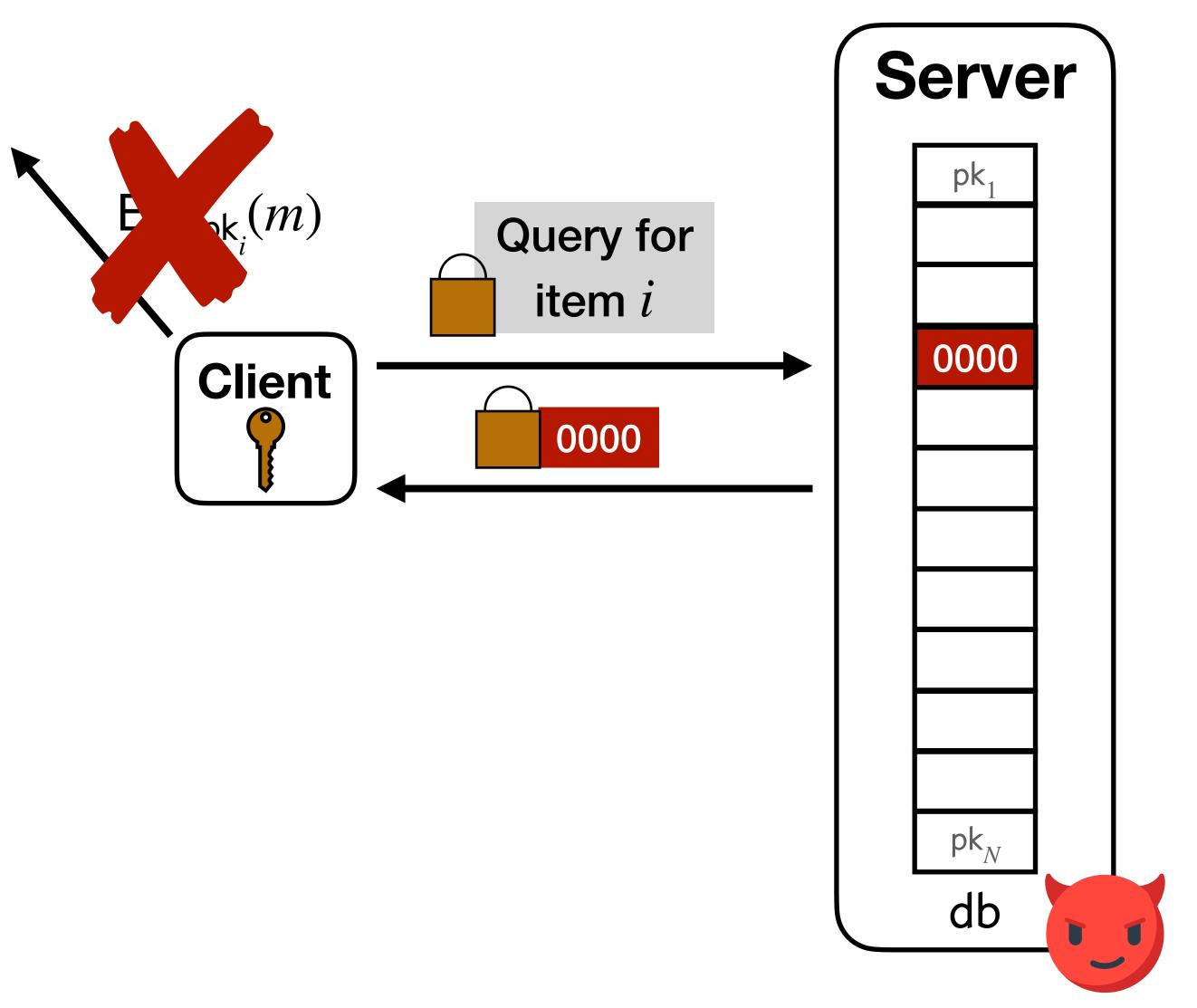






Selective Failure Attack

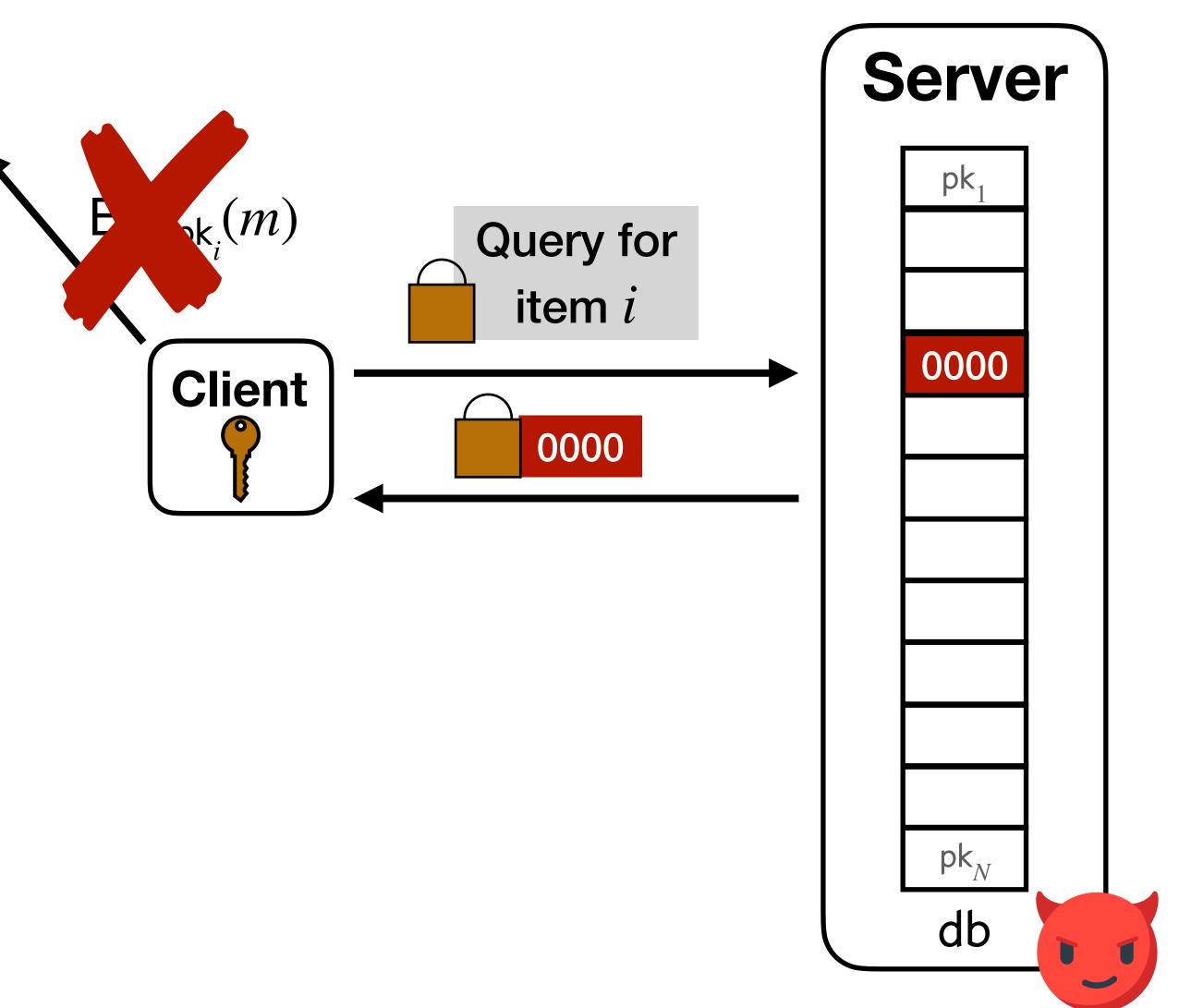
• If the client queries *i*: it will get garbage and won't be able to preform the "next action."



Selective Failure Attack

- If the client queries *i*: it will get garbage and won't be able to preform the "next action."
- If client queries for $j \neq i$: then the client will preform the "next action" correctly, not knowing there are any corruptions

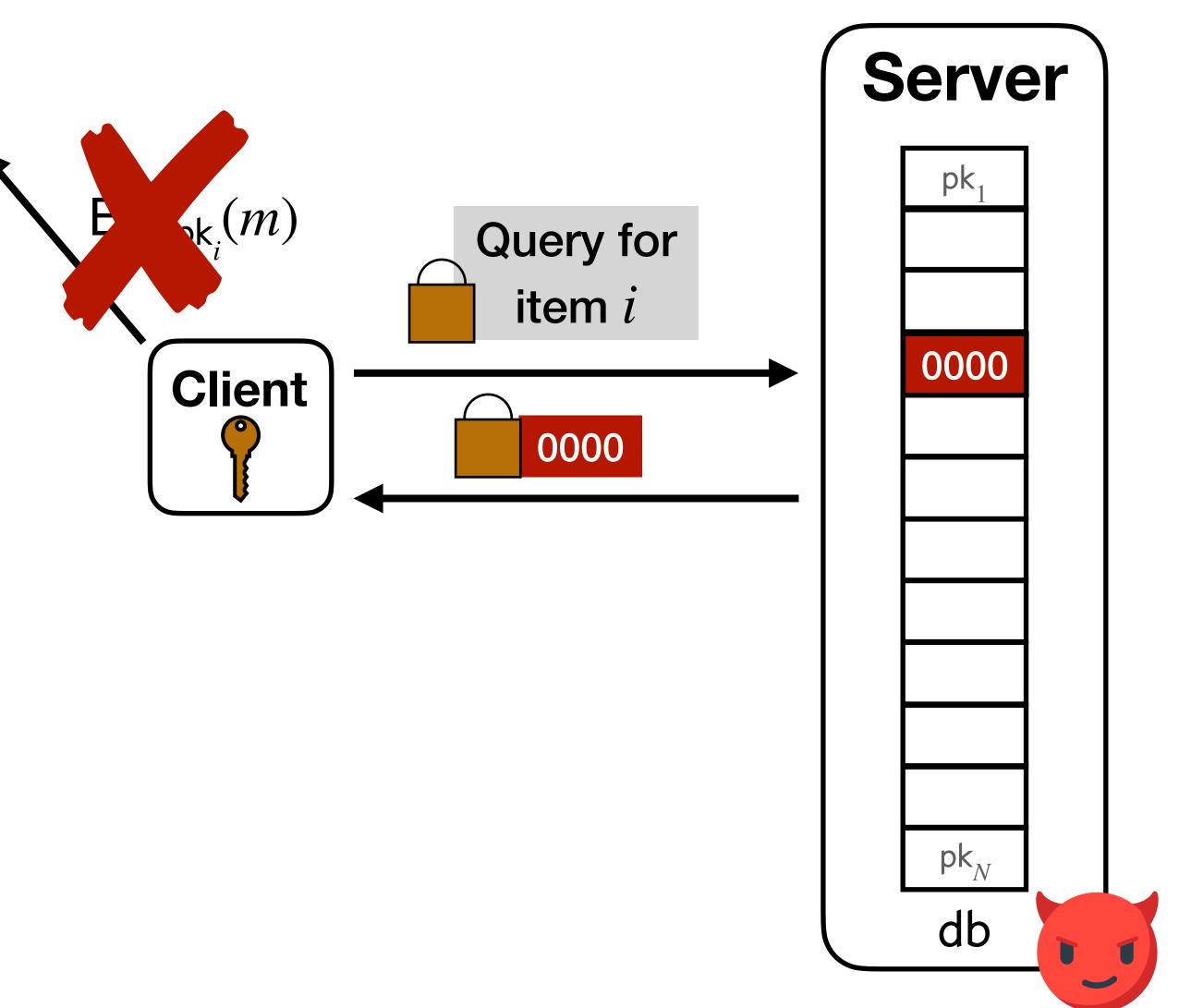
problem: server can observe this discrepancy to learn i!



Selective Failure Attack

- If the client queries *i*: it will get garbage and won't be able to preform the "next action."
- If client queries for $j \neq i$: then the client will preform the "next action" correctly, not knowing there are any corruptions

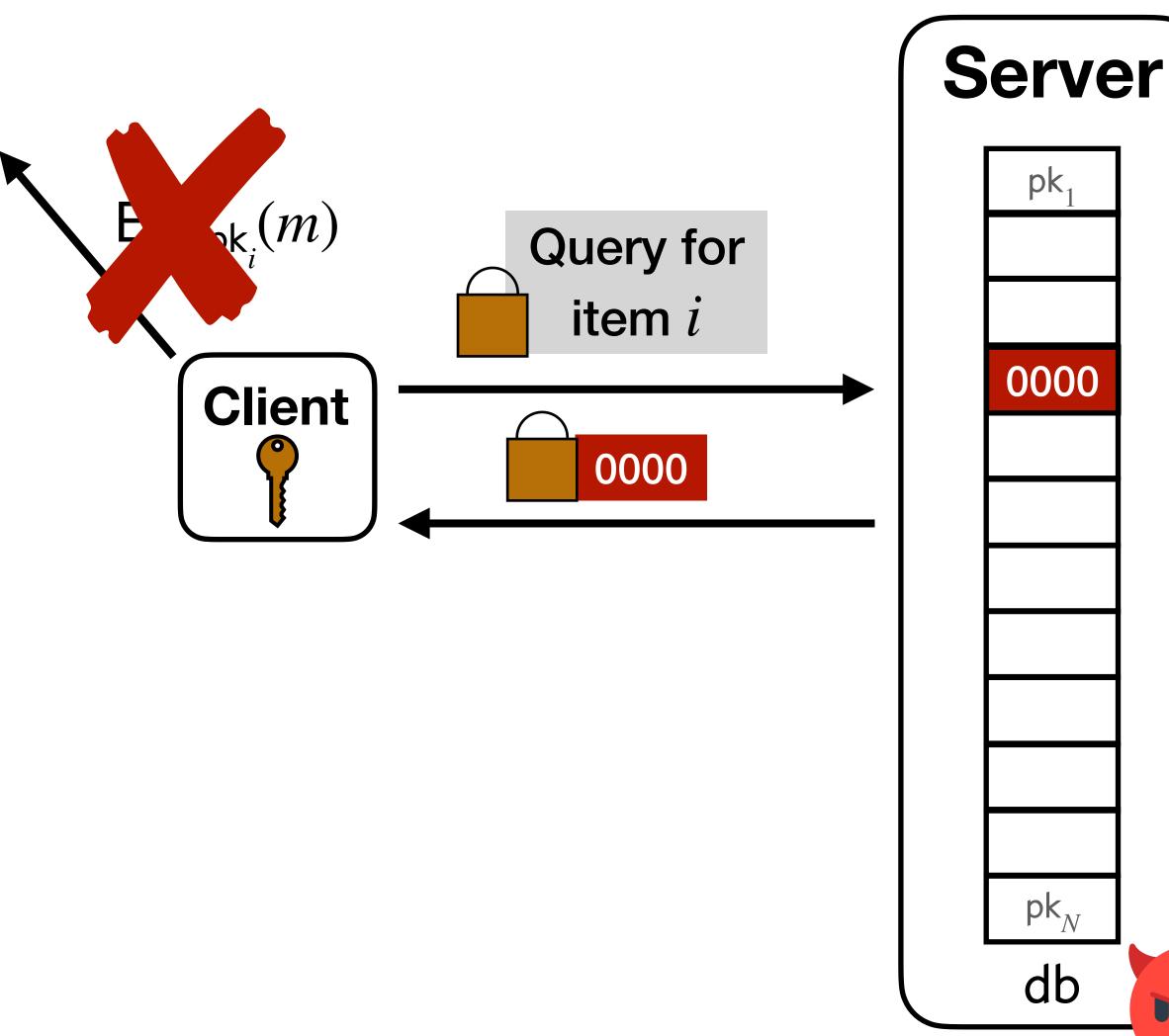
problem: server can observe this discrepancy to learn i!

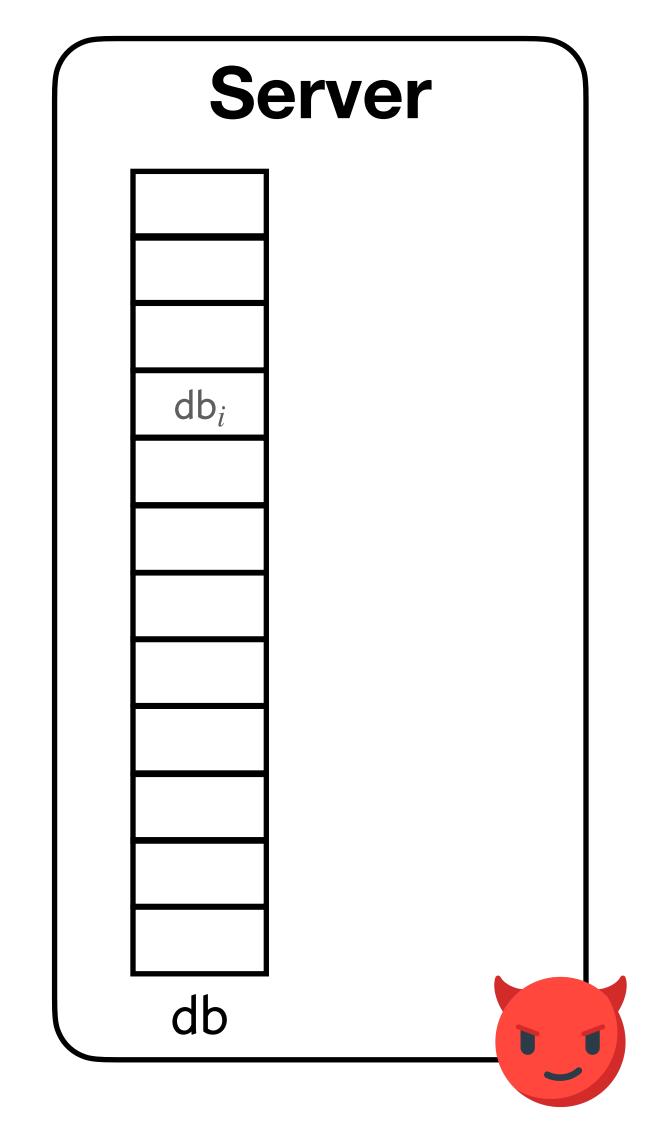


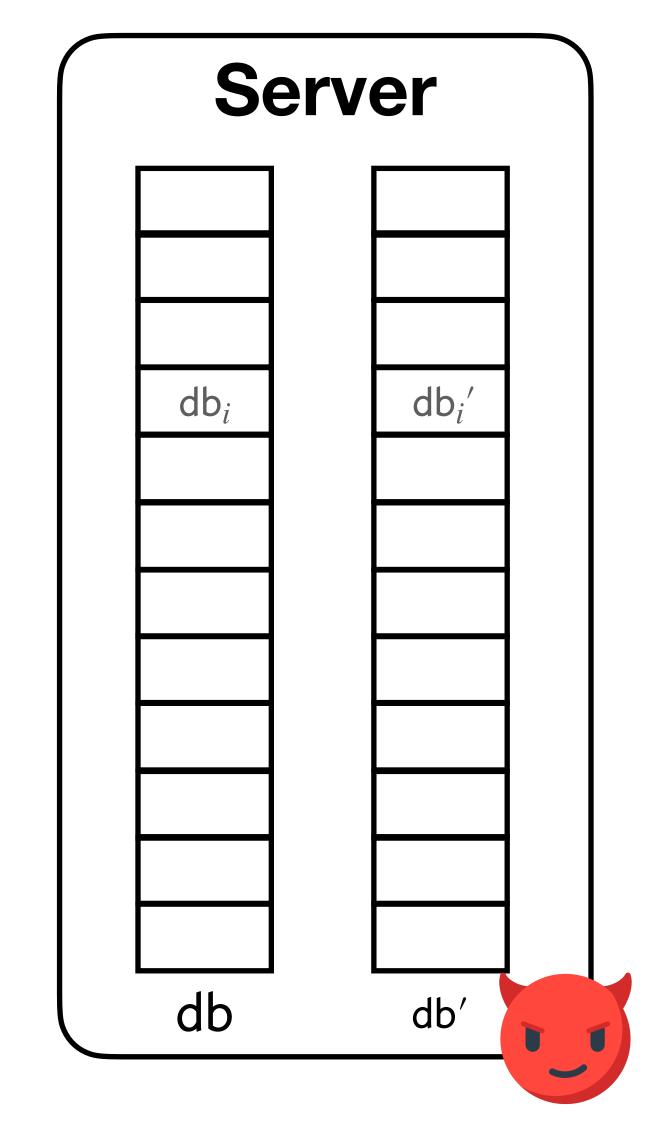
Selective Failure Attack

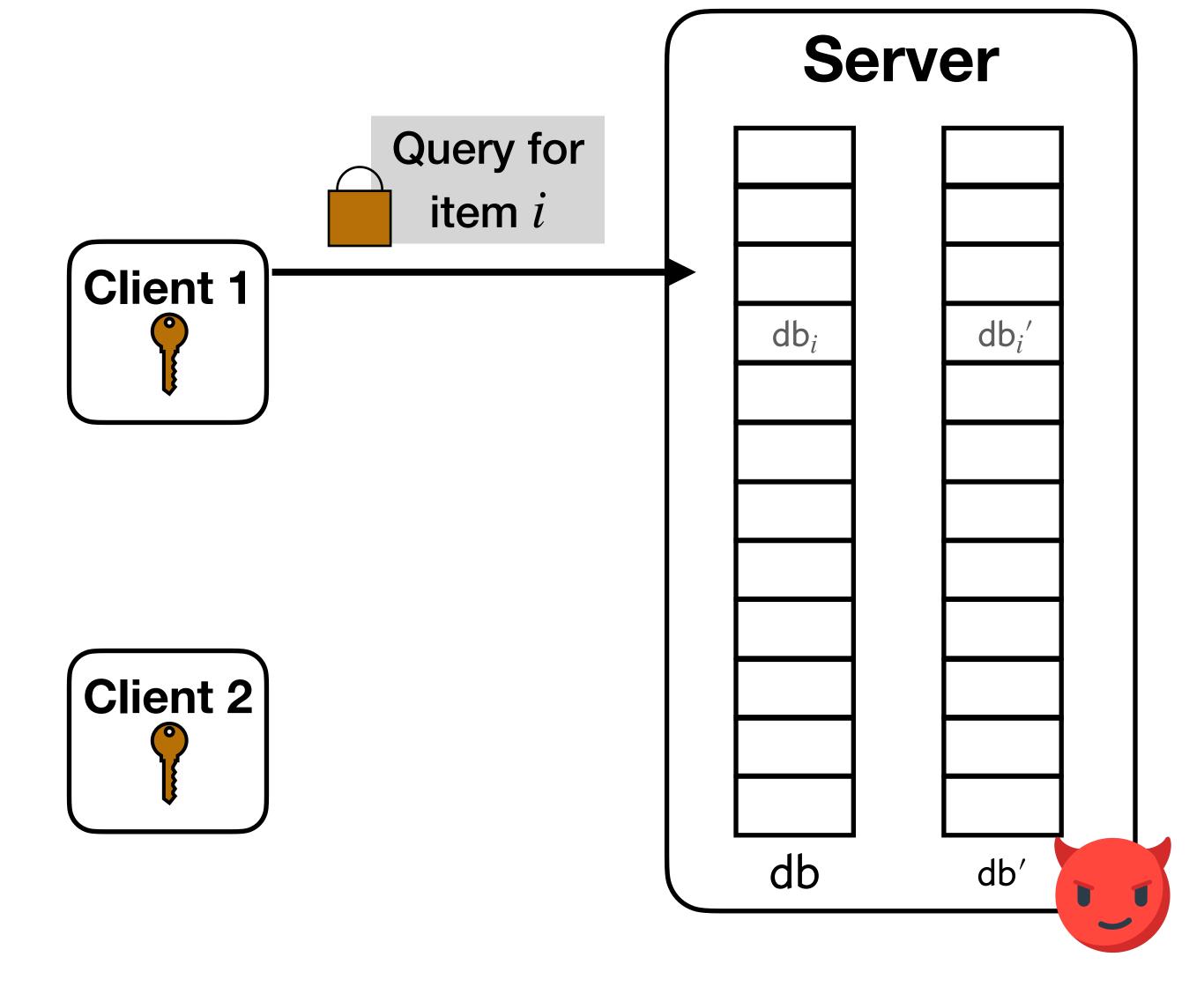
- If the client queries *i*: it will get garbage and won't be able to preform the "next action."
- If client queries for $j \neq i$: then the client will preform the "next action" correctly, not knowing there are any corruptions

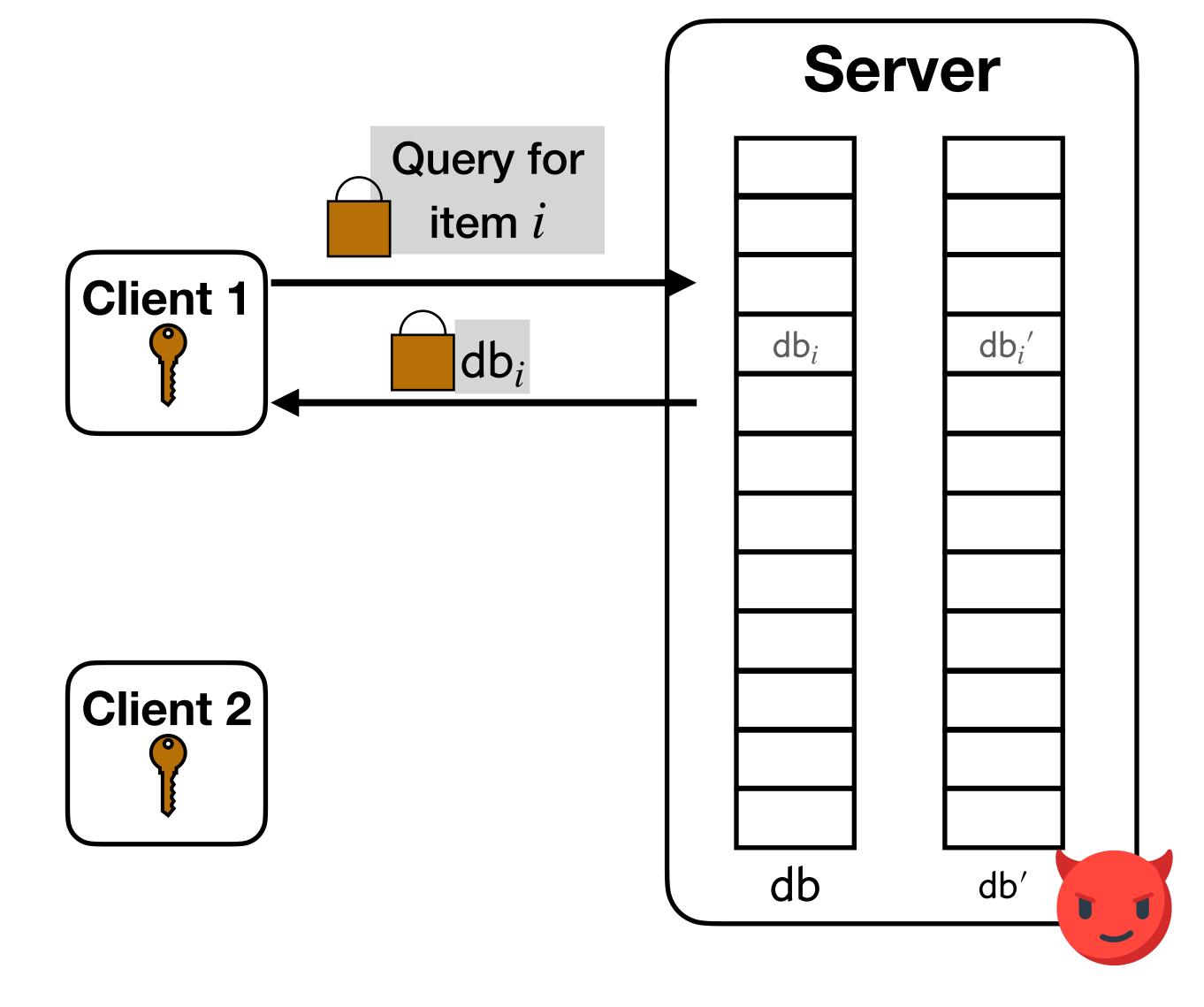
problem: server can observe this discrepancy to learn i!

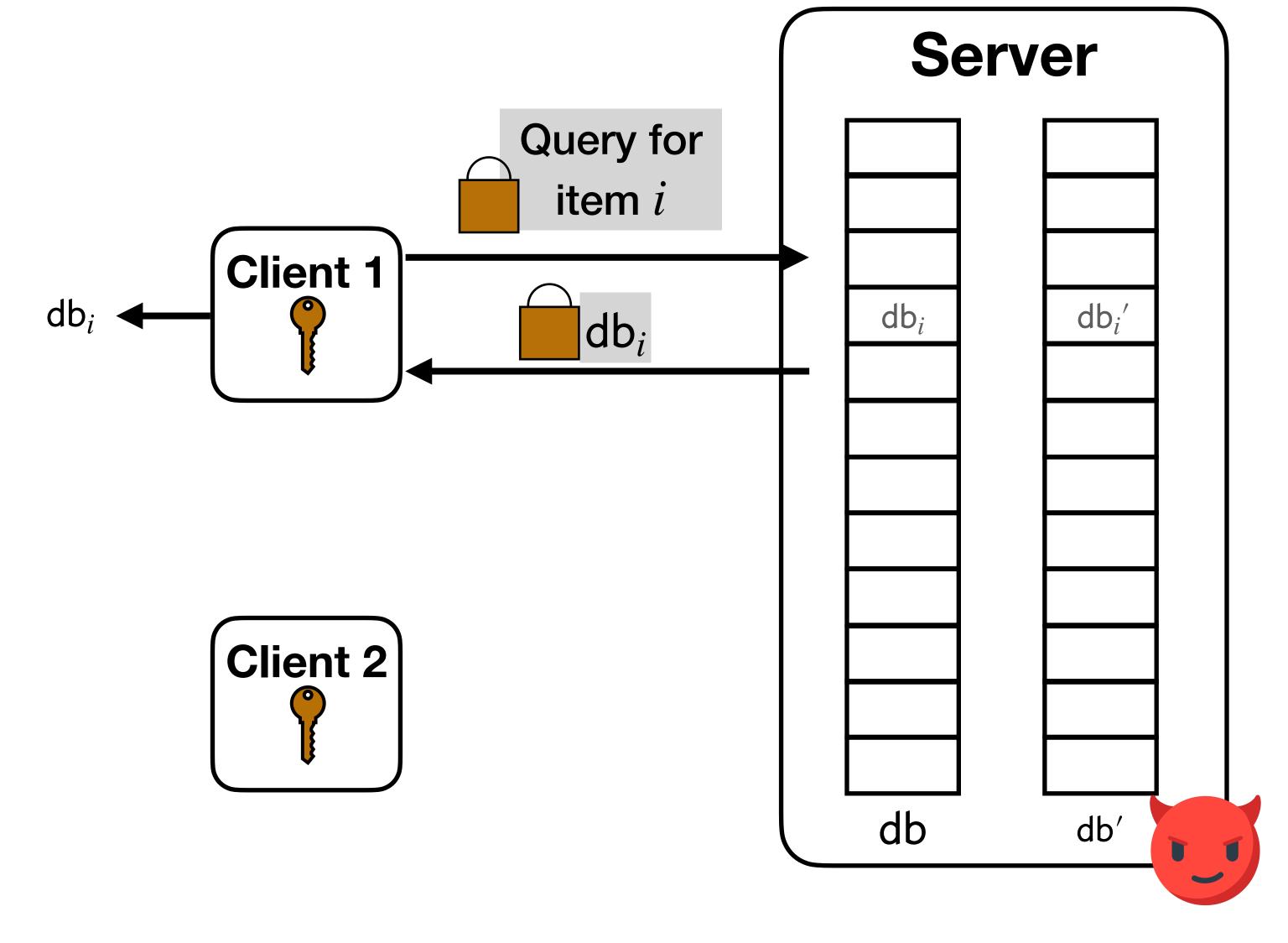


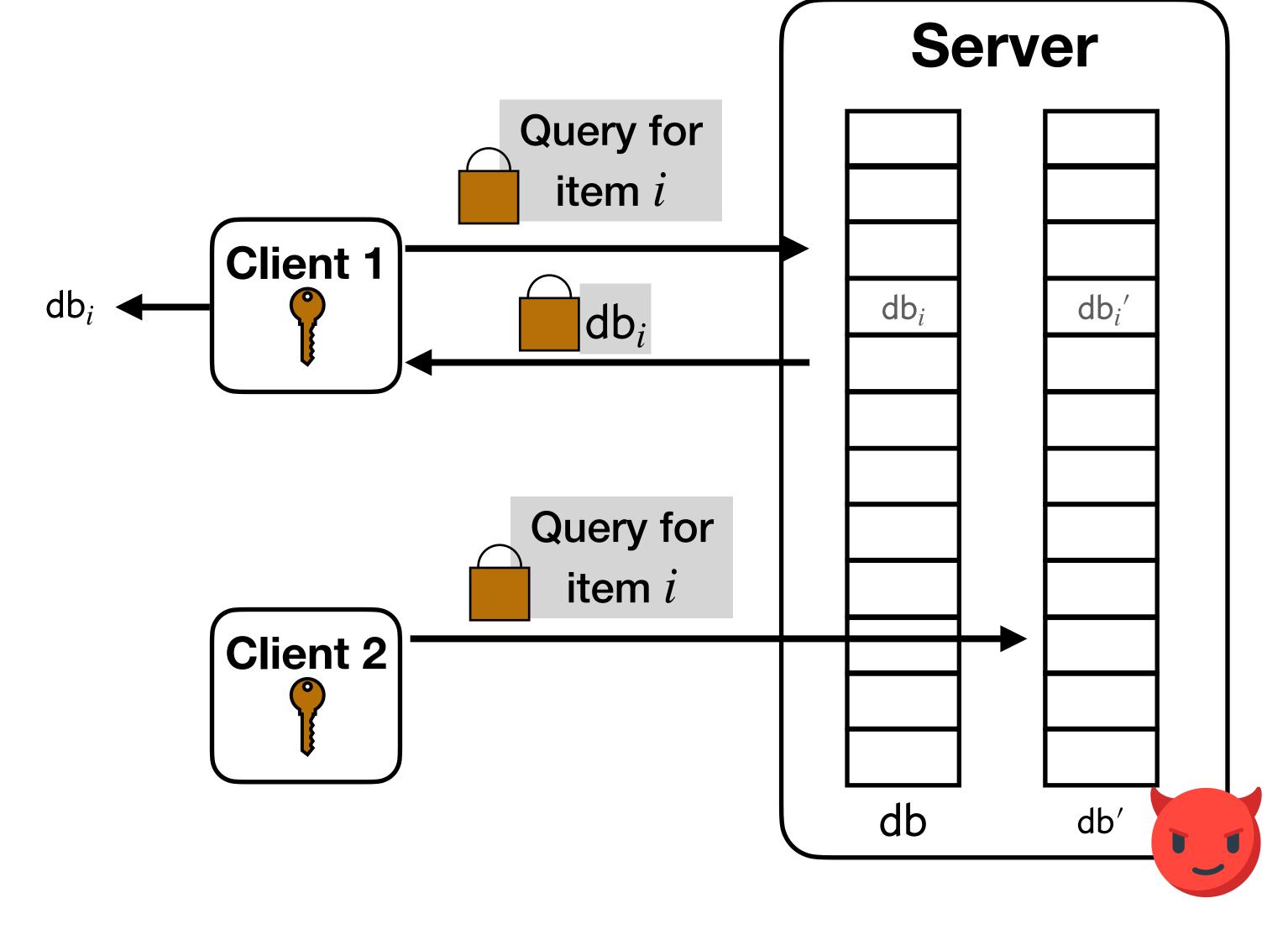


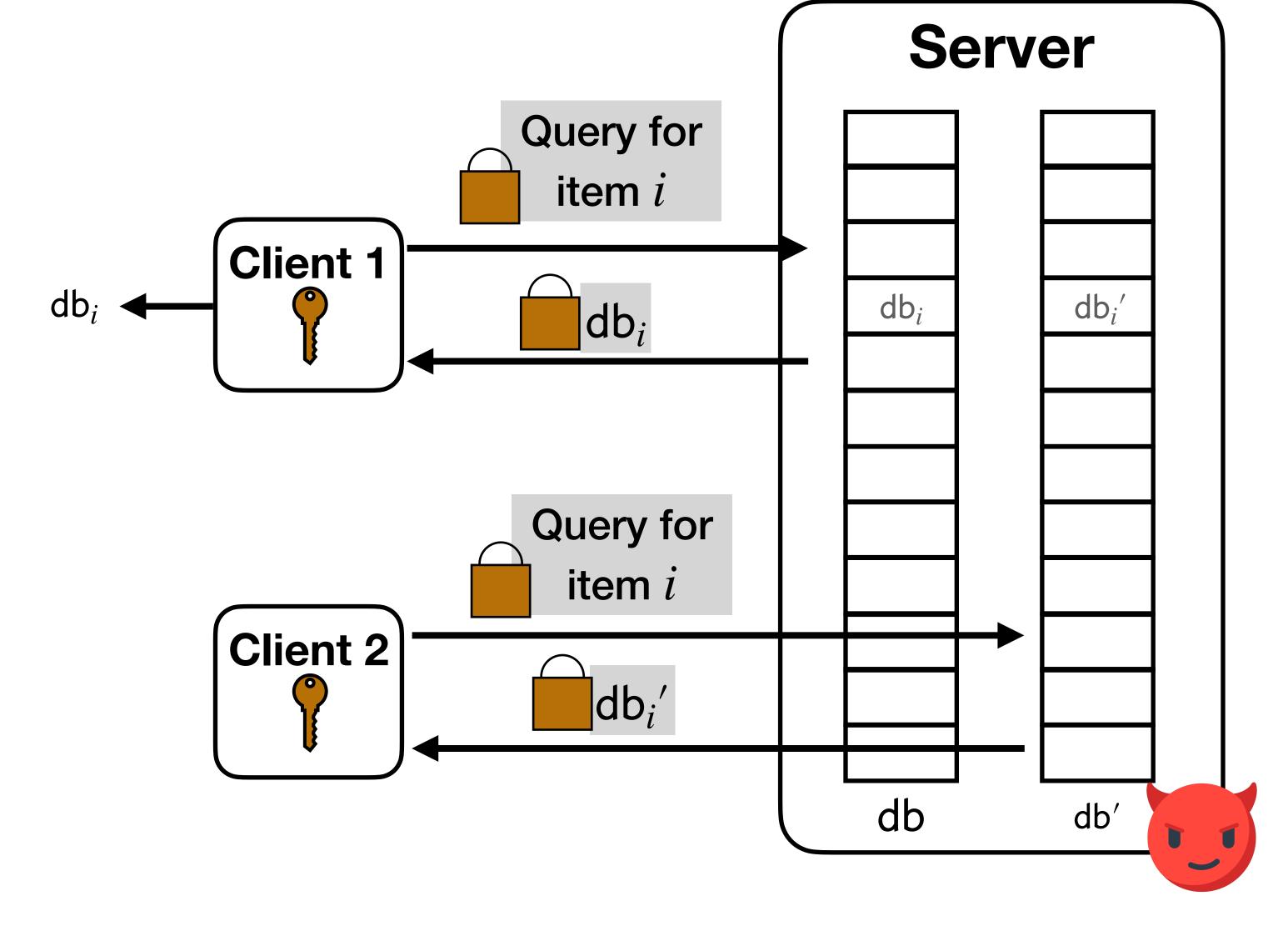


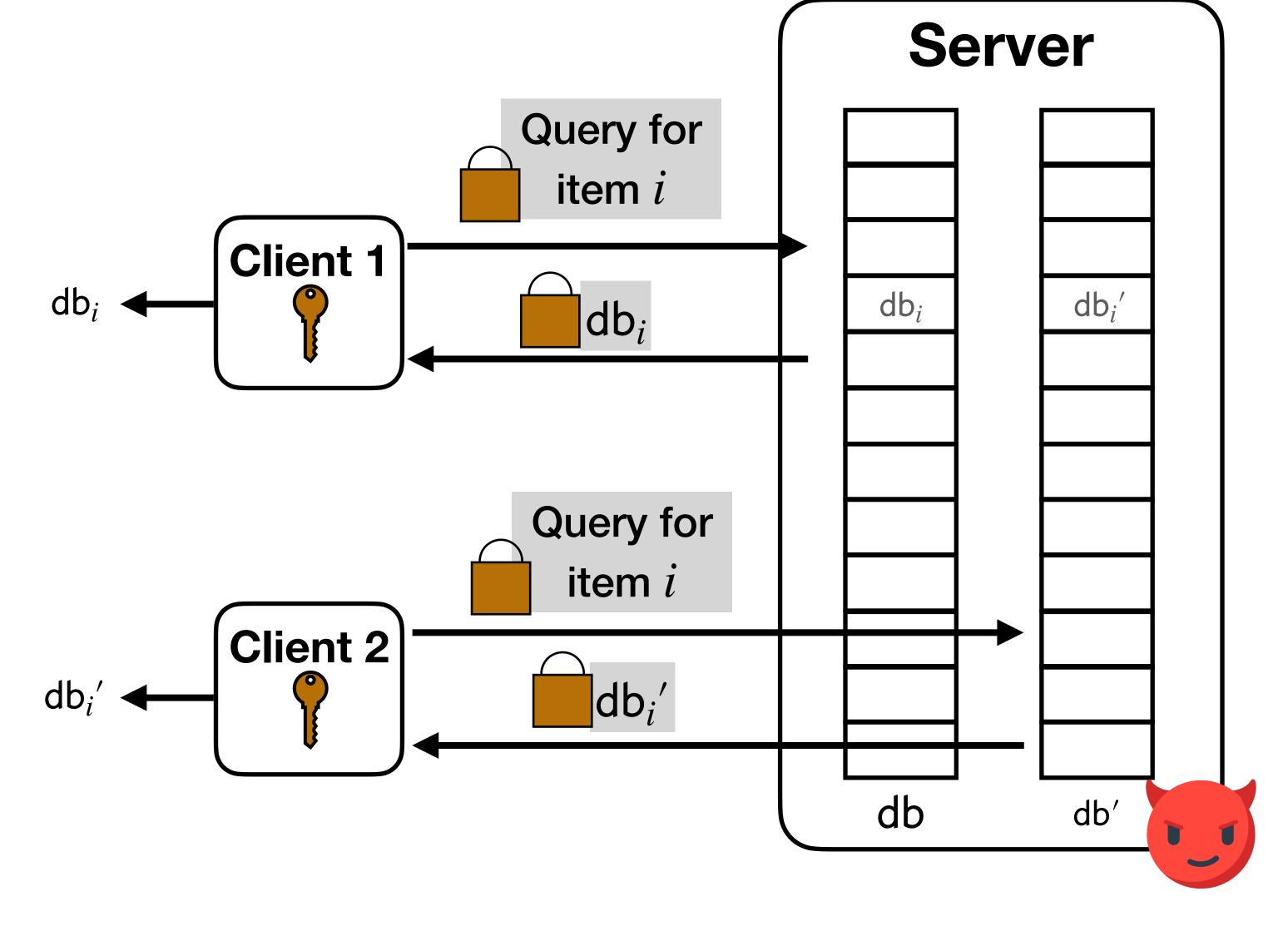






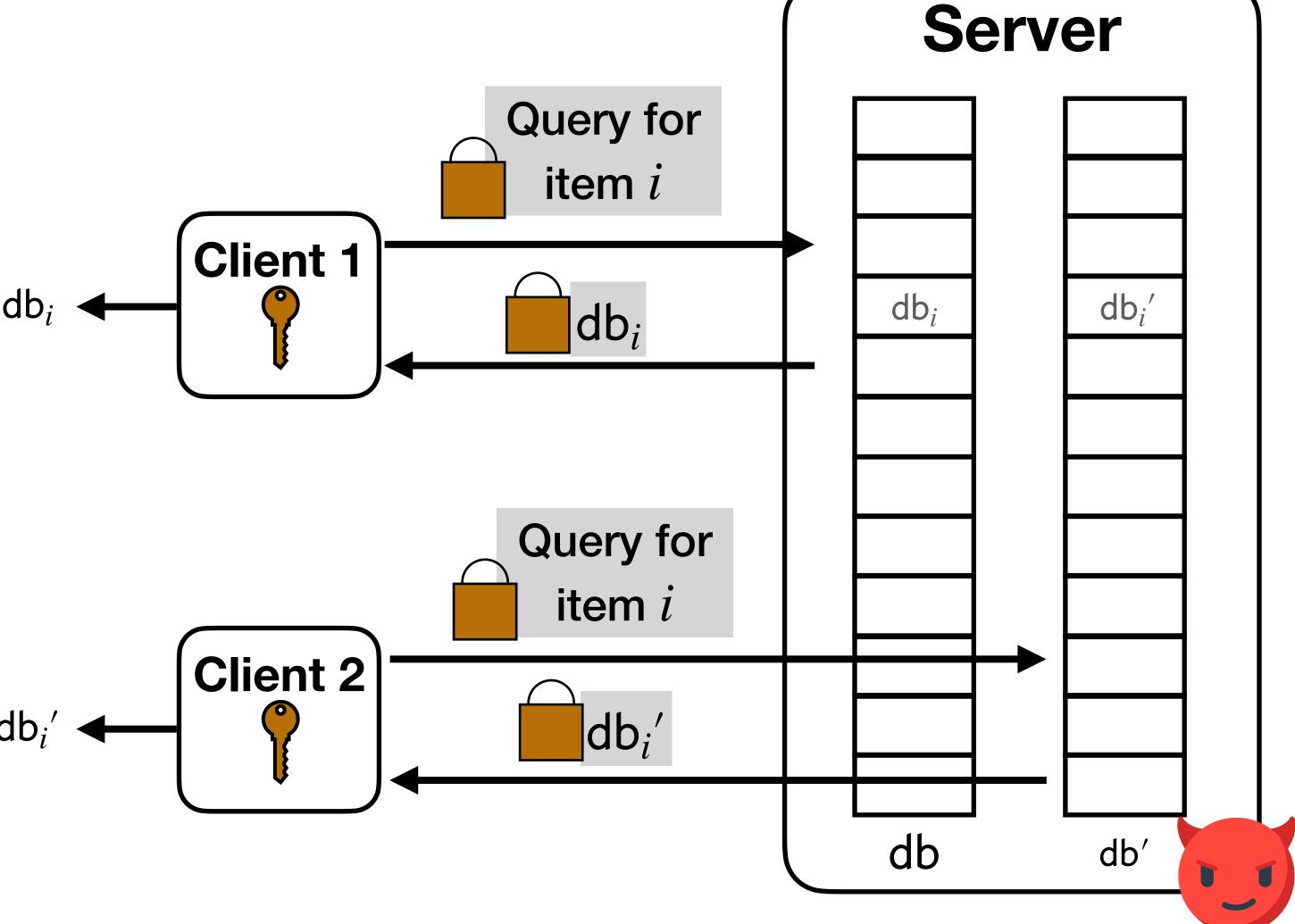




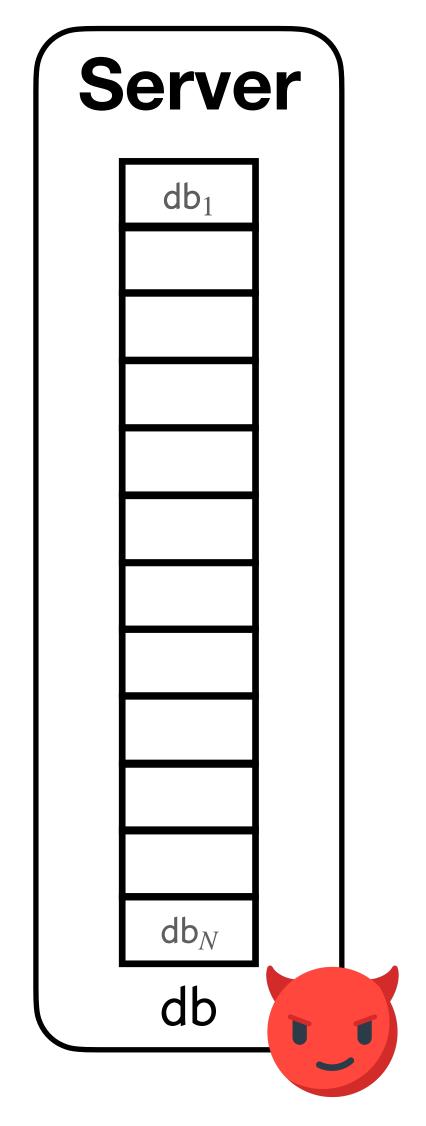


Incoherent views

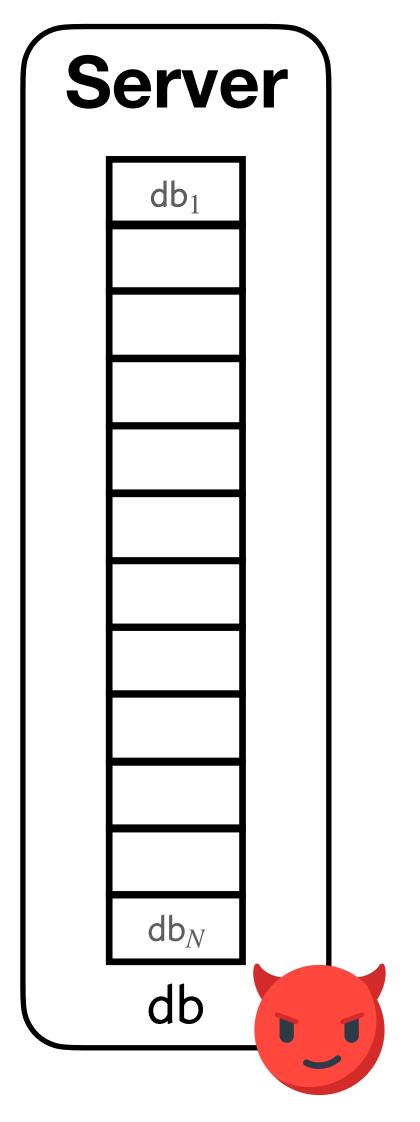
Problem: clients do not agree on database.

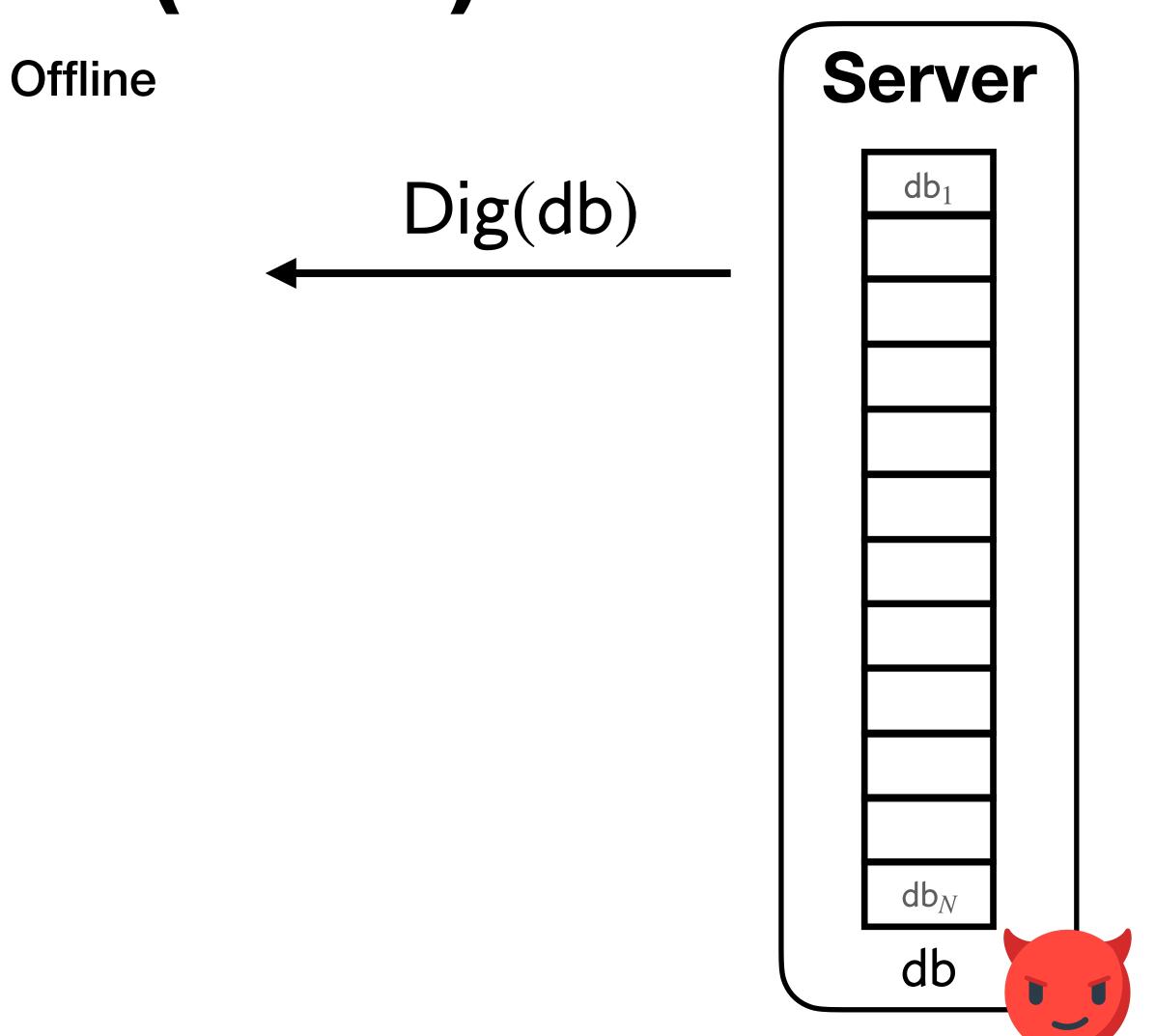


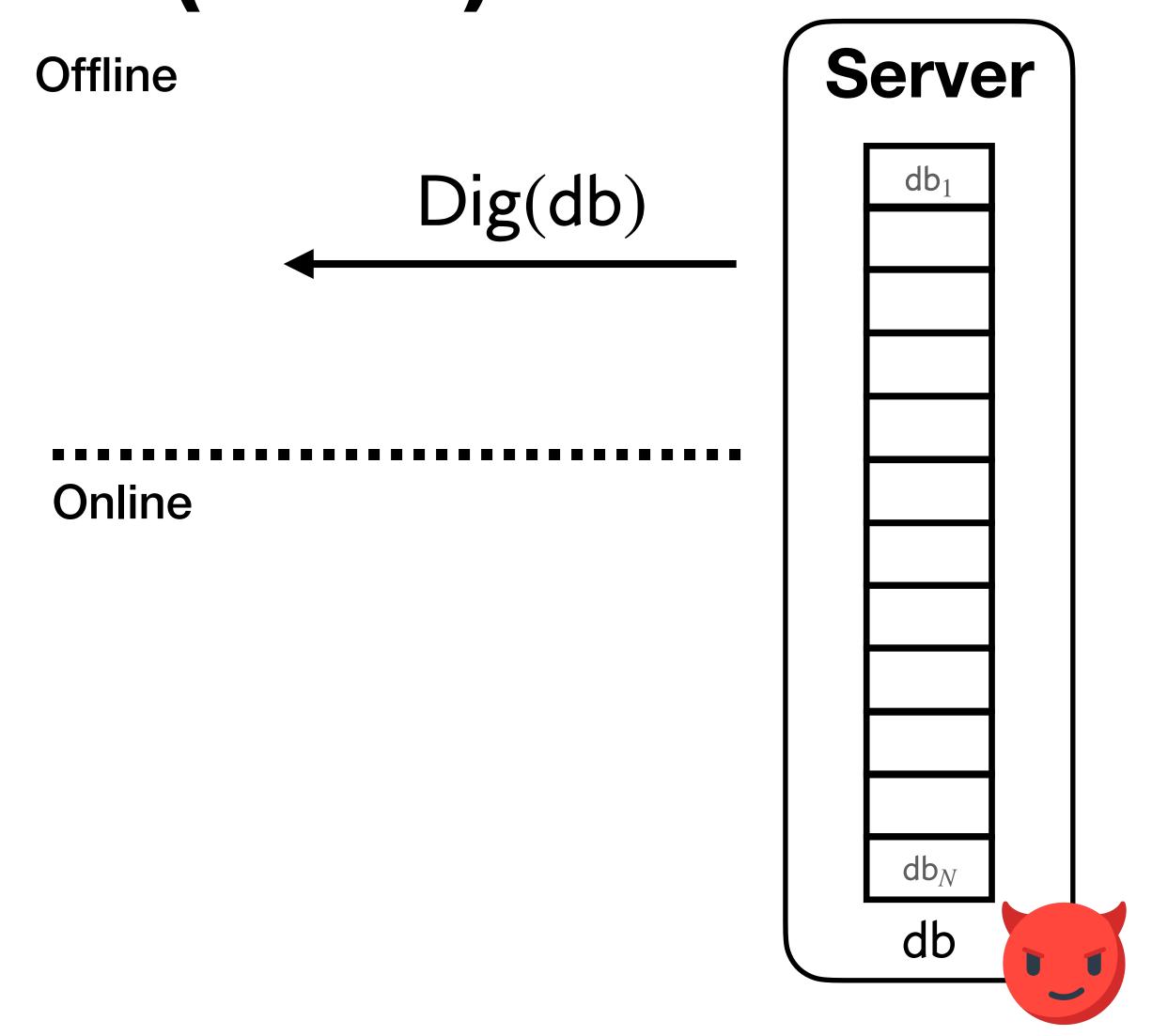
Prior work

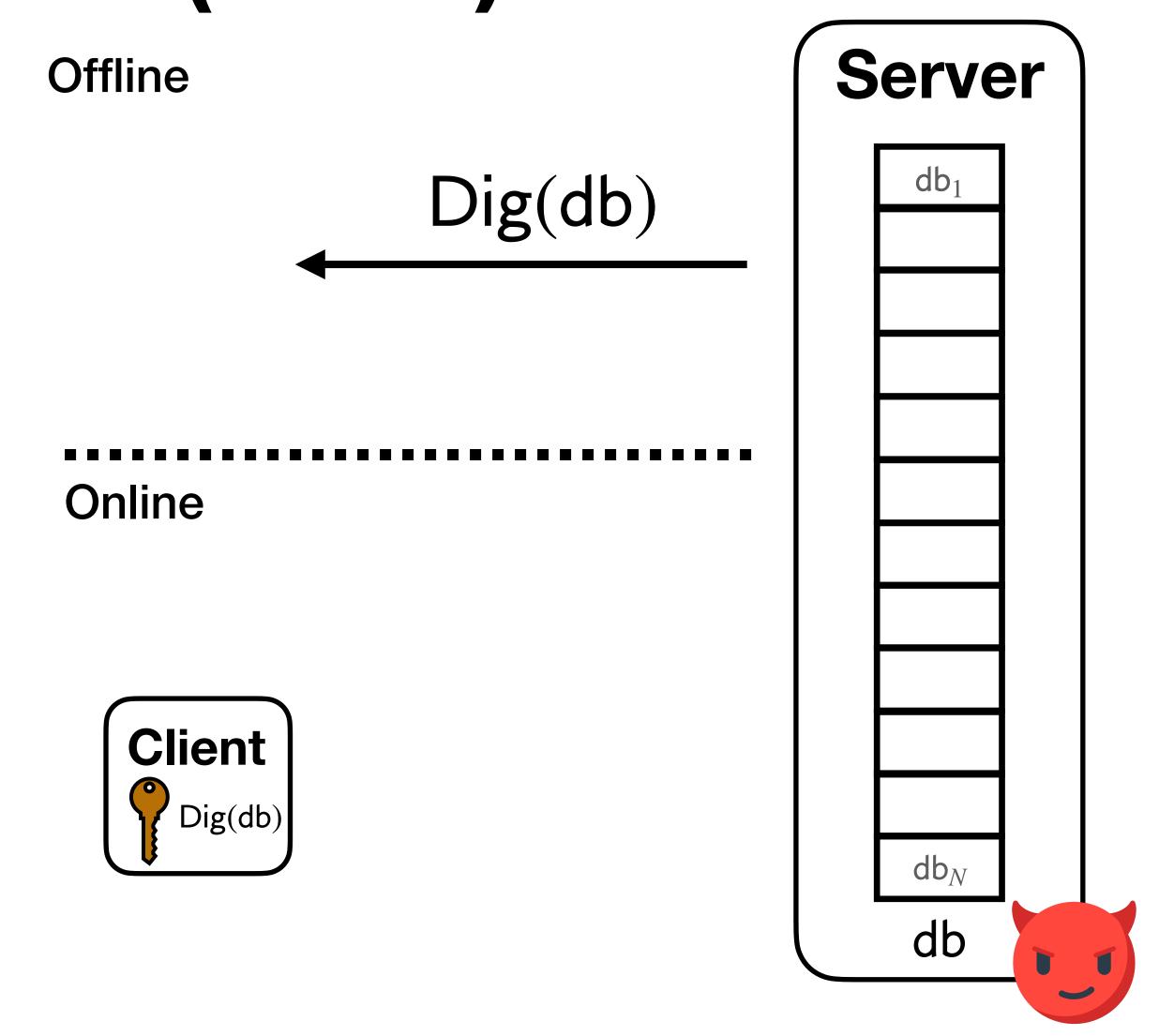


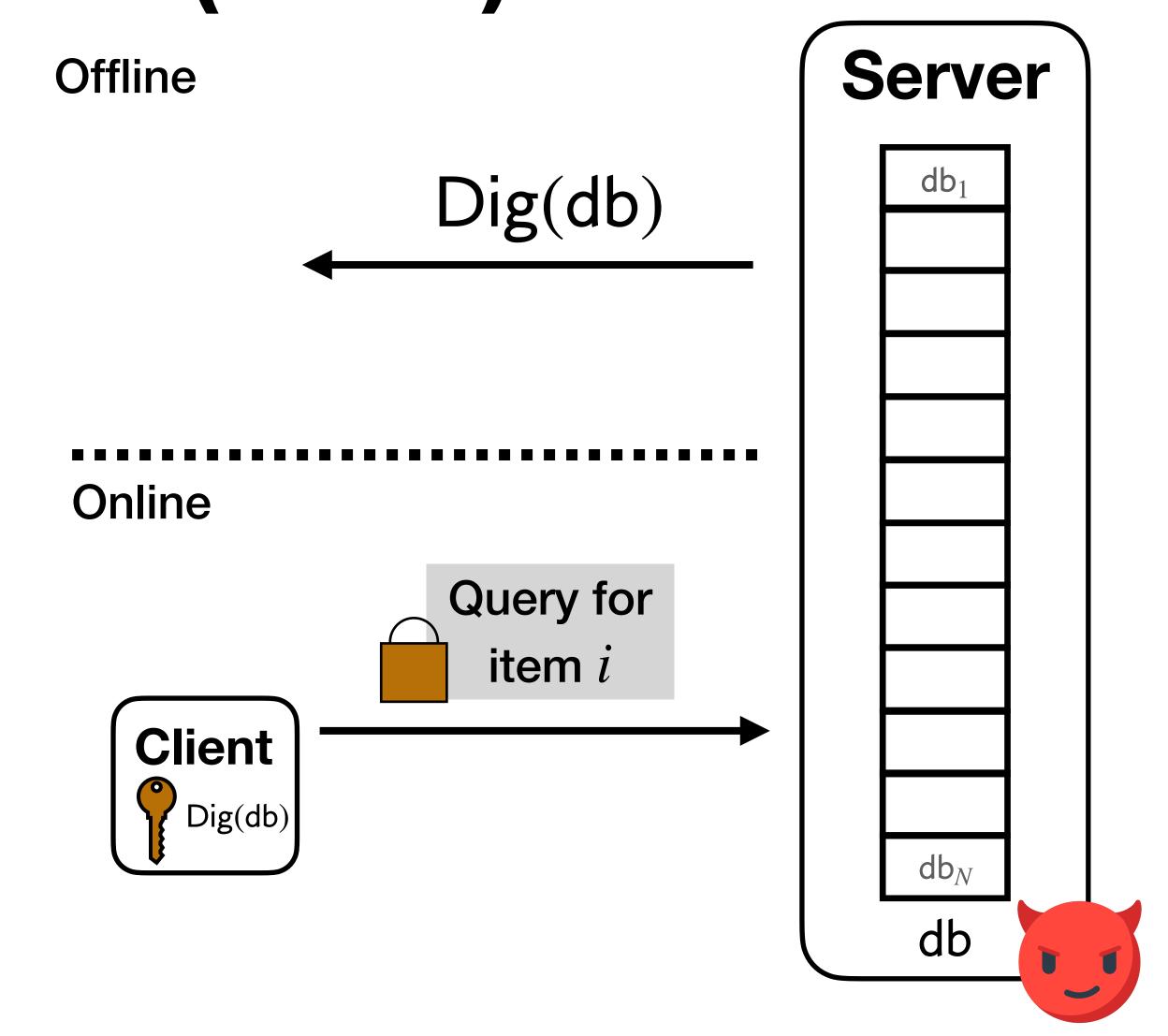
Offline

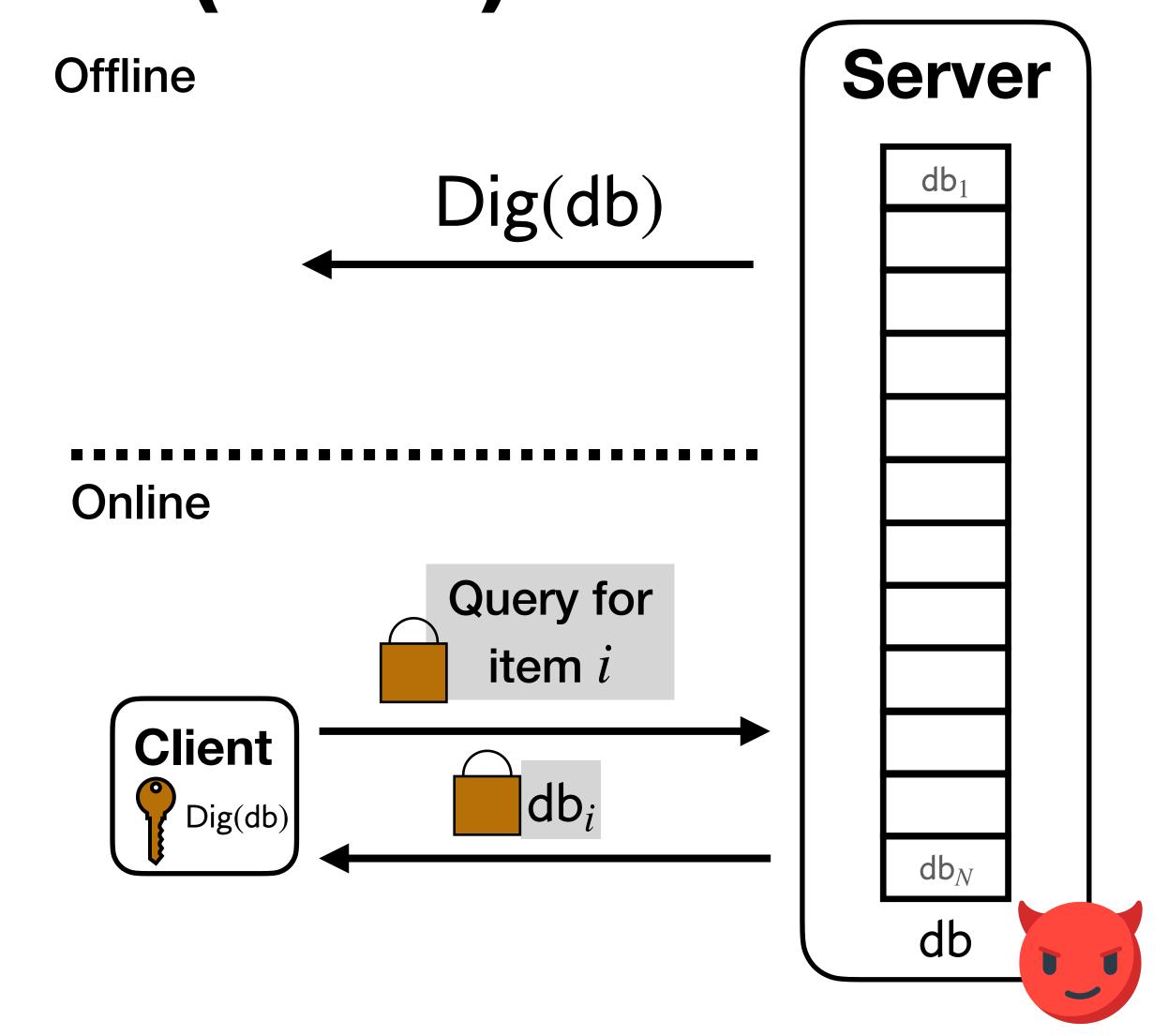


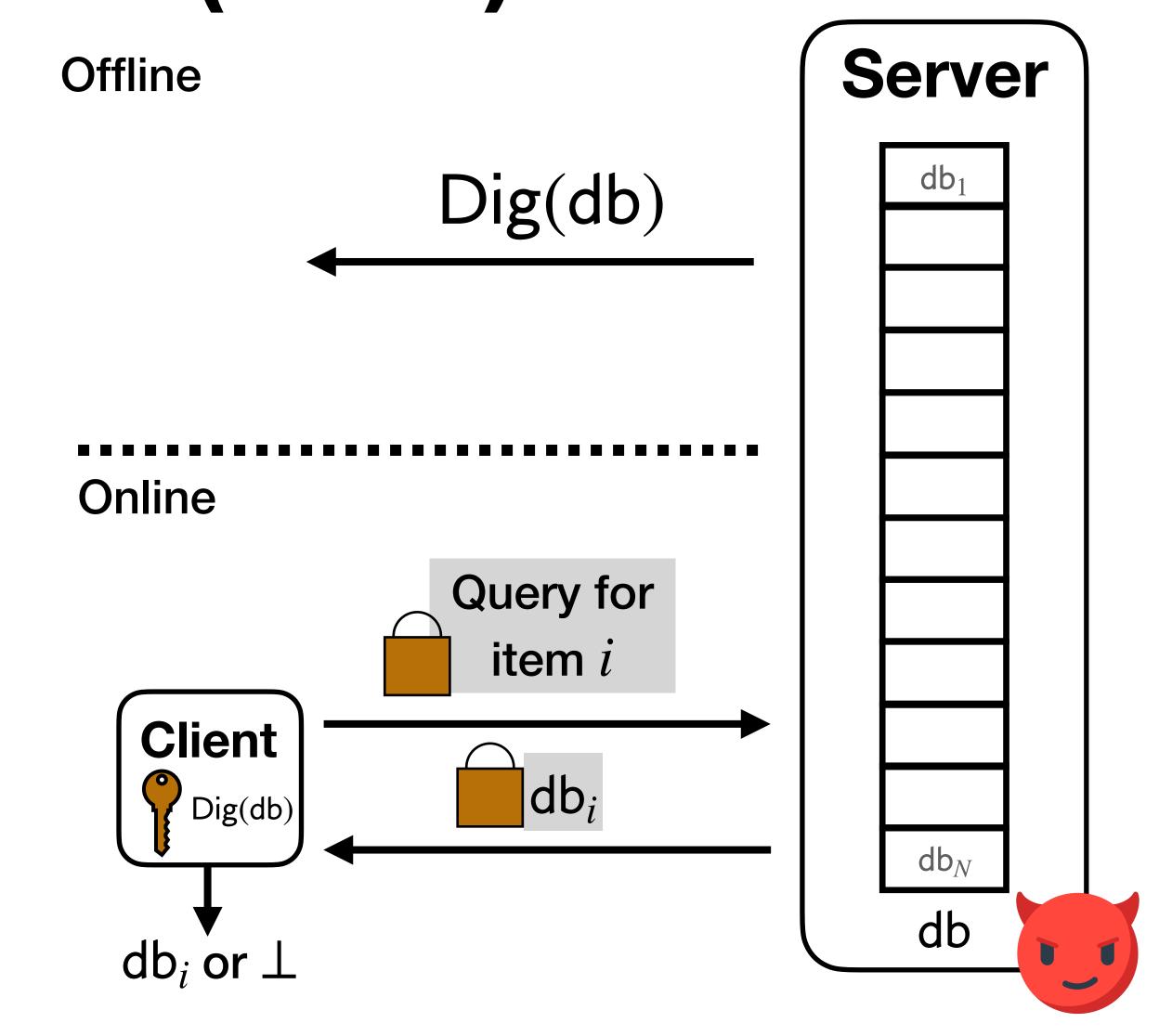


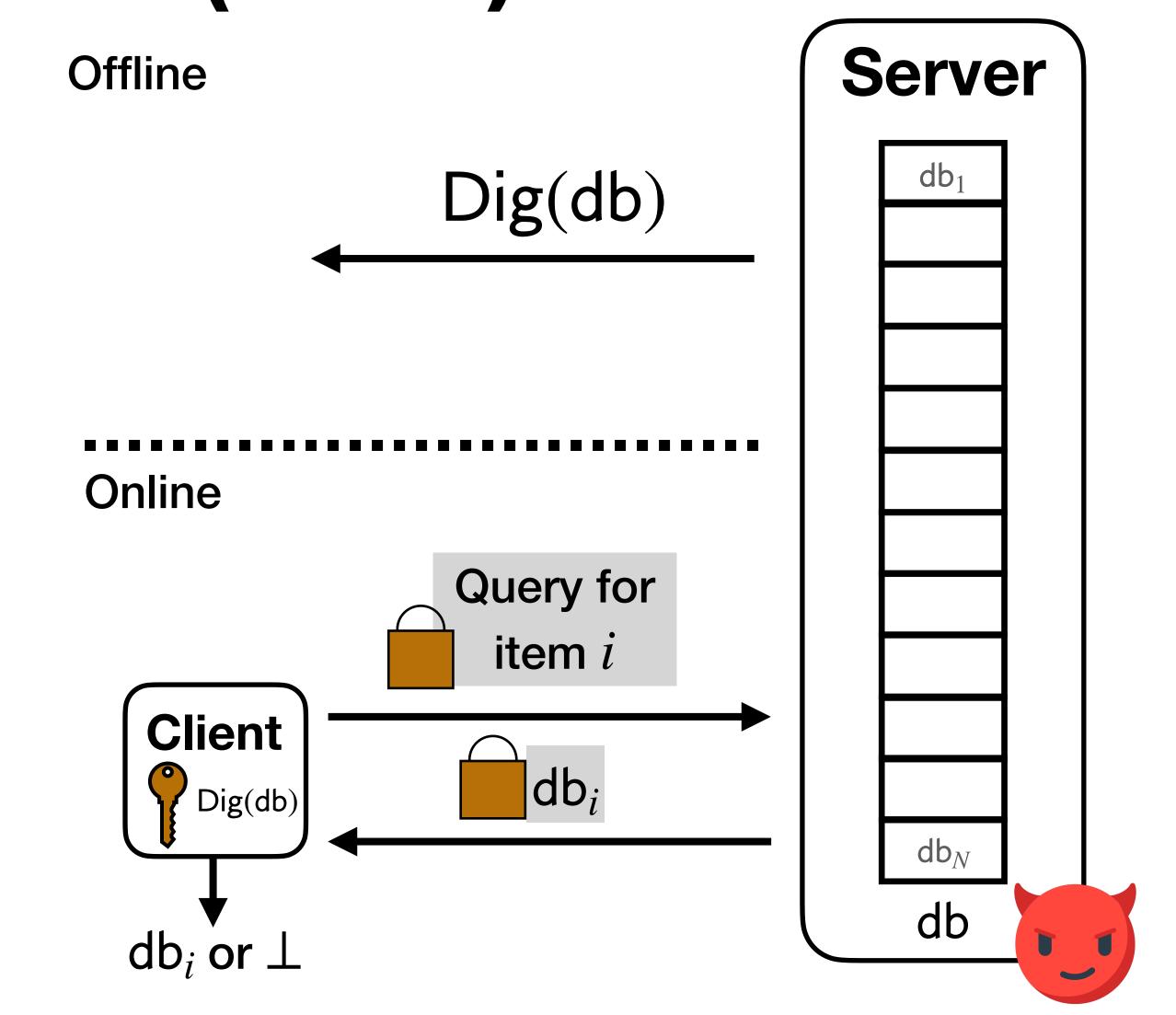






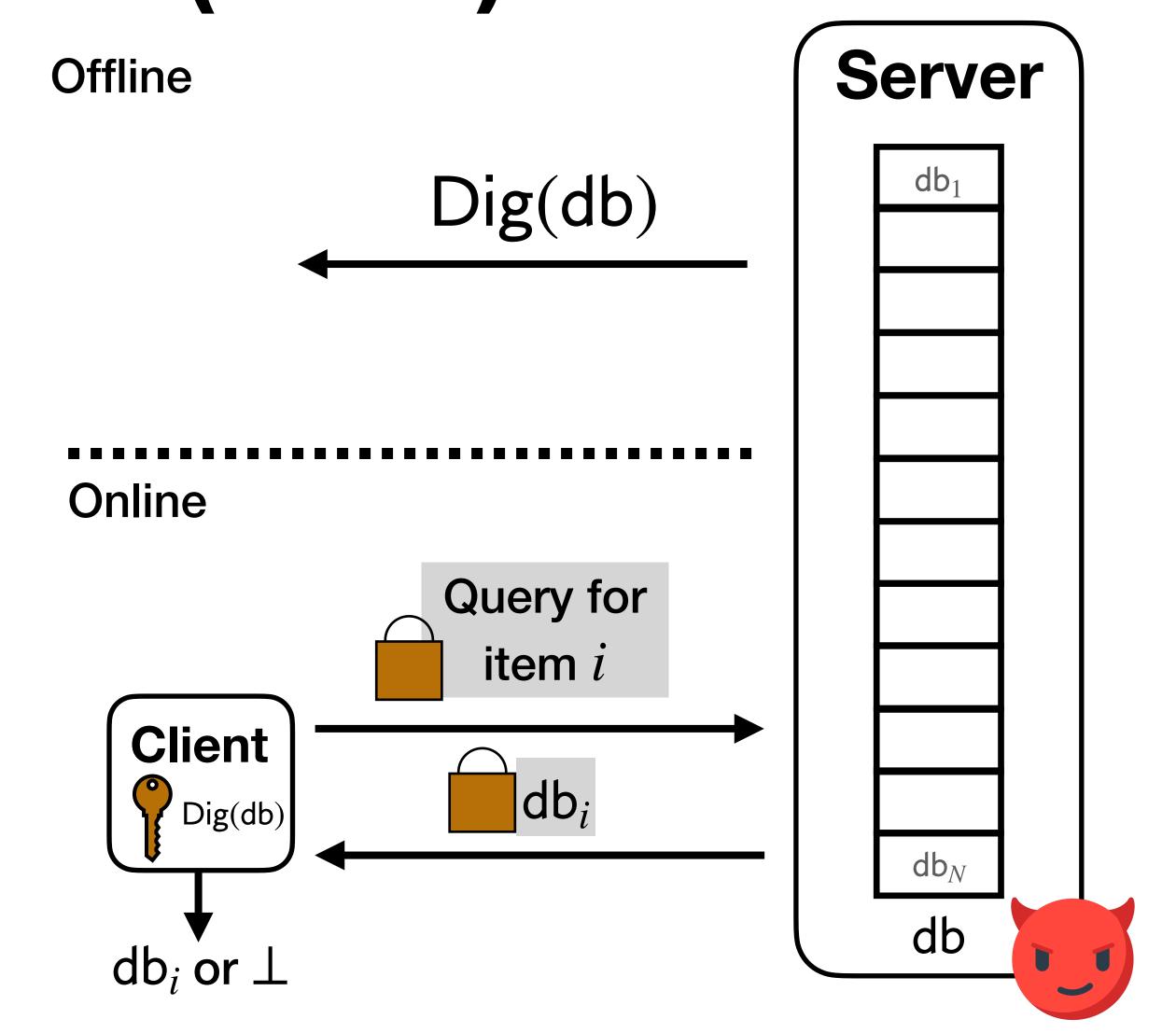




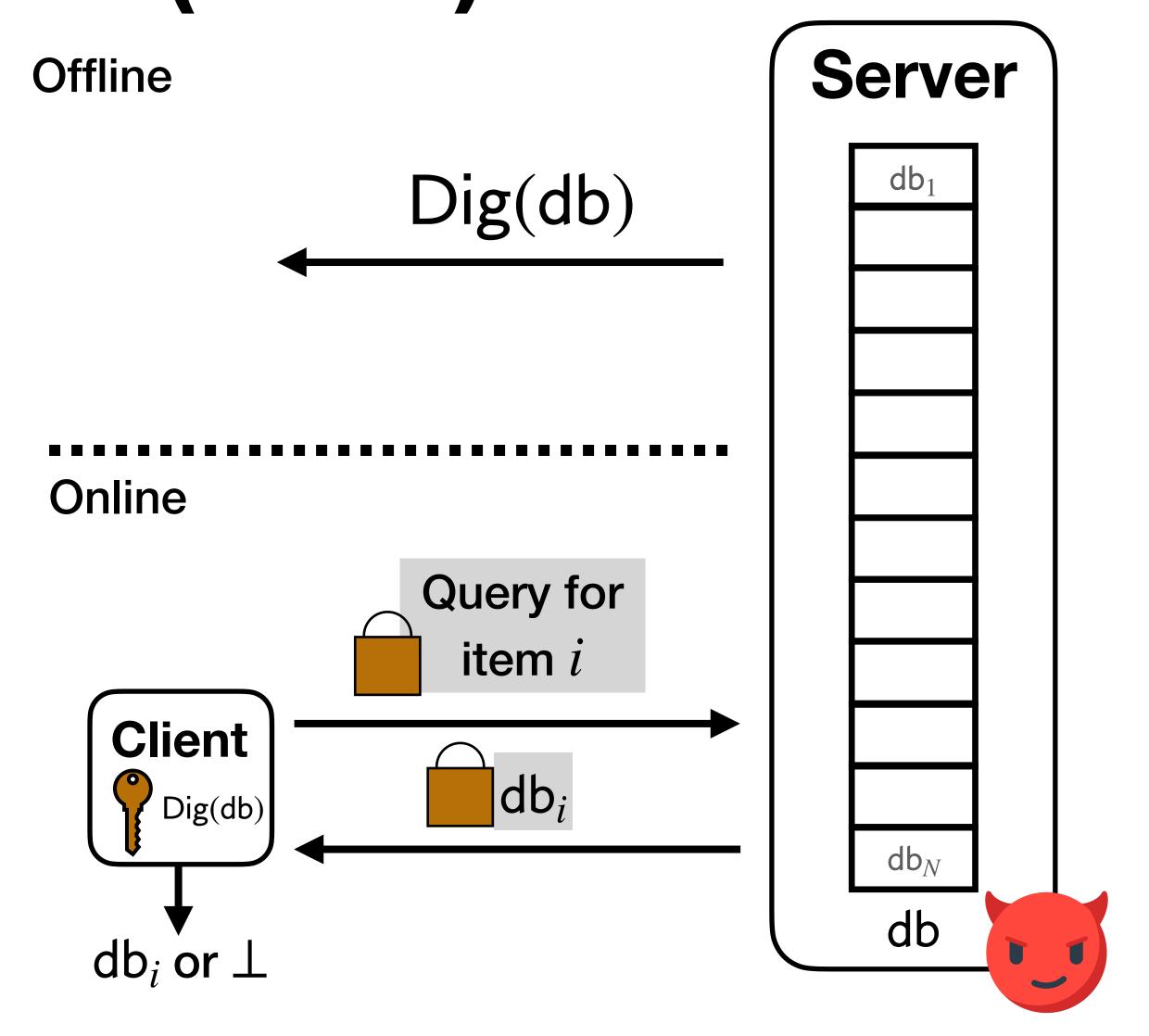


Properties:

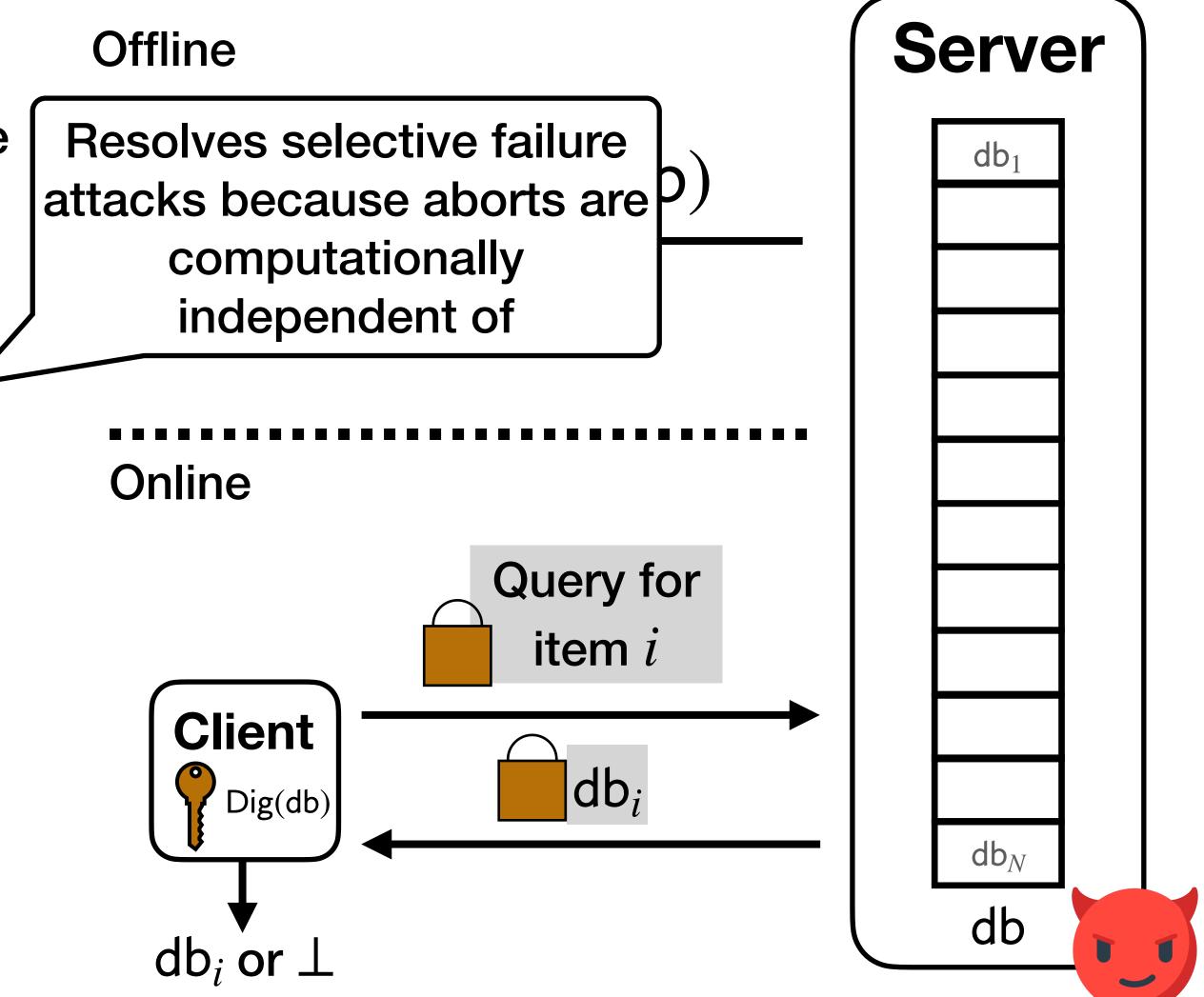
1. Correctness: if client and server are honest, client outputs db_i .



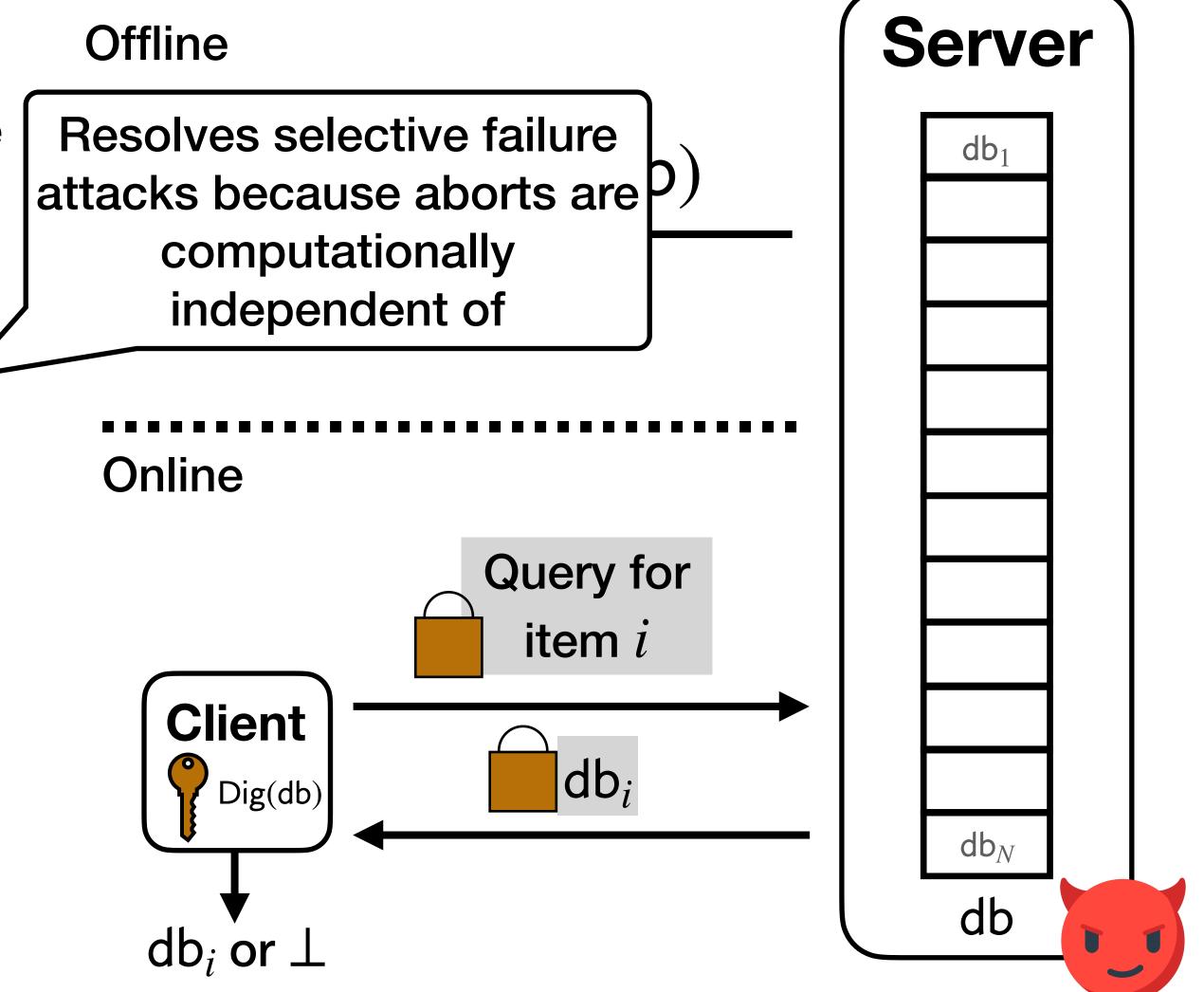
- 1. Correctness: if client and server are honest, client outputs db_i .
- 2. Privacy: server does not learn i even if it learns whether client's output is \bot .



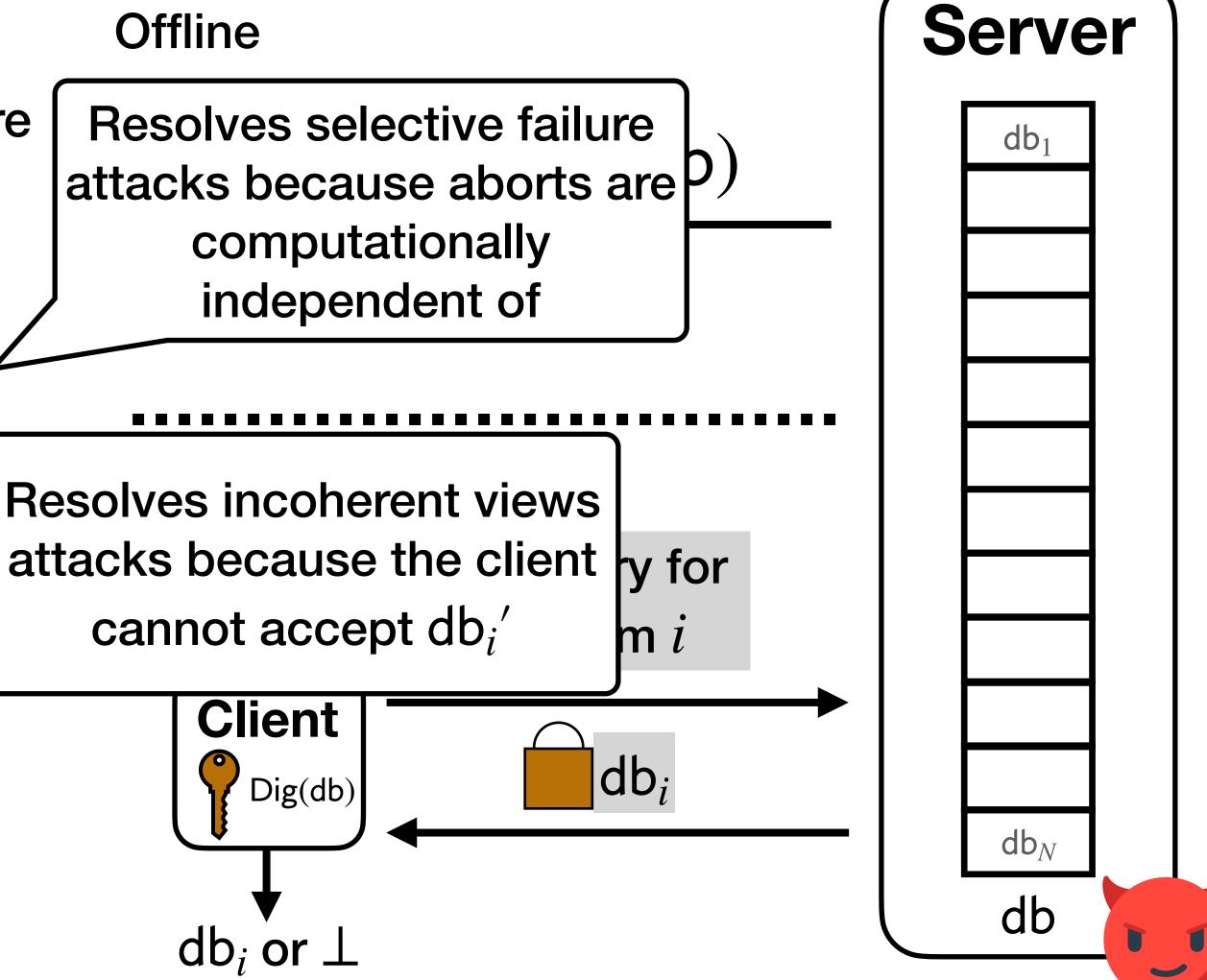
- 1. Correctness: if client and server are honest, client outputs db_i .
- 2. Privacy: server does not learn i even if it learns whether client's output is \bot .



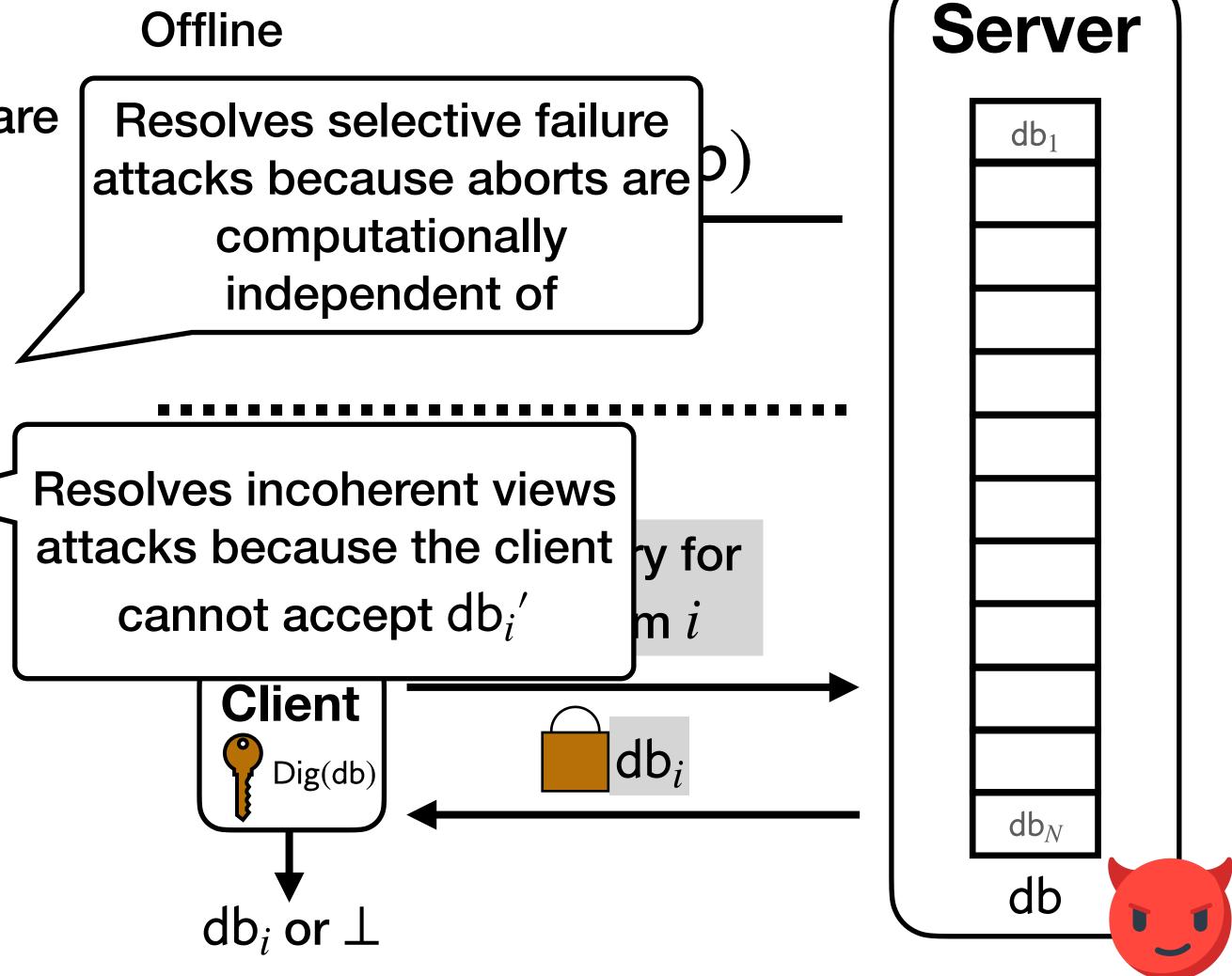
- 1. Correctness: if client and server are honest, client outputs db_i .
- 2. Privacy: server does not learn i even if it learns whether client's output is \bot .
- 3. Coherence: a query to i returns either db_i or \bot .



- 1. Correctness: if client and server are honest, client outputs db_i .
- 2. Privacy: server does not learn i even if it learns whether client's output is \bot .
- 3. Coherence: a query to i returns either db_i or \bot .



- 1. Correctness: if client and server are honest, client outputs db_i .
- 2. Privacy: server does not learn i even if it learns whether client's output is \bot .
- 3. Coherence: a query to i returns either db_i or \bot .
- 4. Efficiency: communication & computation are "low."



Properties:

- 1. Correctness: if client and server are honest, client outputs db_i .
- 2. Privacy: server does not learn i even if it learns whether client's output is \bot .
- 3. Coherence: a query to i returns either db_i or \bot .
- 4. Efficiency: communication & computation are "low."

Server Offline Resolves selective failure attacks because aborts are computationally independent of Resolves incoherent views attacks because the client by for cannot accept db_i miClient Dig(db) db_i or \perp

* Throughout this talk we assume the digest is produced honestly. In the paper we show how to work around that.

Scheme	Communication	Computation	Digest size	Assumptions	Methodology
CNCWF23	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	LWE, DDH	Ad-hoc
WZLY23*	$O\left(N^{1/2}\right)$	$O\left(N^{1/2}\right)$	$O\left(N^{1/2}\right)$	OWF <u>*</u>	Ad-hoc
DT23	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	DDH	Ad-hoc
CL24	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	LWE	Ad-hoc

Scheme	Communication	Computation	Digest size	Assumptions	Methodology
CNCWF23	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	LWE, DDH	Ad-hoc
WZLY23*	$O\left(N^{1/2}\right)$	$O\left(N^{1/2}\right)$	$O\left(N^{1/2}\right)$	OWF <u>*</u>	Ad-hoc
DT23	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	DDH	Ad-hoc
CL24	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	LWE	Ad-hoc

Gaps:

Scheme	Communication	Computation	Digest size	Assumptions	Methodology
CNCWF23	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	LWE, DDH	Ad-hoc
WZLY23*	$O\left(N^{1/2}\right)$	$O\left(N^{1/2}\right)$	$O\left(N^{1/2}\right)$	OWF <u>*</u>	Ad-hoc
DT23	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	DDH	Ad-hoc
CL24	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	LWE	Ad-hoc

Gaps:

1. Methodology: direct constructions

Scheme	Communication	Computation	Digest size	Assumptions	Methodology
CNCWF23	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	LWE, DDH	Ad-hoc
WZLY23*	$O\left(N^{1/2}\right)$	$O\left(N^{1/2}\right)$	$O\left(N^{1/2}\right)$	OWF <u>*</u>	Ad-hoc
DT23	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	DDH	Ad-hoc
CL24	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	LWE	Ad-hoc

Gaps:

1. Methodology: direct constructions

2. Assumptions: limited

Scheme	Communication	Computation	Digest size	Assumptions	Methodology
CNCWF23	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	LWE, DDH	Ad-hoc
WZLY23*	$O\left(N^{1/2}\right)$	$O\left(N^{1/2}\right)$	$O\left(N^{1/2}\right)$	OWF <u>*</u>	Ad-hoc
DT23	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	DDH	Ad-hoc
CL24	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	LWE	Ad-hoc

Gaps:

1. Methodology: direct constructions

2. Assumptions: limited

3. PIR Overhead: Ω ($N^{1/2}$)

PIR

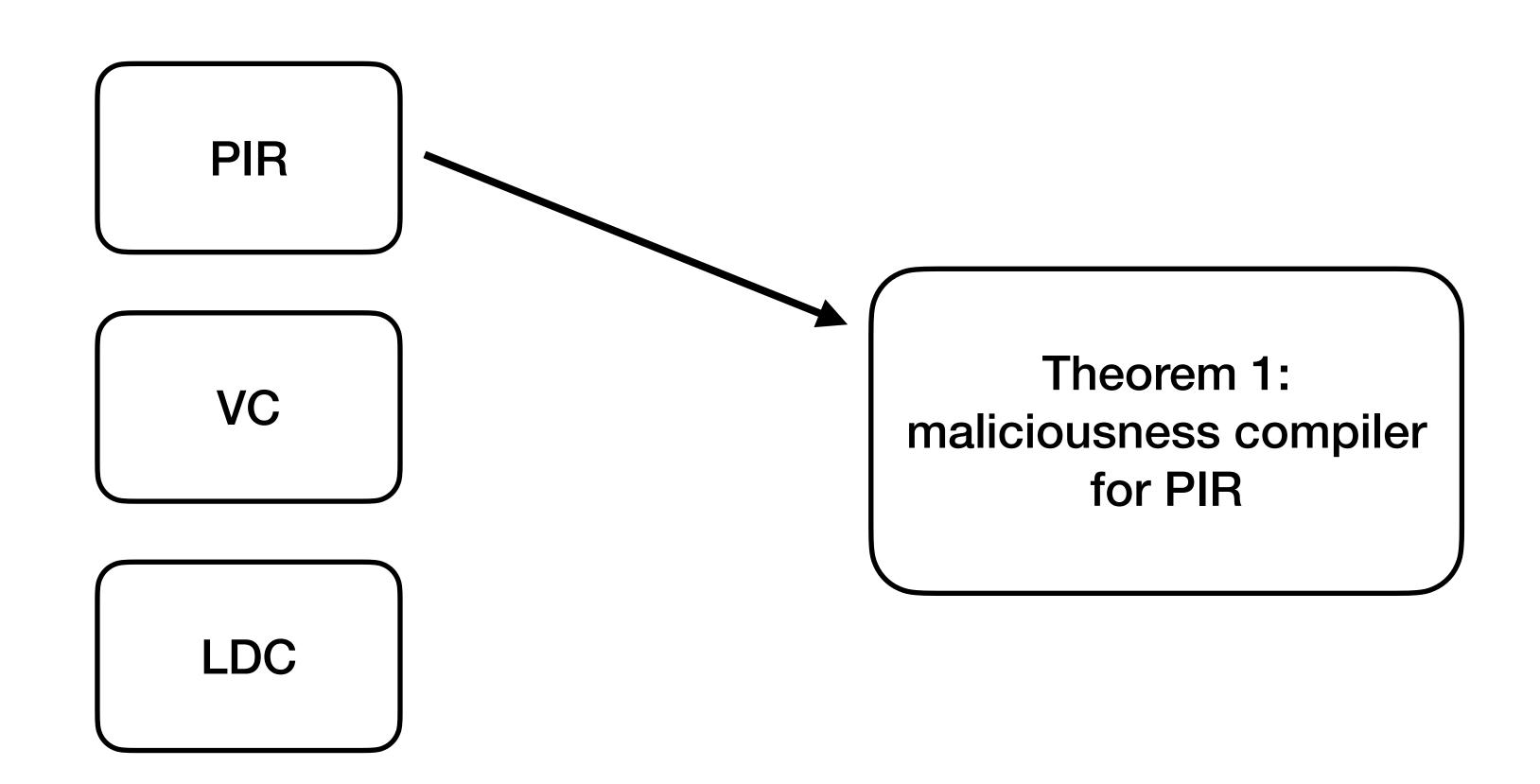
PIR

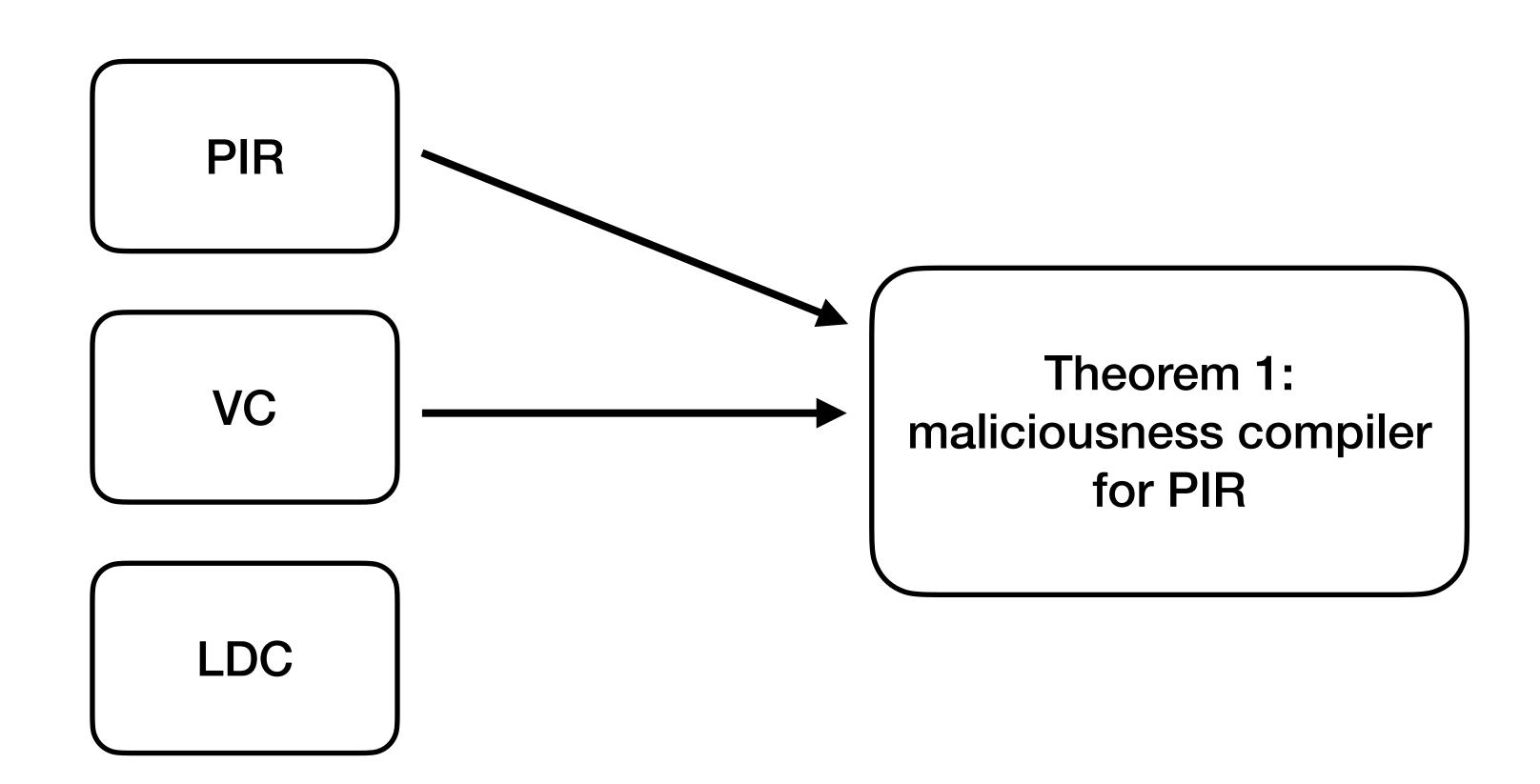
VC

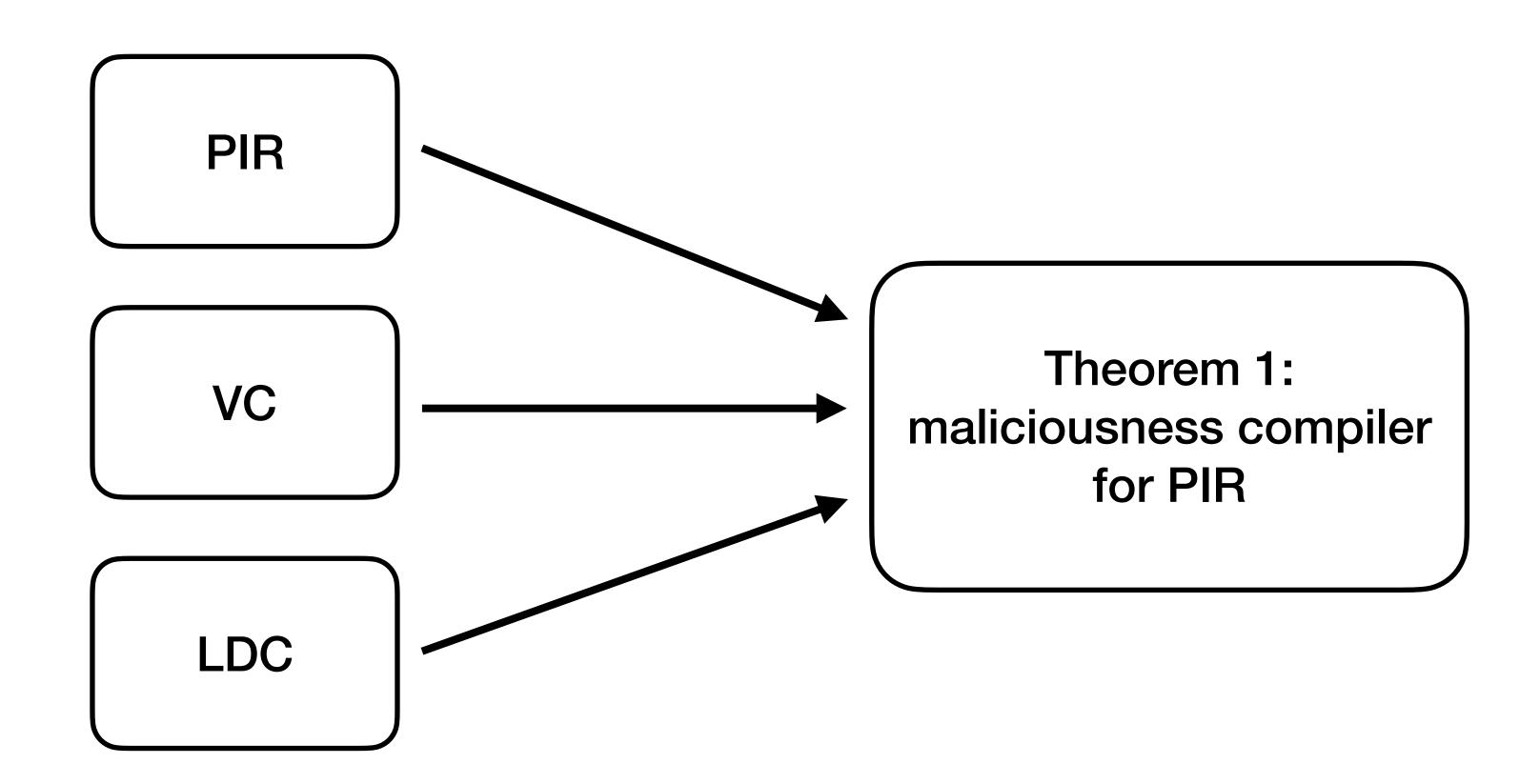
PIR

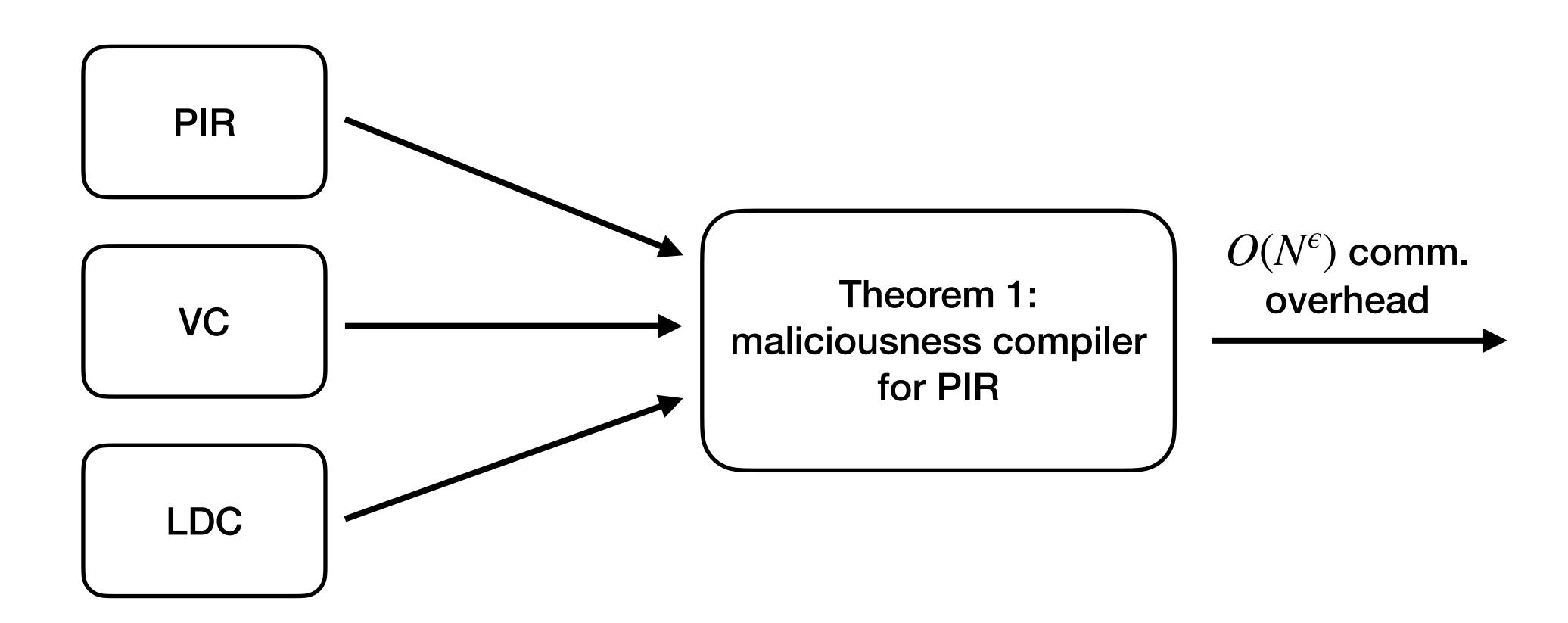
VC

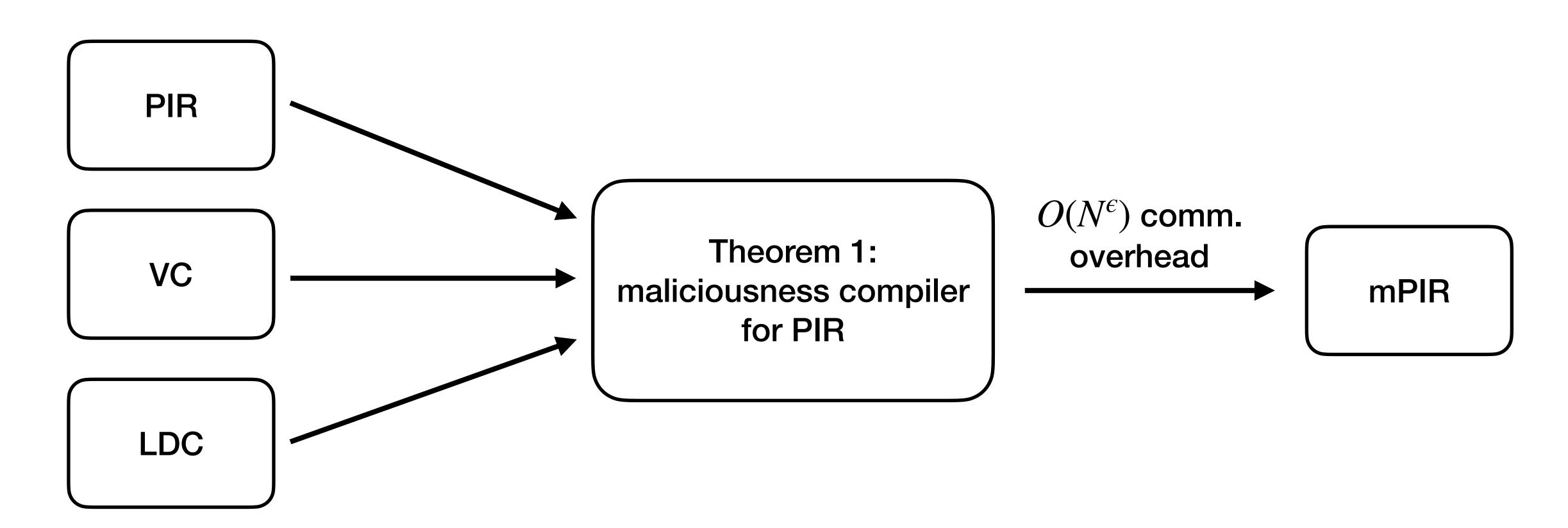
LDC



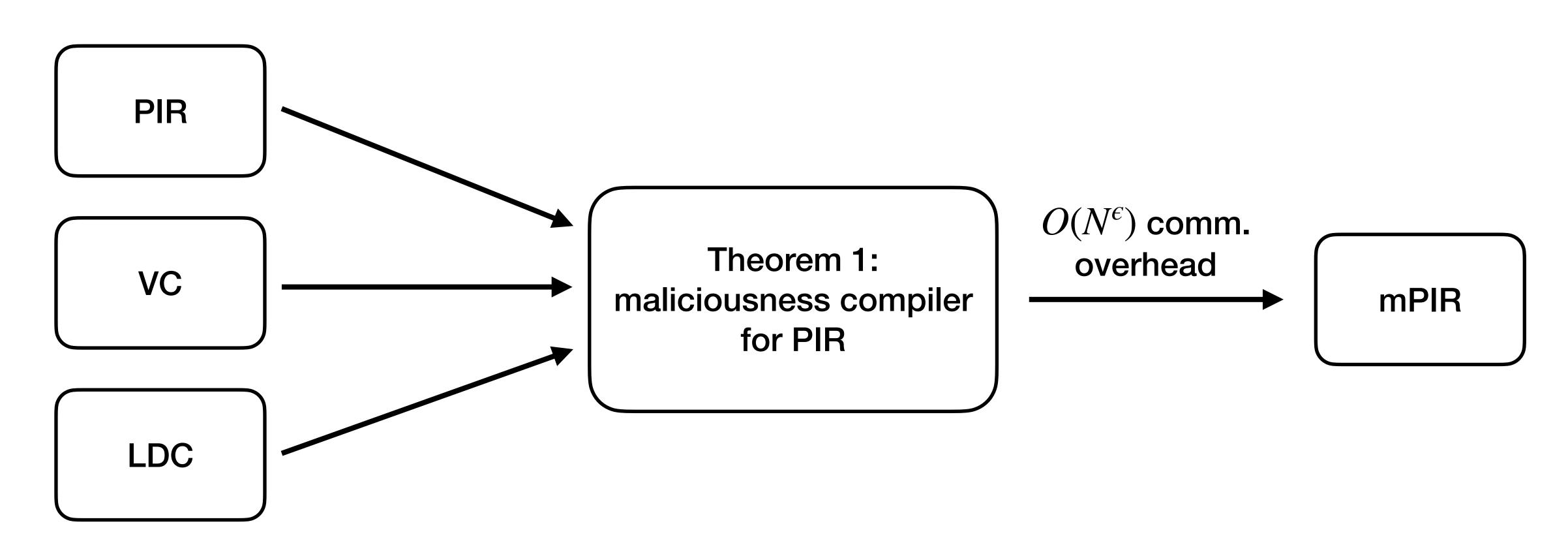




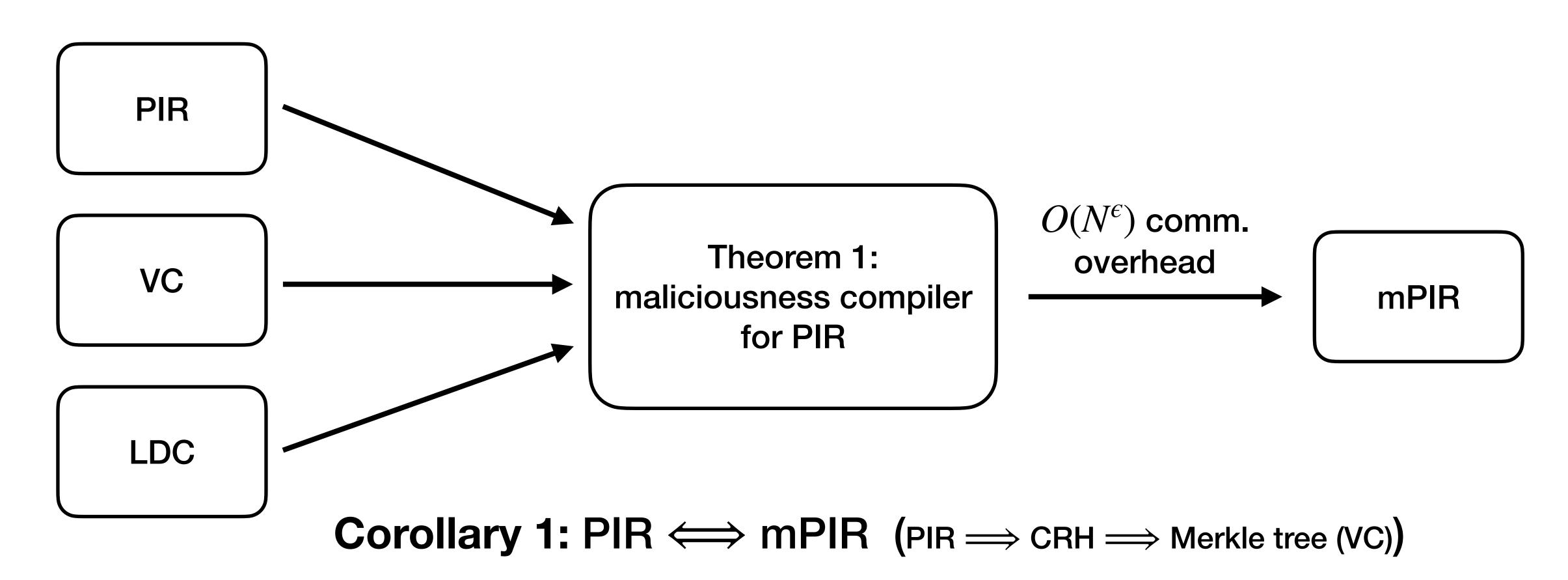




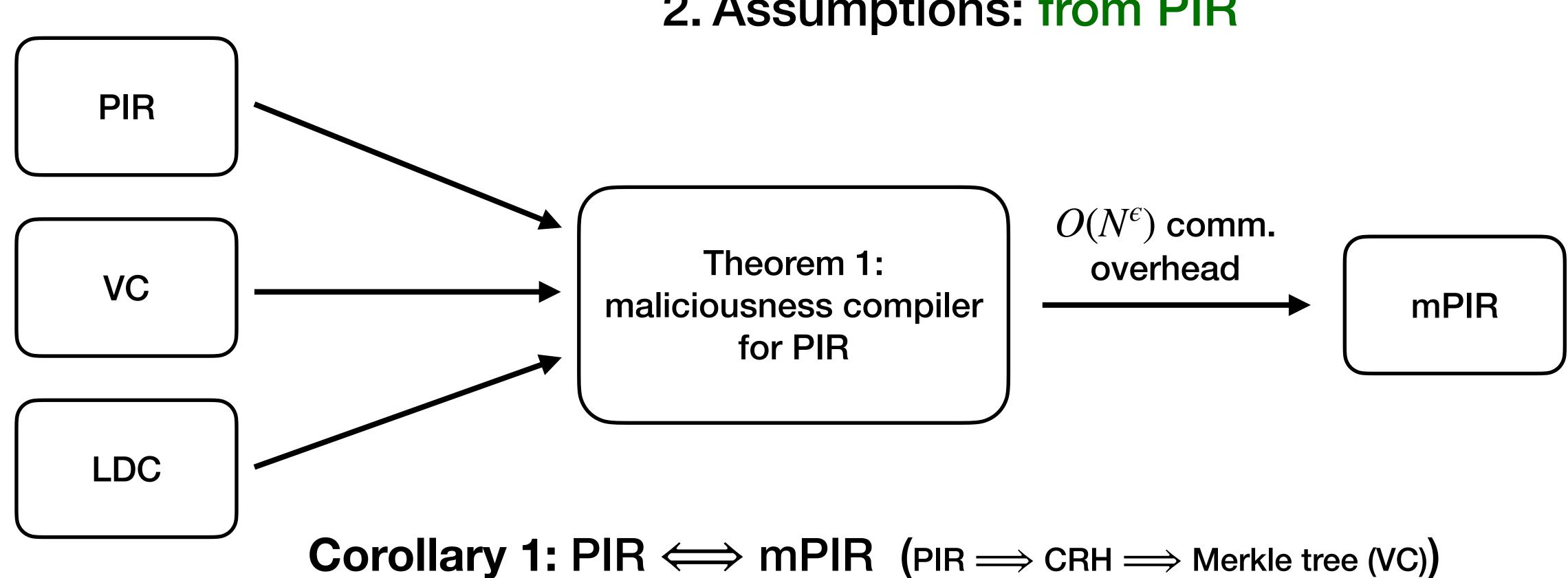
1. Methodology: generic compiler



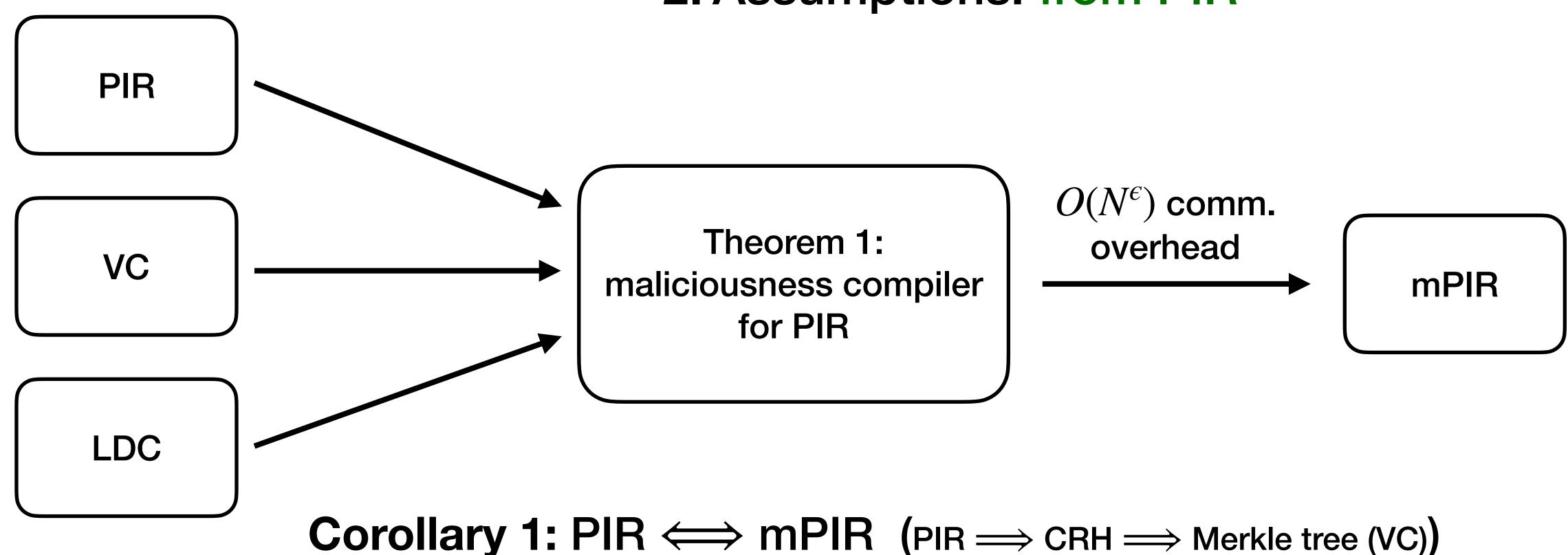
1. Methodology: generic compiler



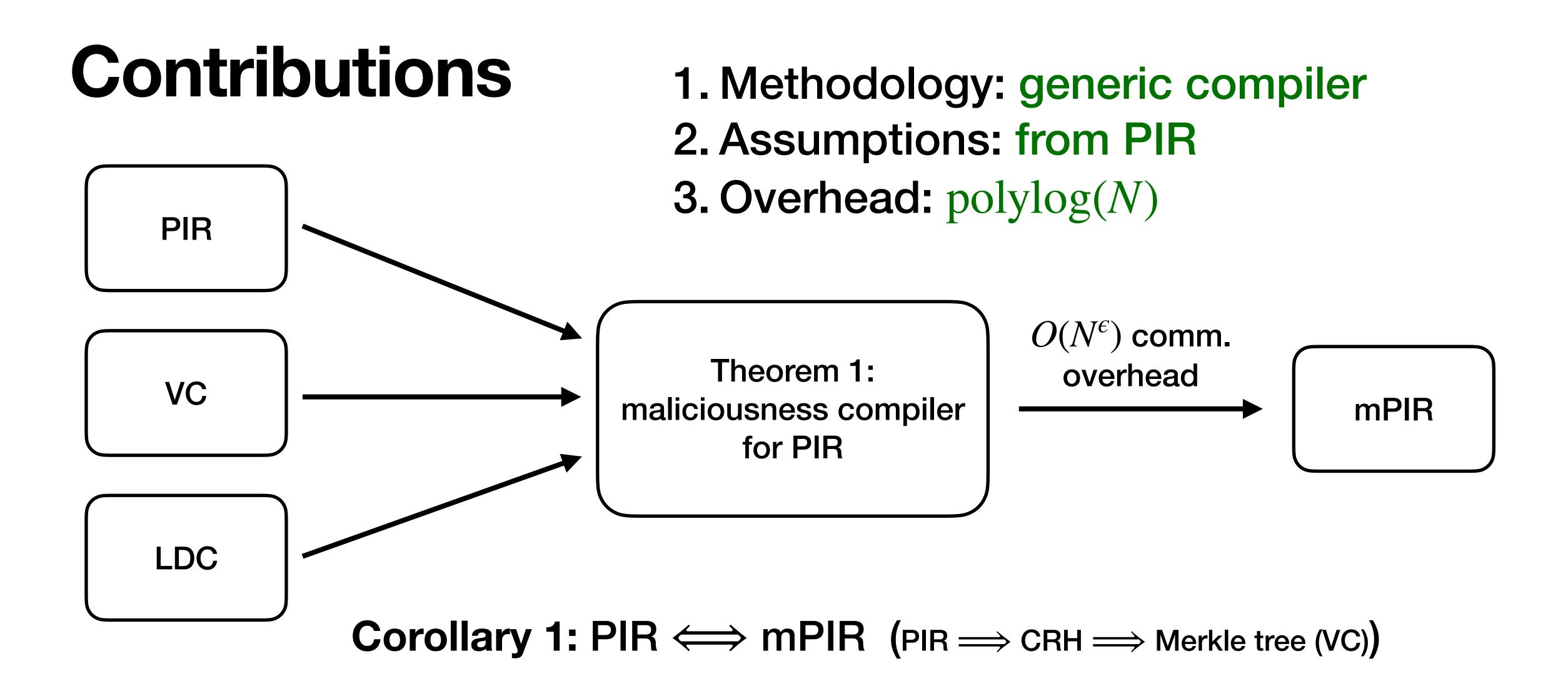
- 1. Methodology: generic compiler
- 2. Assumptions: from PIR



- 1. Methodology: generic compiler
- 2. Assumptions: from PIR



Theorem 2: there exists doubly-efficient (polylog(N)) mPIR.

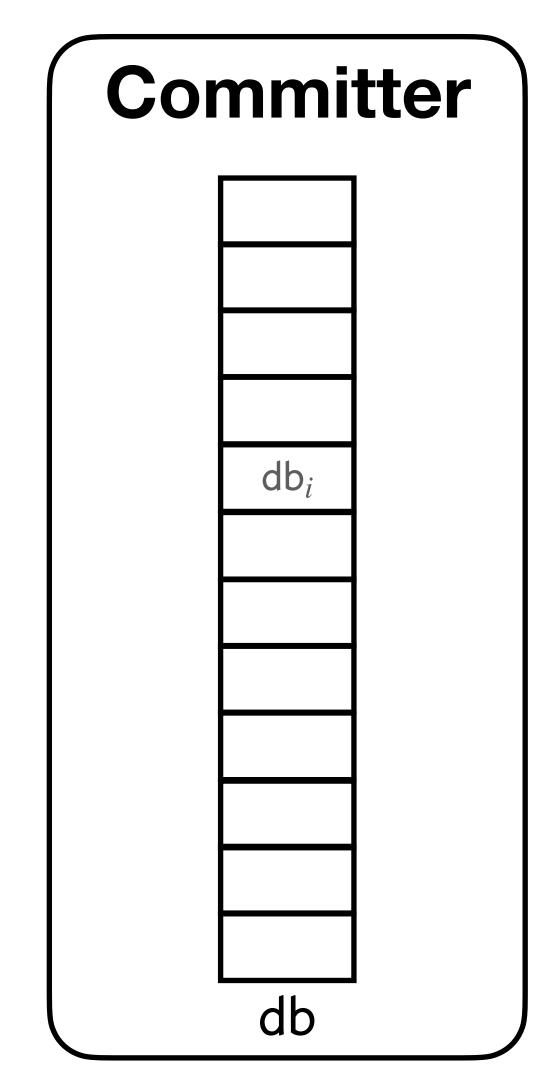


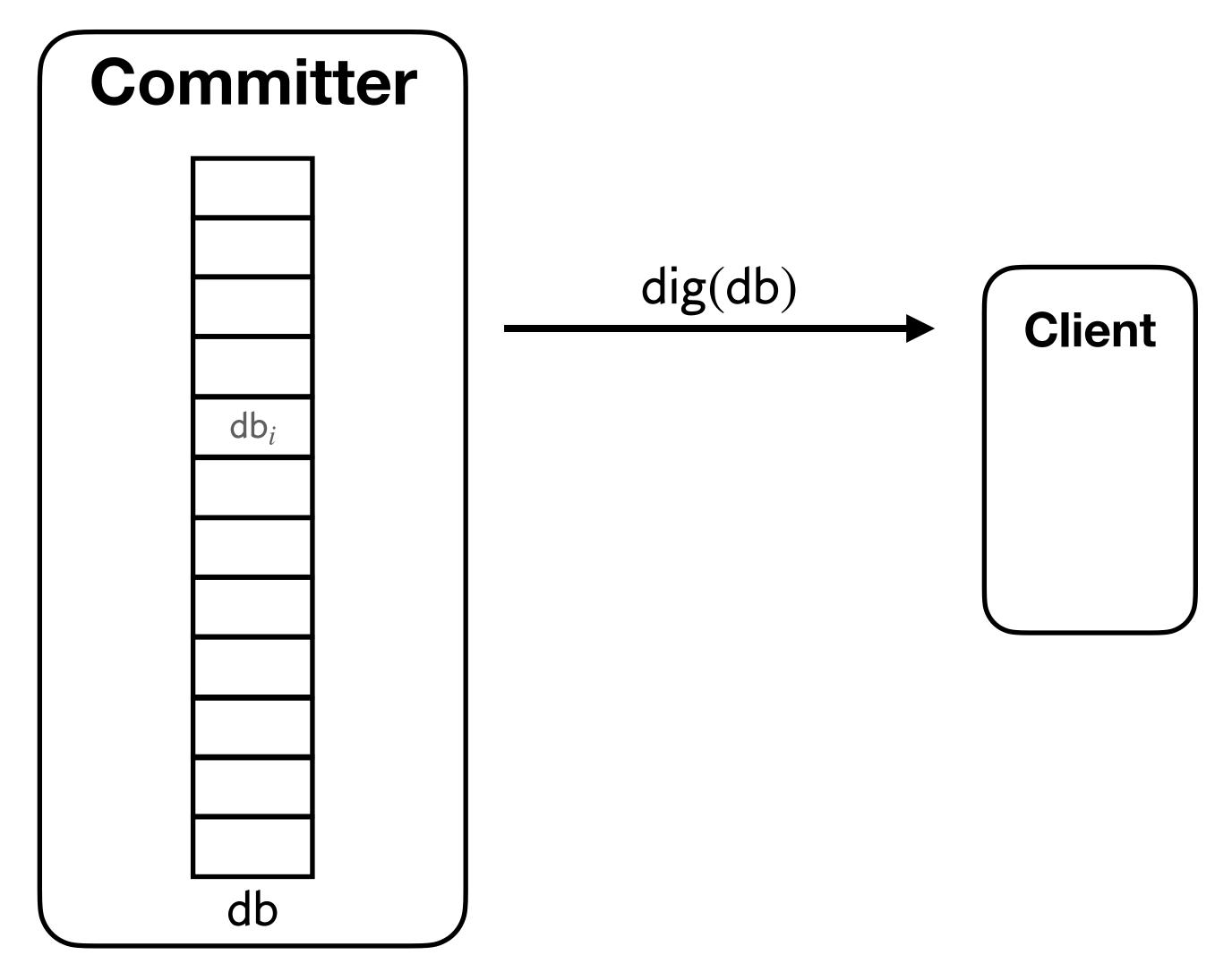
Theorem 2: there exists doubly-efficient (polylog(N)) mPIR.

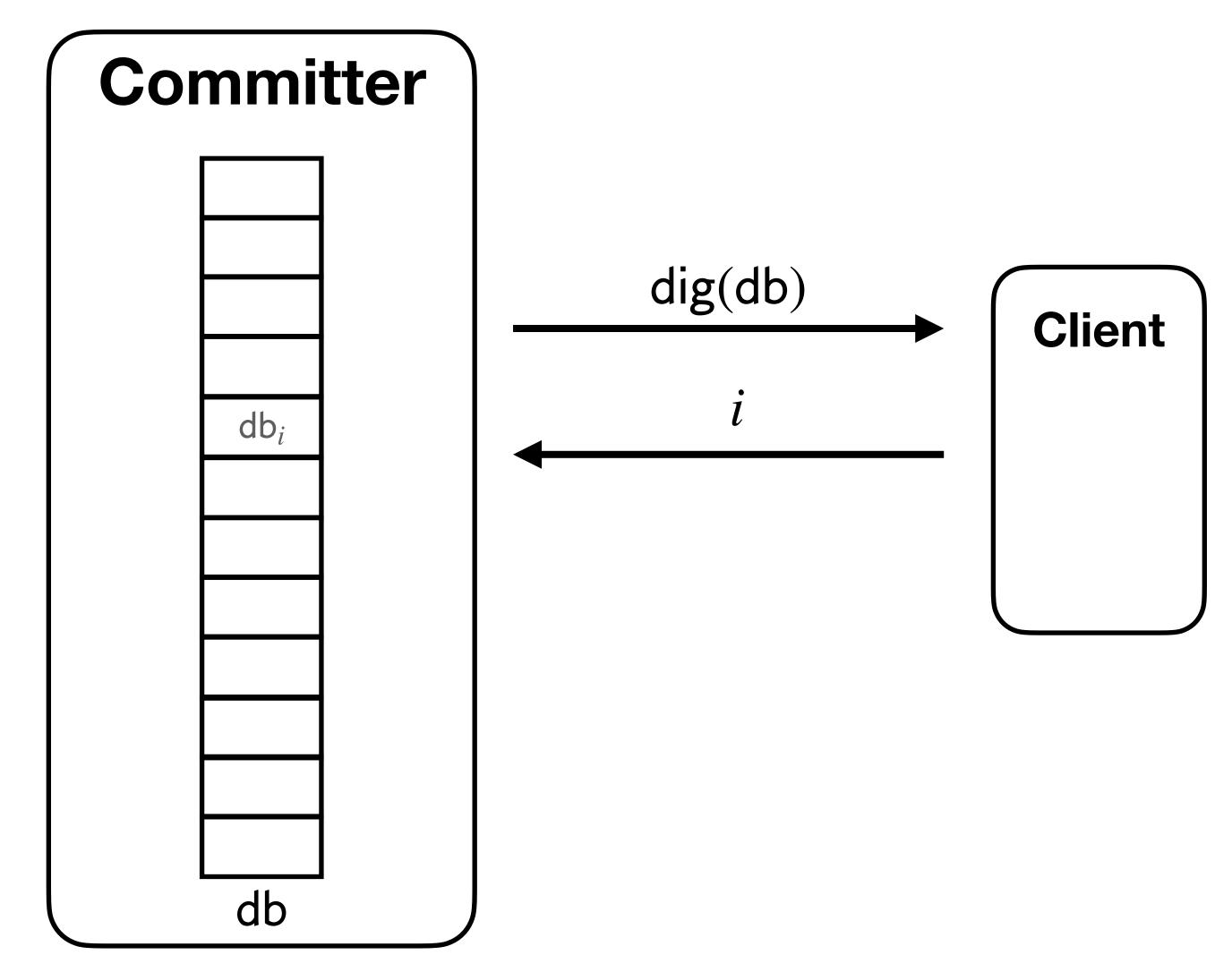
Scheme	Communication	Computation	Digest	Assumptions	Methodology
CNCWF23	$O\left(N^{1/2}\right)$	$O\left(N\right)$	$O\left(N^{1/2}\right)$	LWE, DDH	Ad-hoc
WZLY23	$O\left(N^{1/2}\right)$	$O\left(N^{1/2}\right)$	$O\left(N^{1/2}\right)$	OWF*	Ad-hoc
DT23	$O\left(N^{1/2}\right)$	$O\left(N\right)$	$O\left(N^{1/2}\right)$	DDH	Ad-hoc
CL24	$O\left(N^{1/2}\right)$	$O\left(N\right)$	$O\left(N^{1/2}\right)$	LWE	Ad-hoc
Ours (any PIR)	$\times O(N^{\epsilon})$	× O(1)	$\omega(\log N)$	PIR	Compiler
Ours (DePIR)	O(polylog N)	O(polylog N)	$\omega(\log N)$	RingLWE	Compiler

Construction

Vector Commitments (VC)

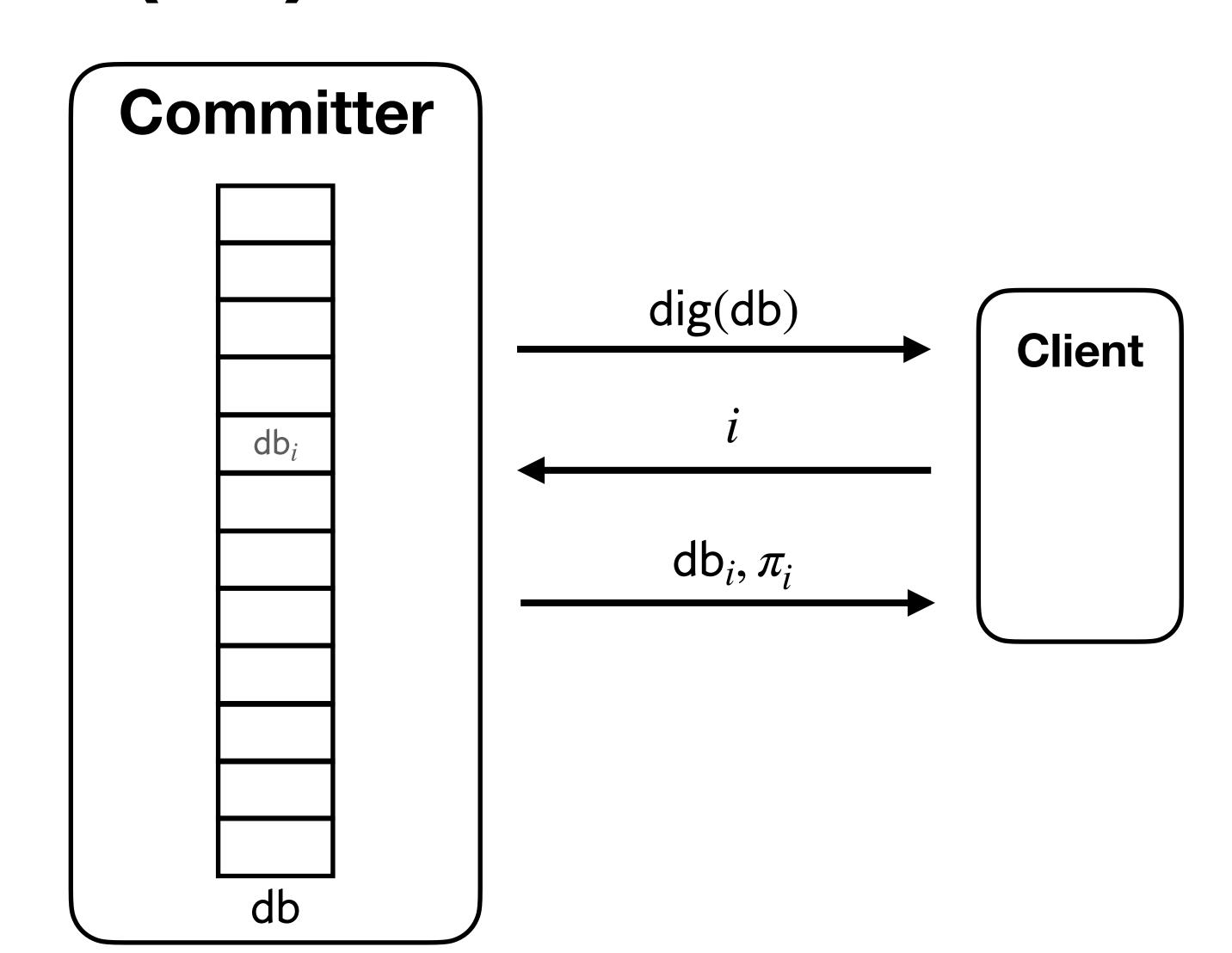






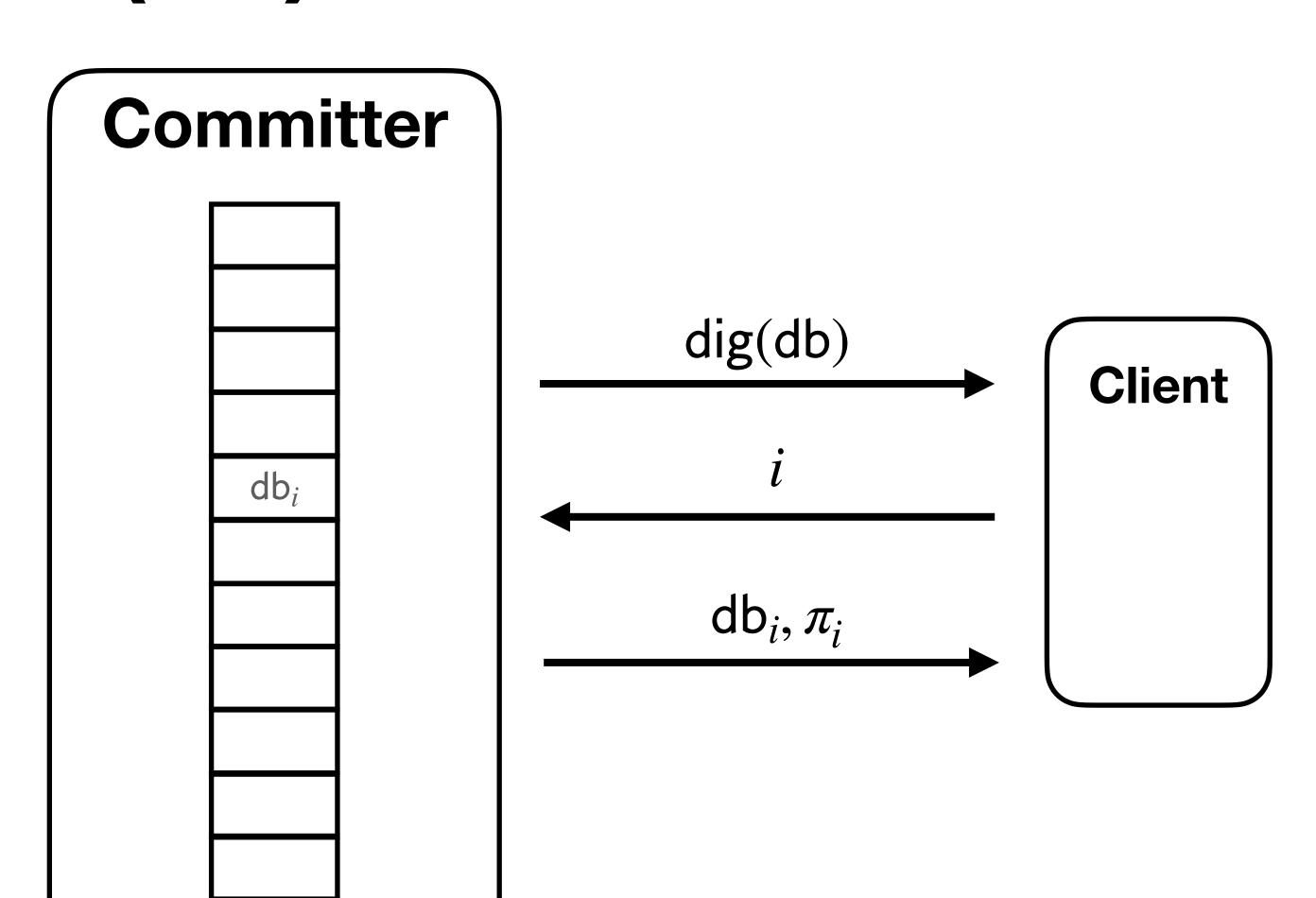


Properties:



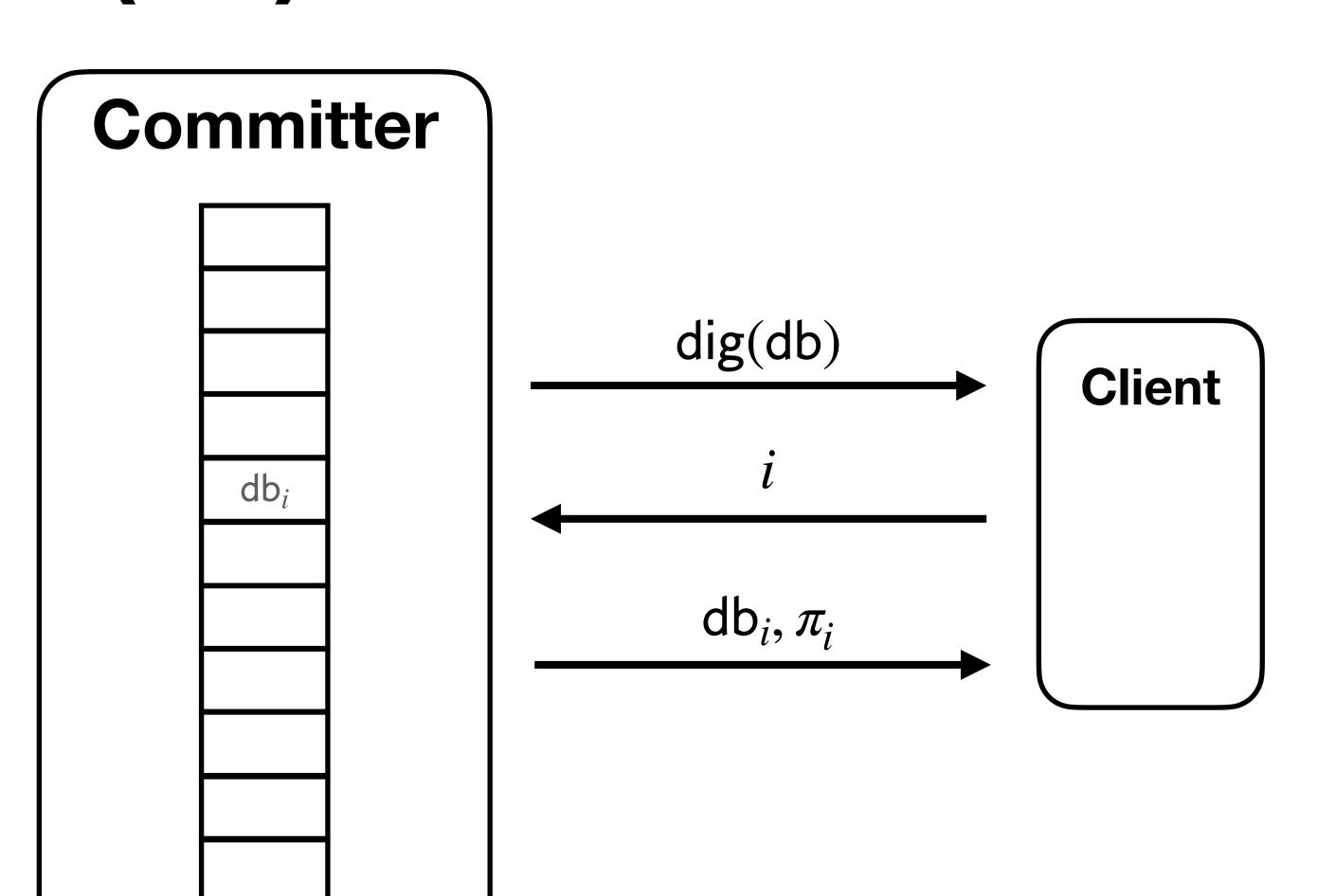
Properties:

1. Completeness: honest committer convinces



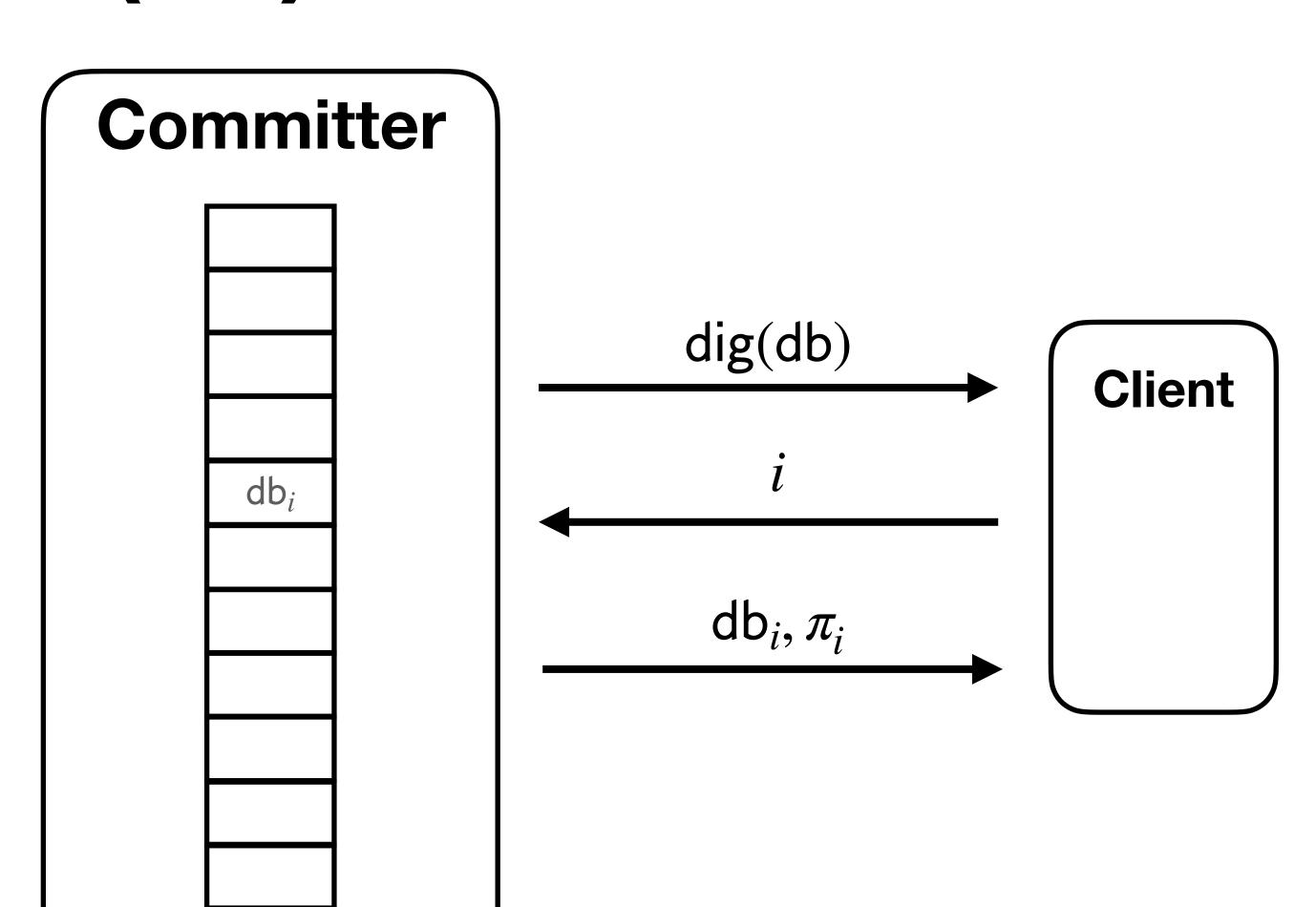
Properties:

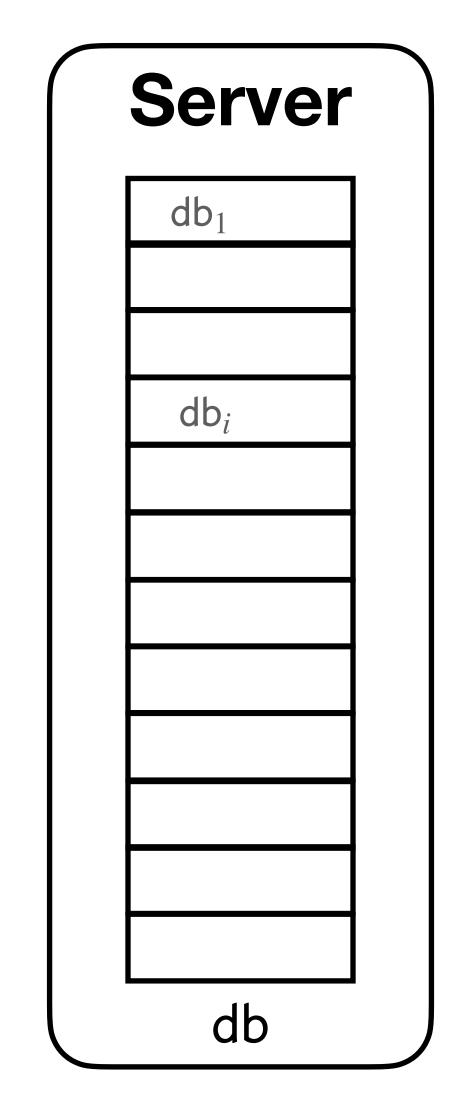
- 1. Completeness: honest committer convinces
- 2. Soundness: cannot provide different openings for i



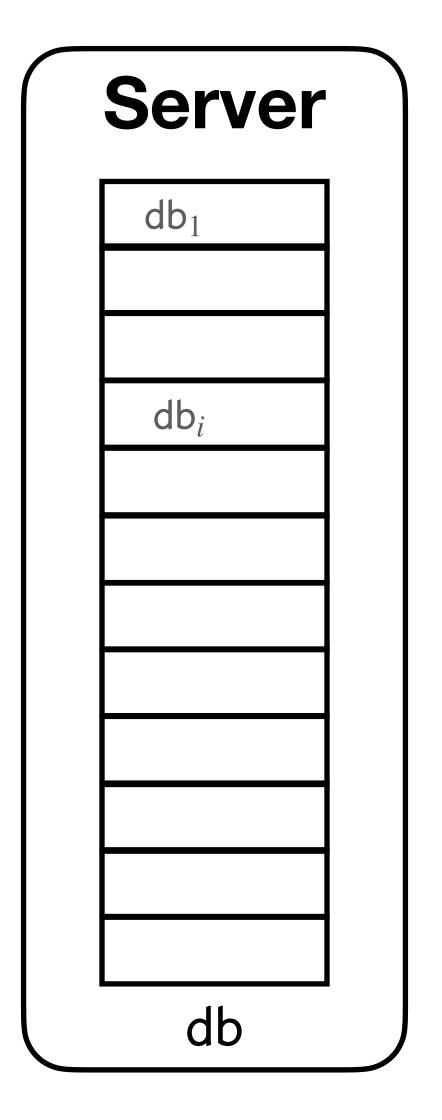
Properties:

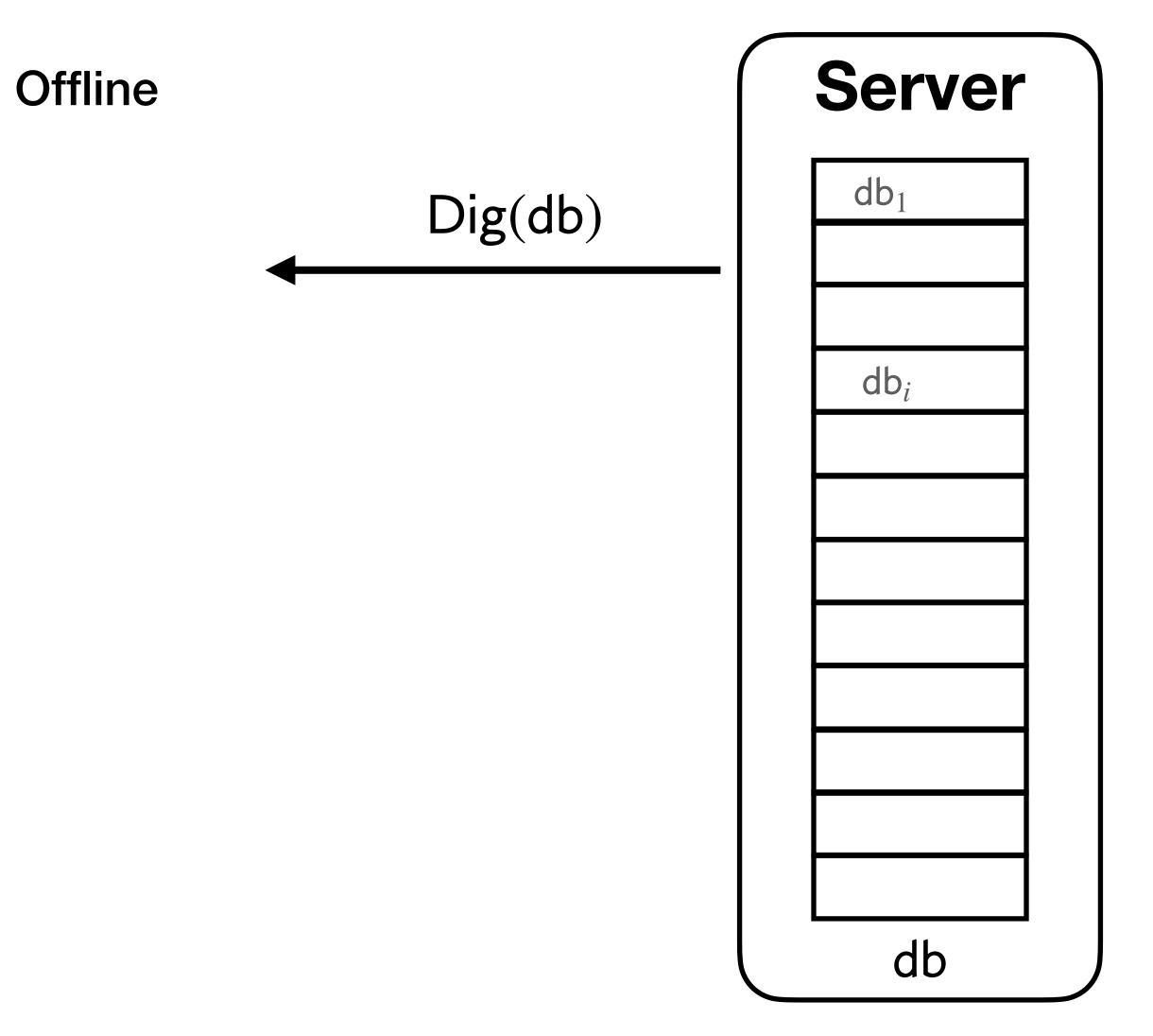
- 1. Completeness: honest committer convinces
- 2. Soundness: cannot provide different openings for i
- 3. Efficiency: small dig(db), π_i

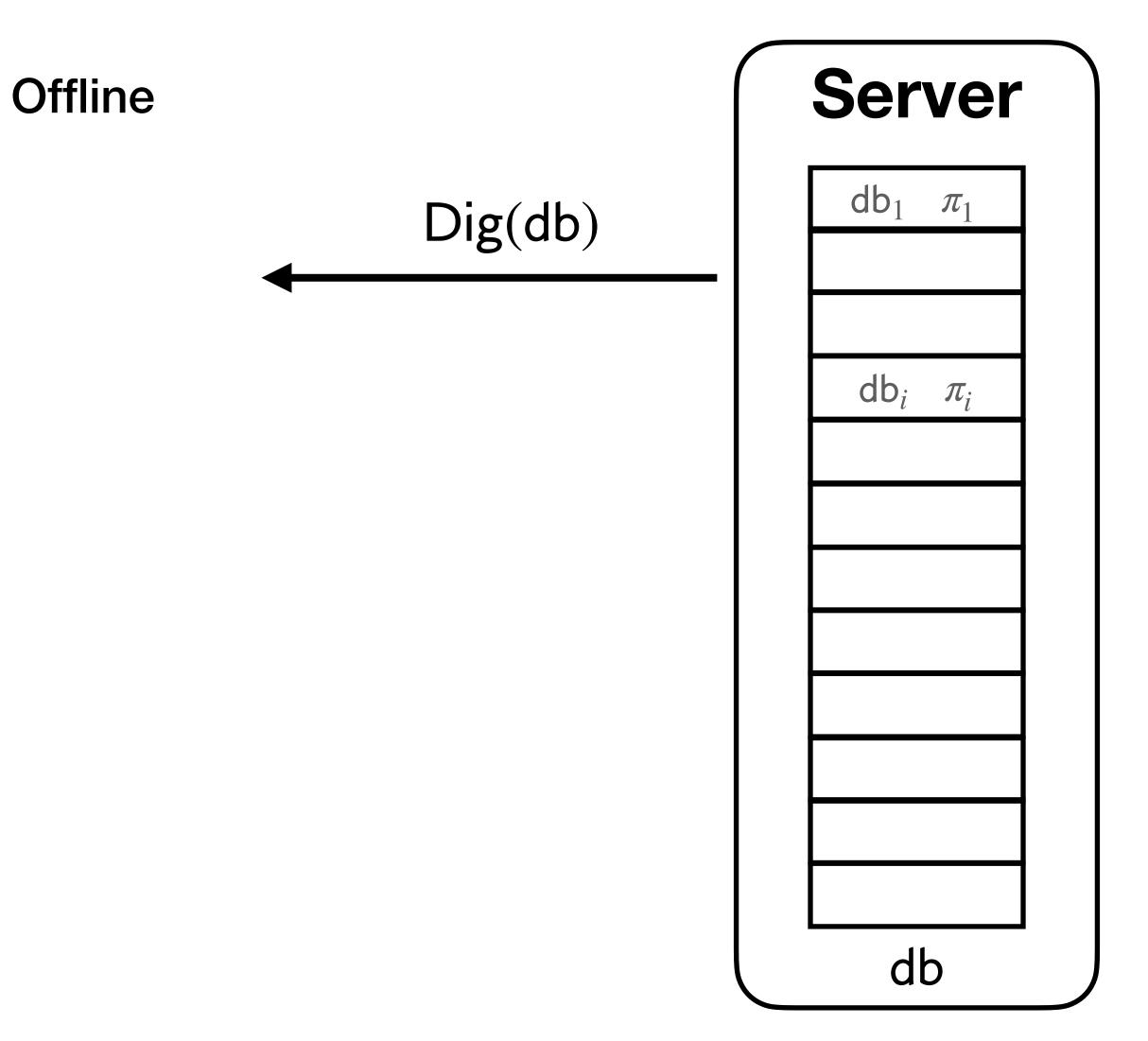


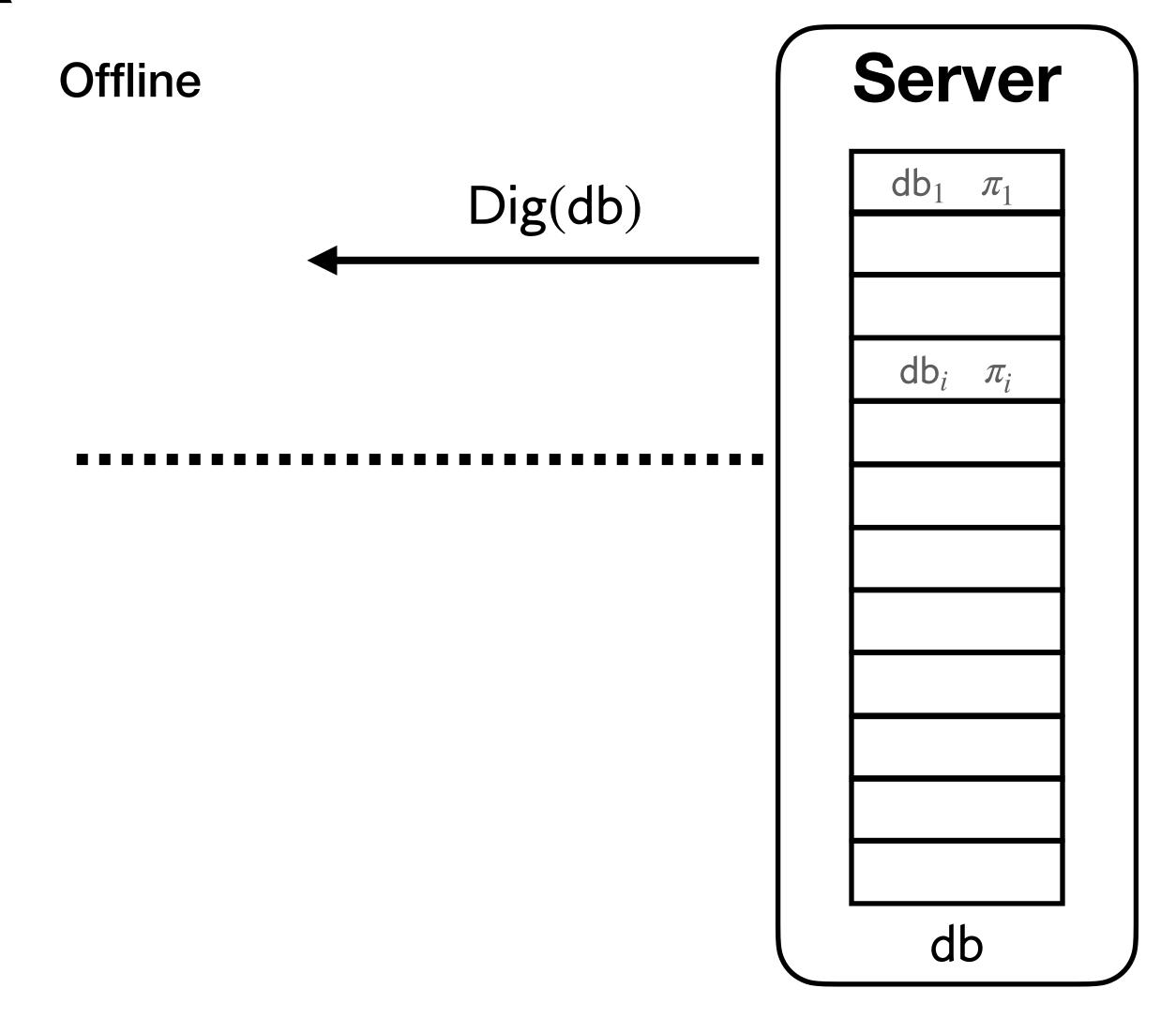


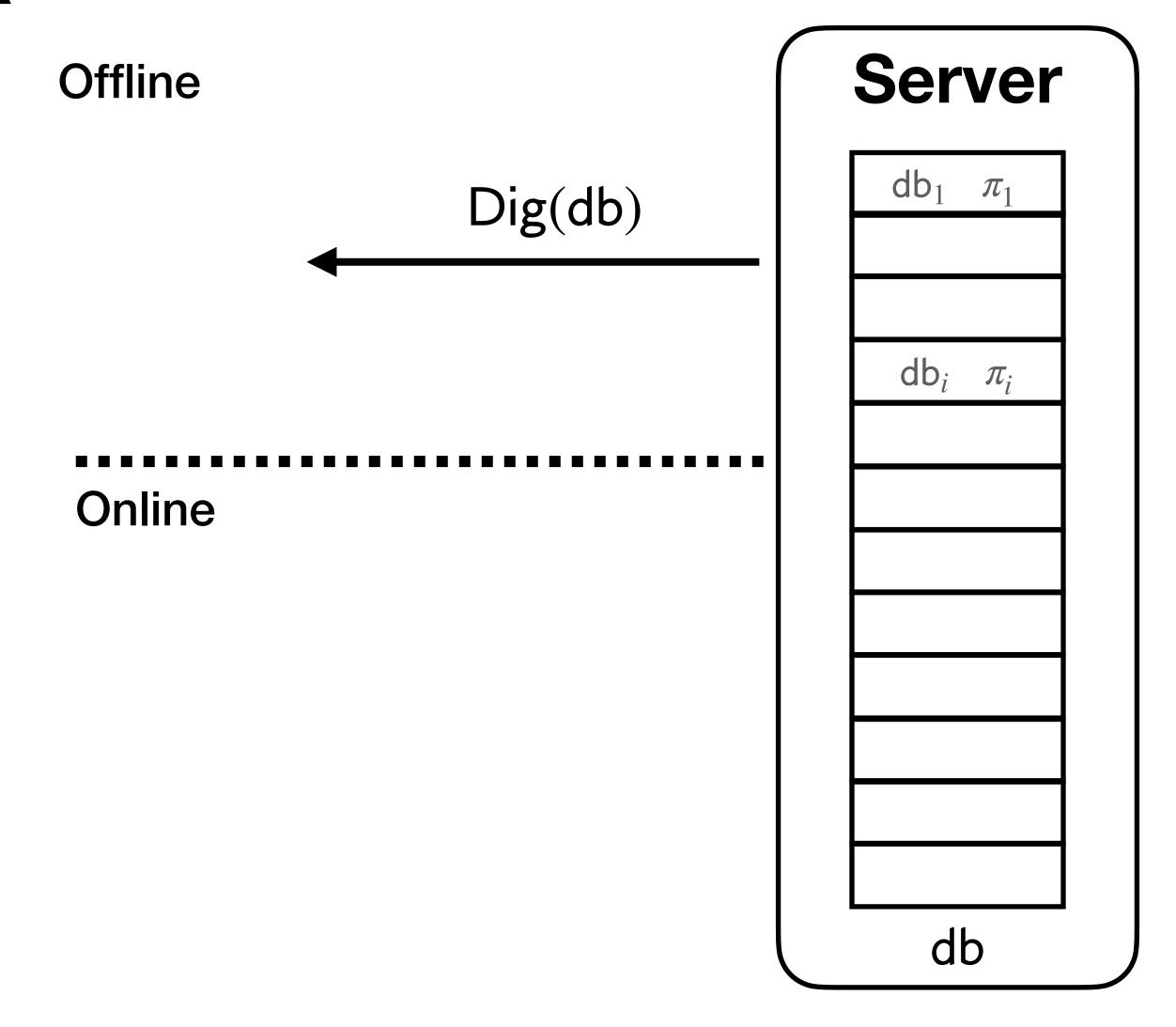
Offline

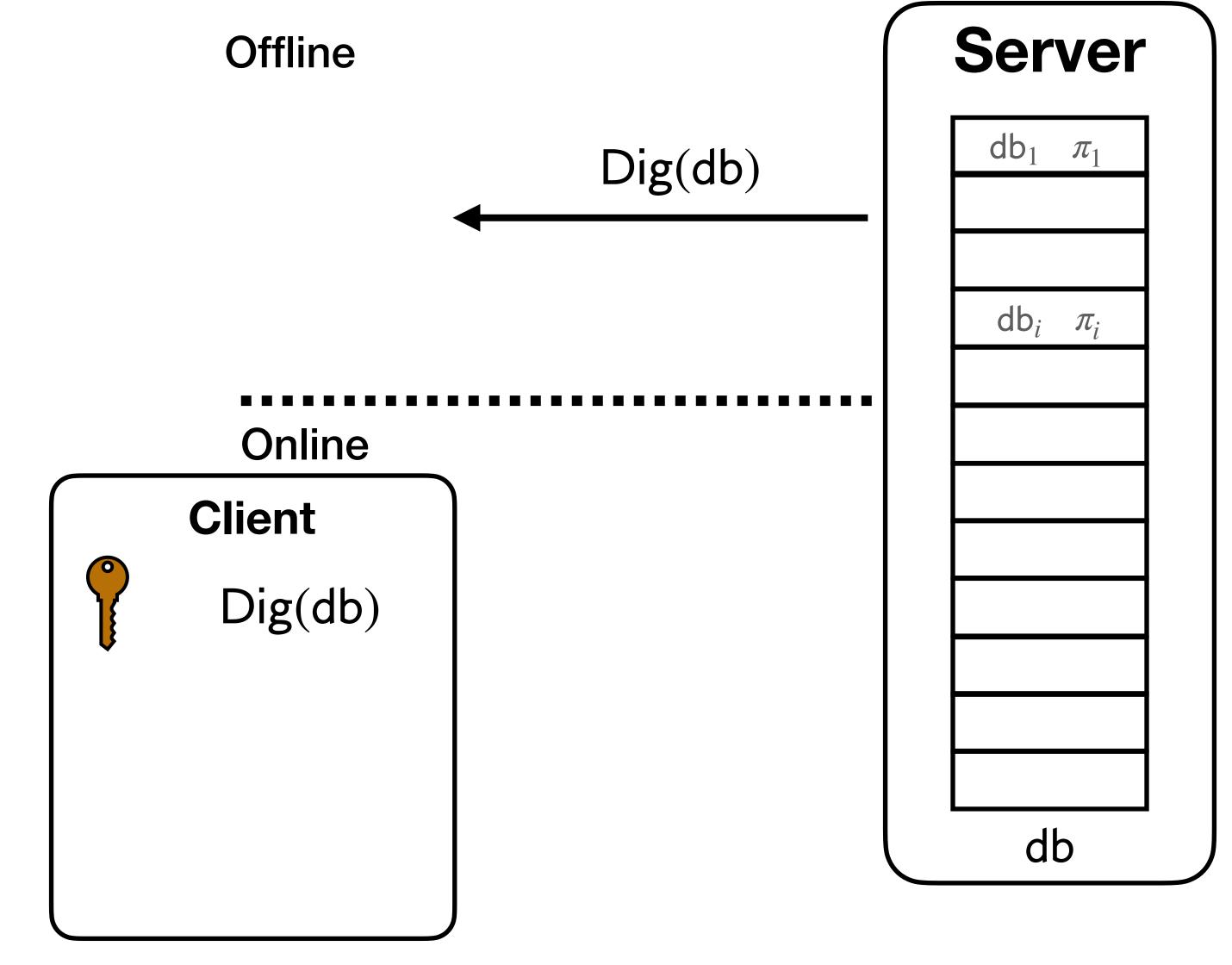


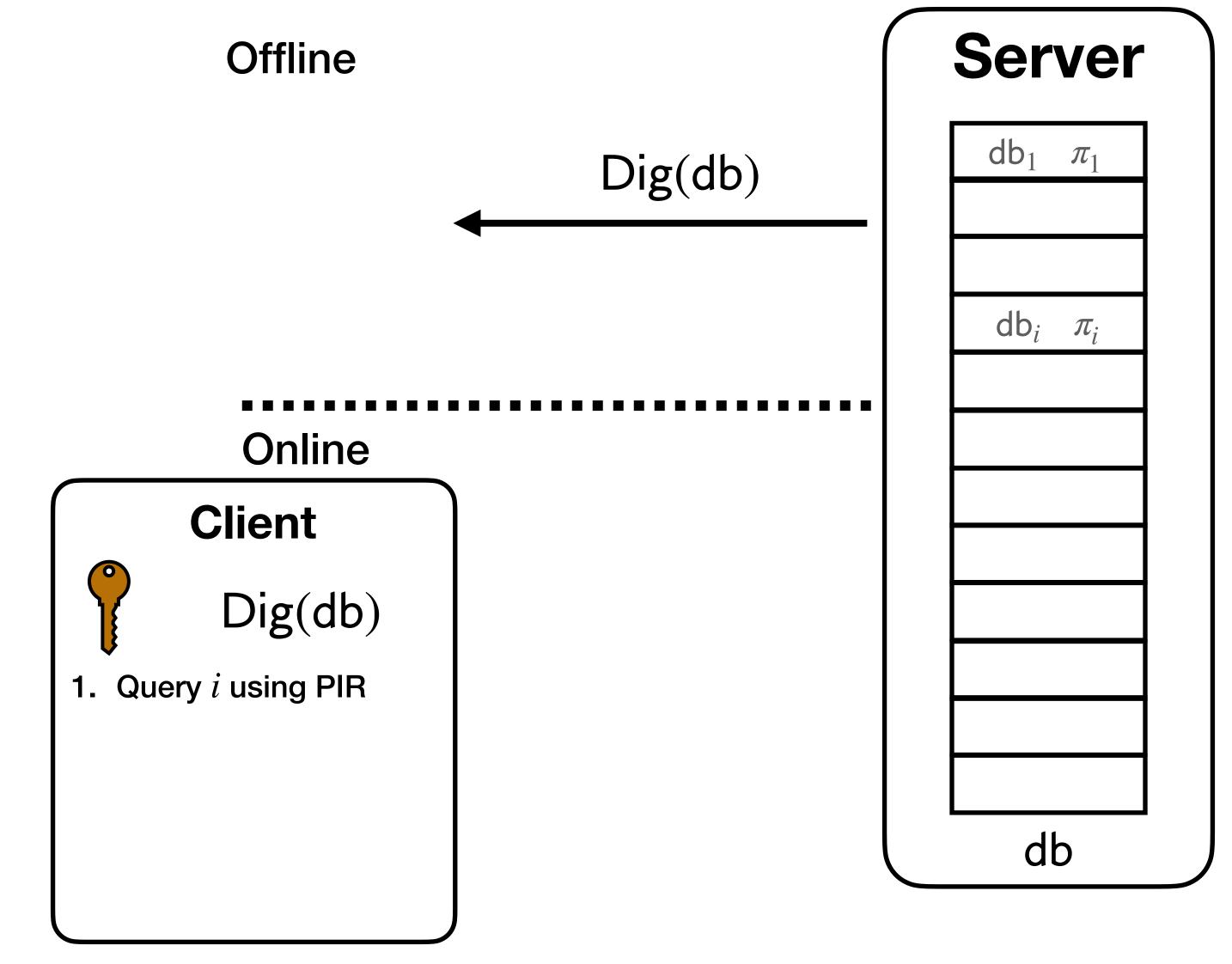


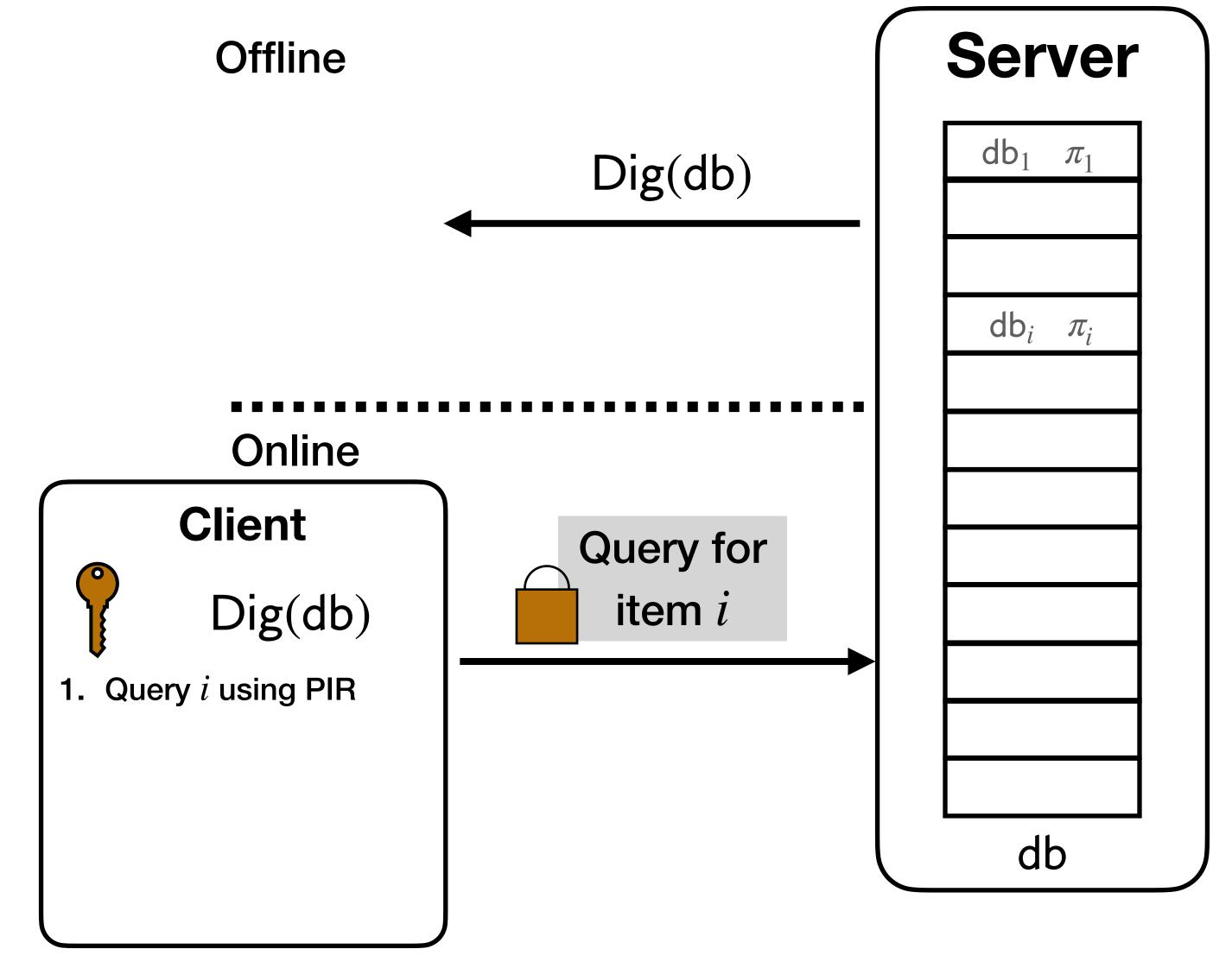


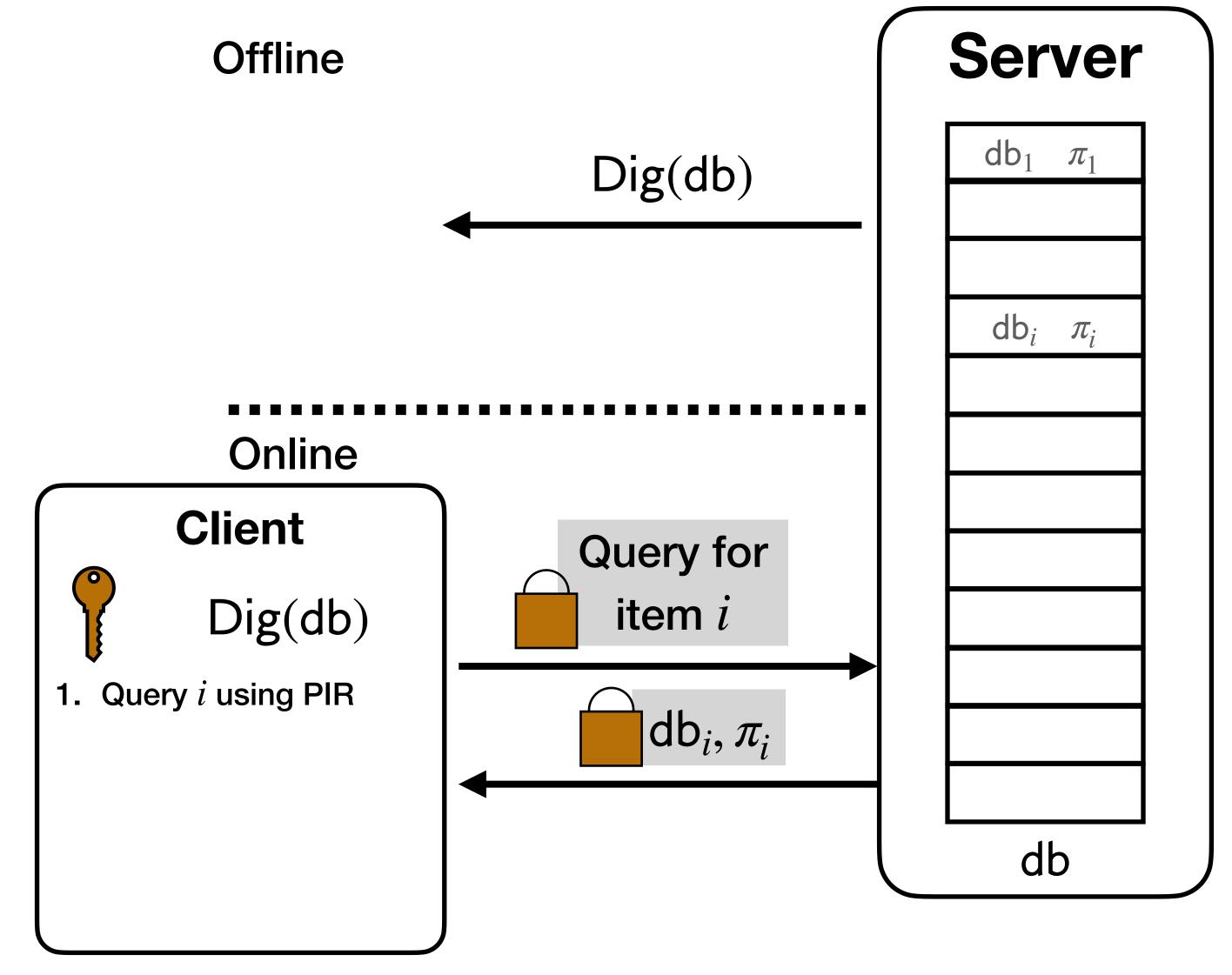


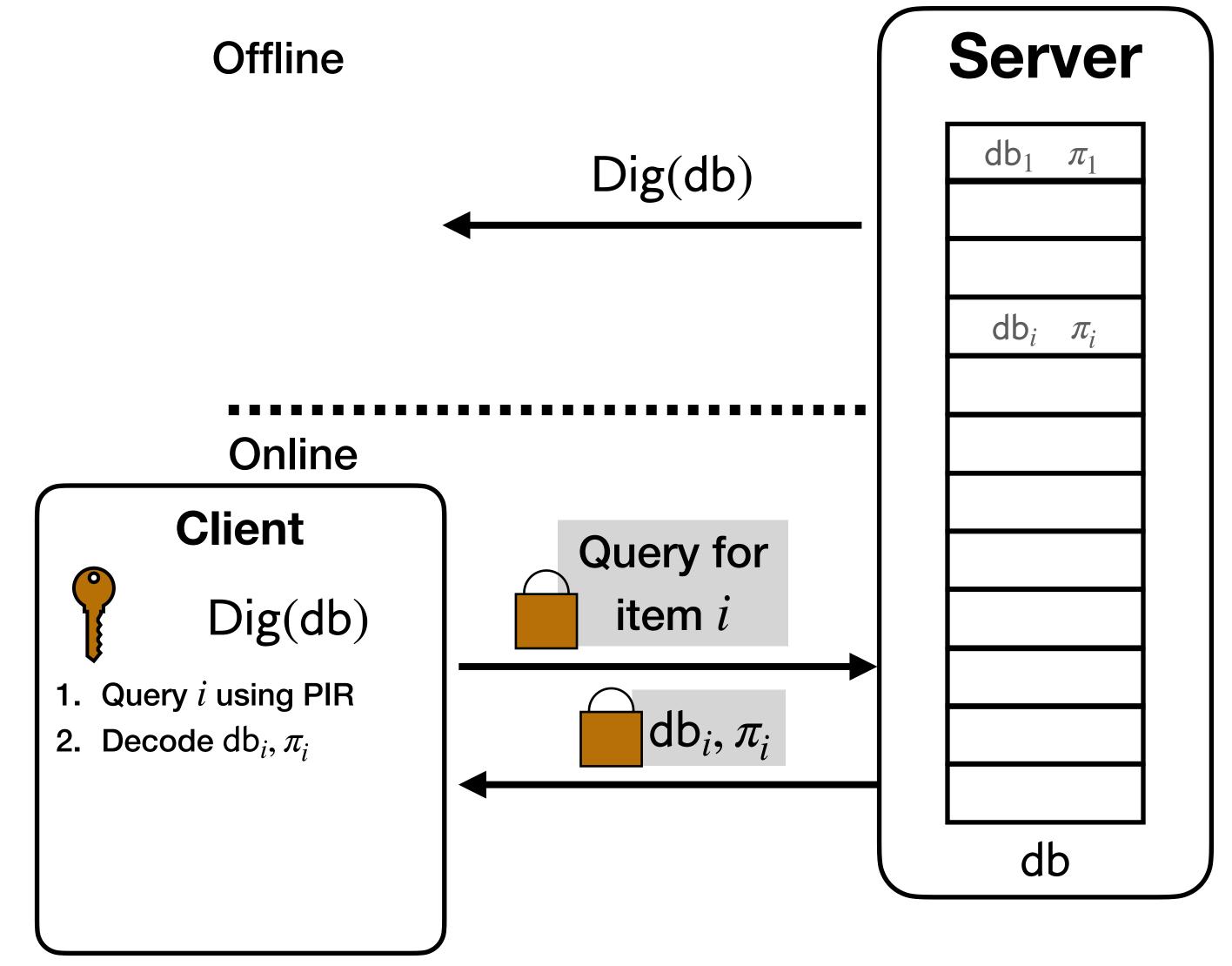


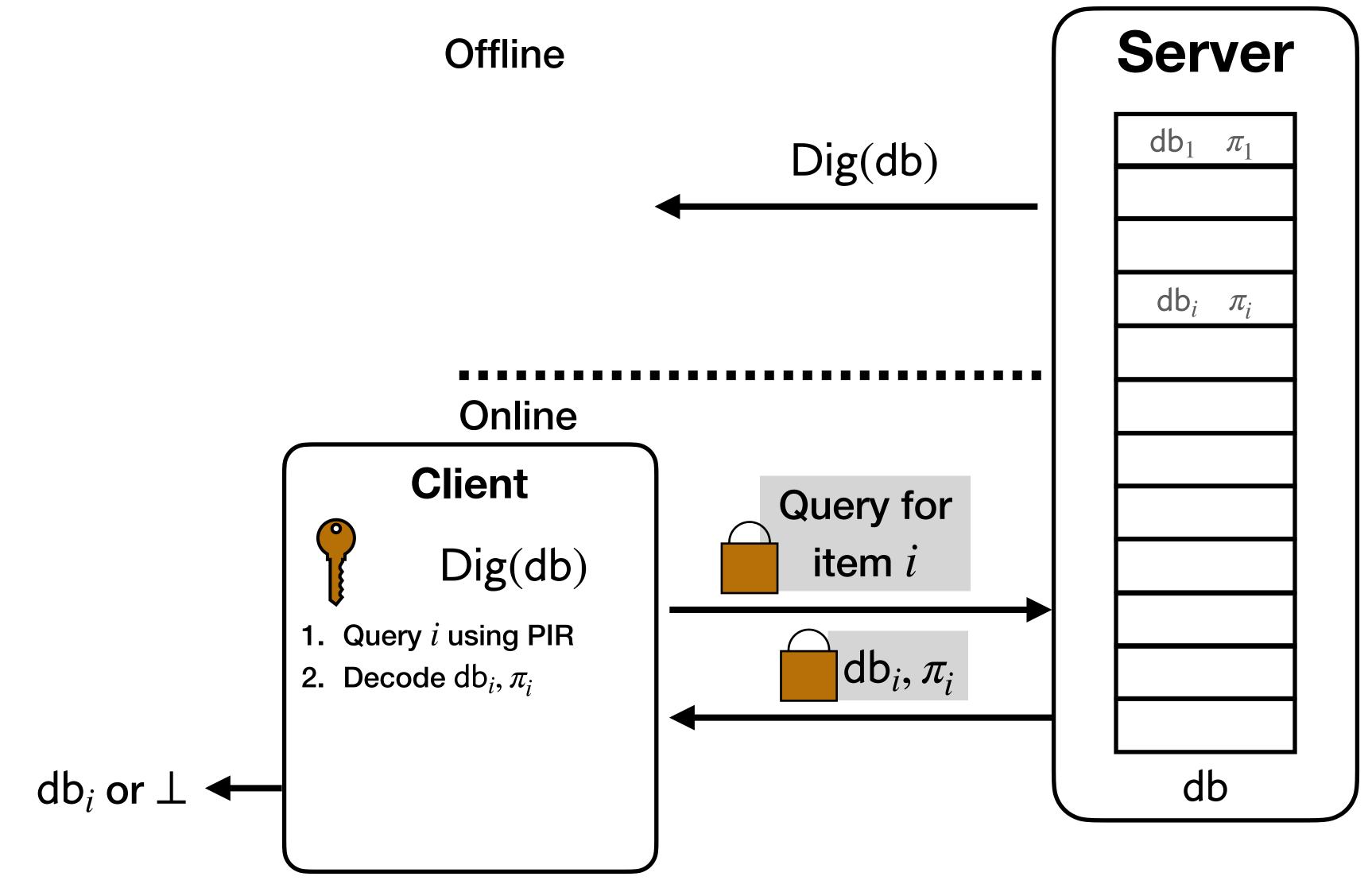


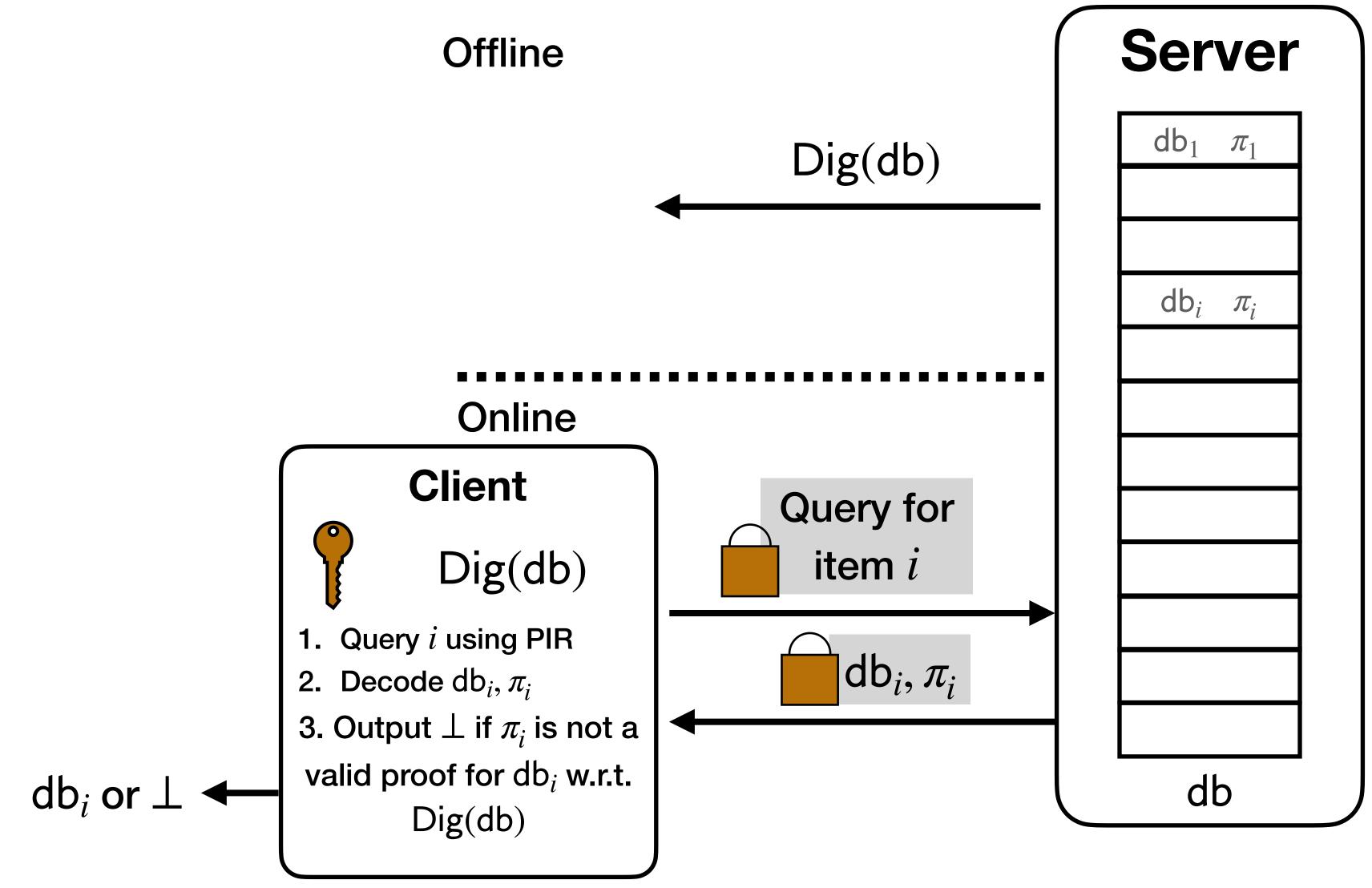




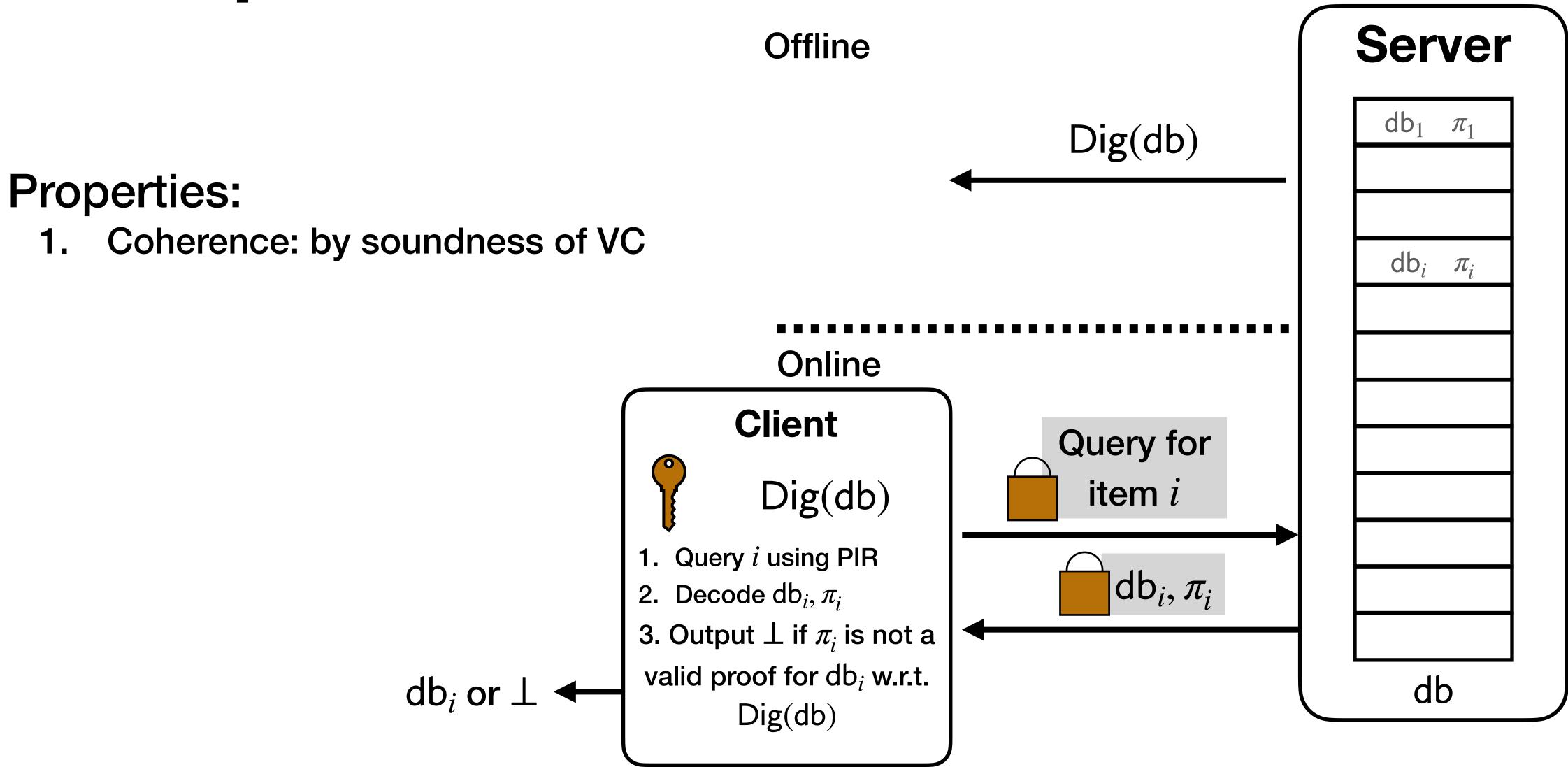


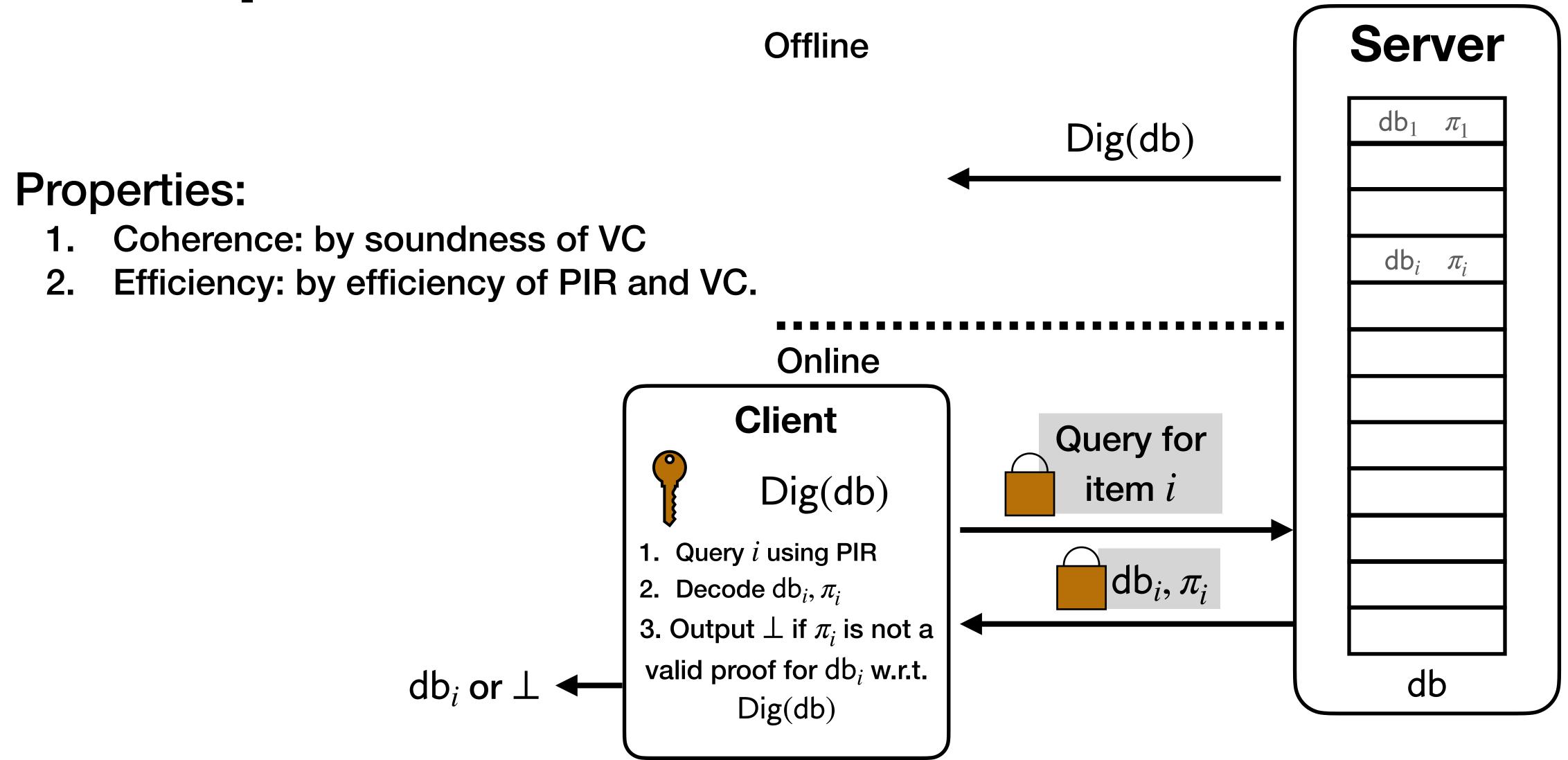


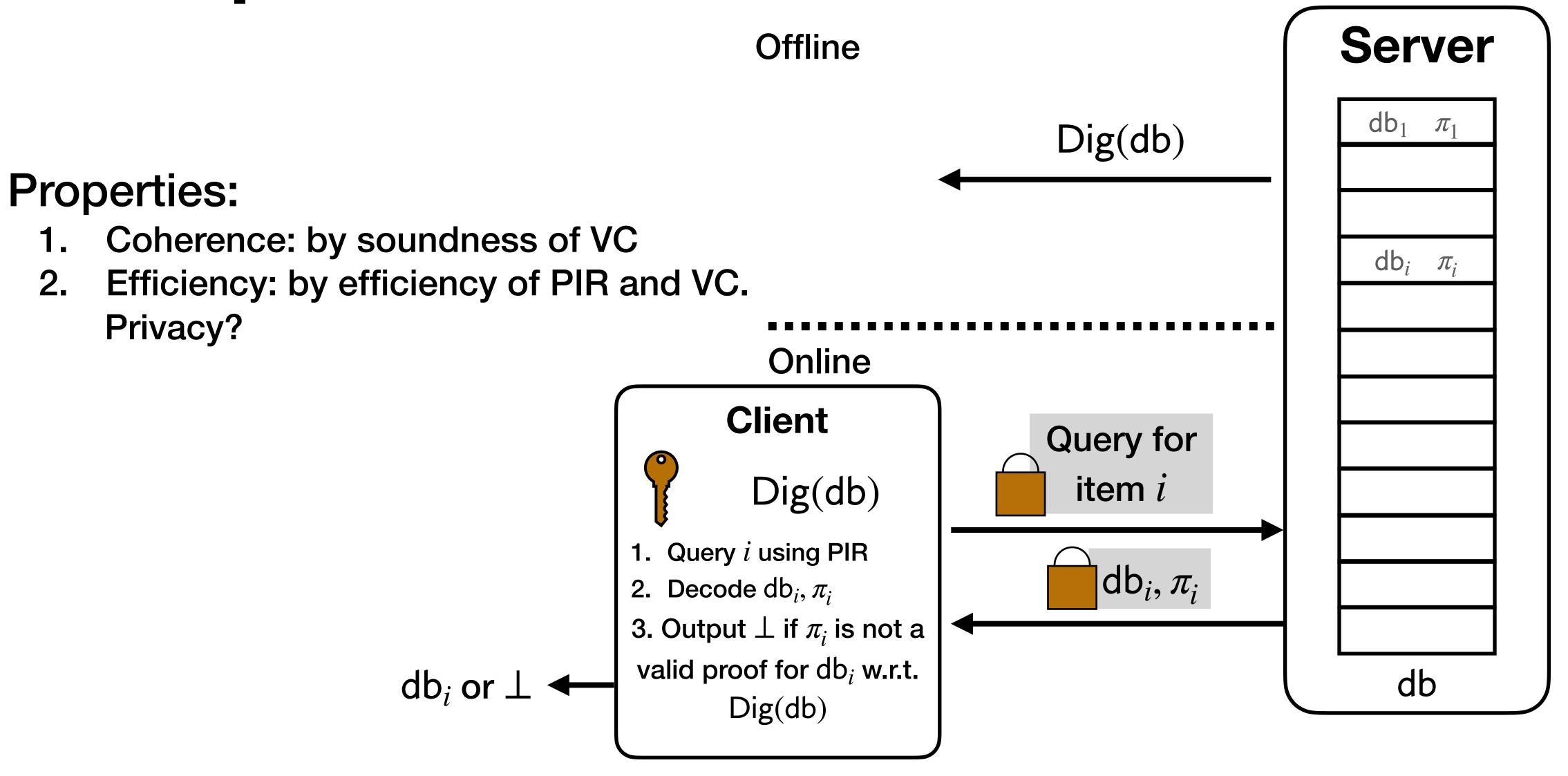


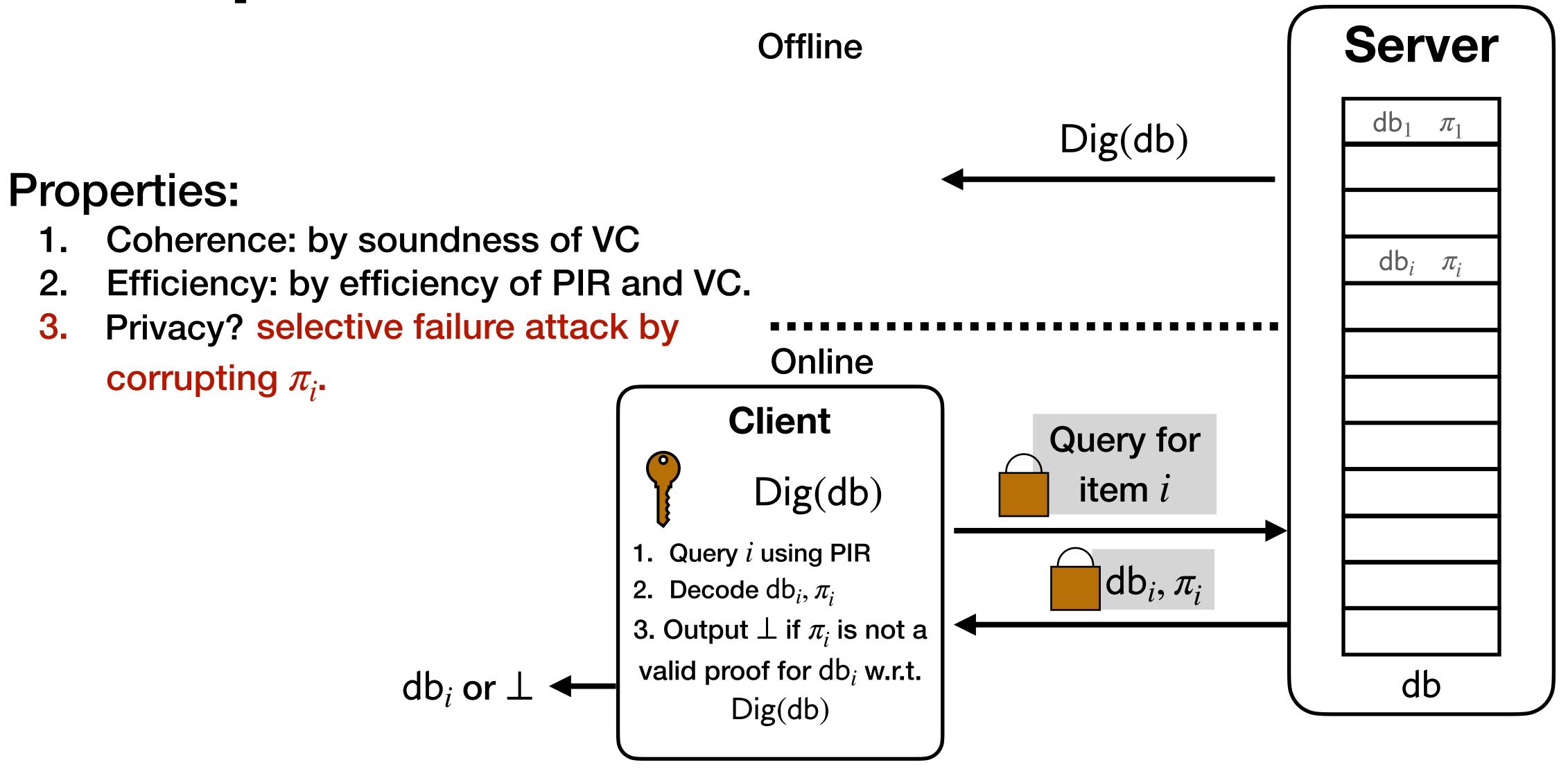


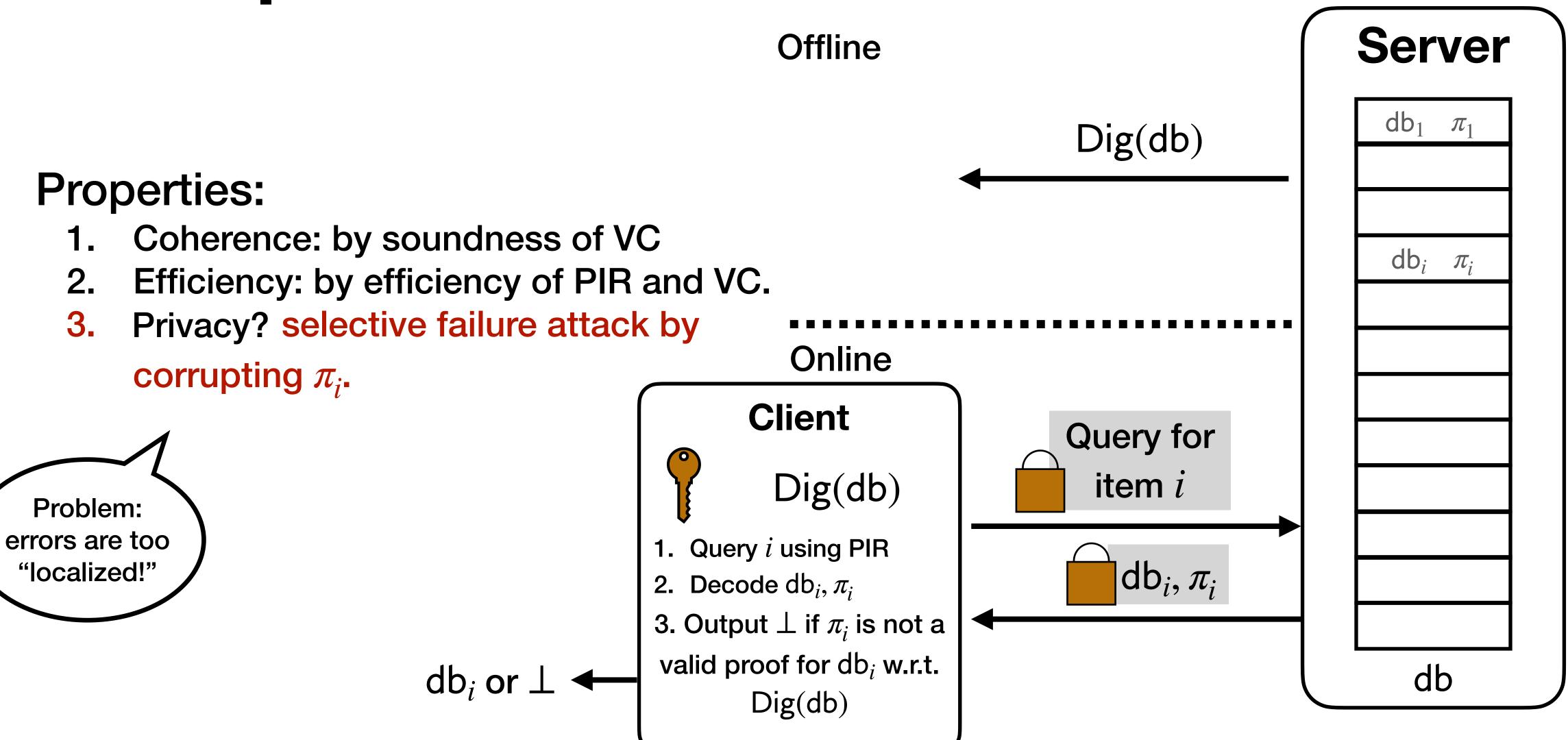
Server Offline db_1 π_1 Dig(db) Properties: db_i π_i Online Client Query for item iDig(db) 1. Query i using PIR db_i, π_i 2. Decode db_i , π_i 3. Output \perp if π_i is not a valid proof for db_i w.r.t. db_i or \perp db Dig(db)

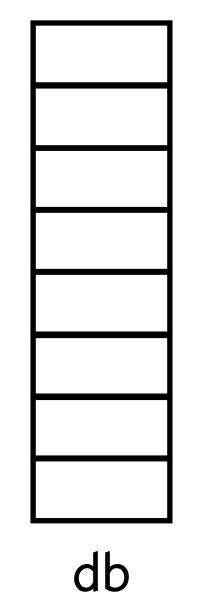


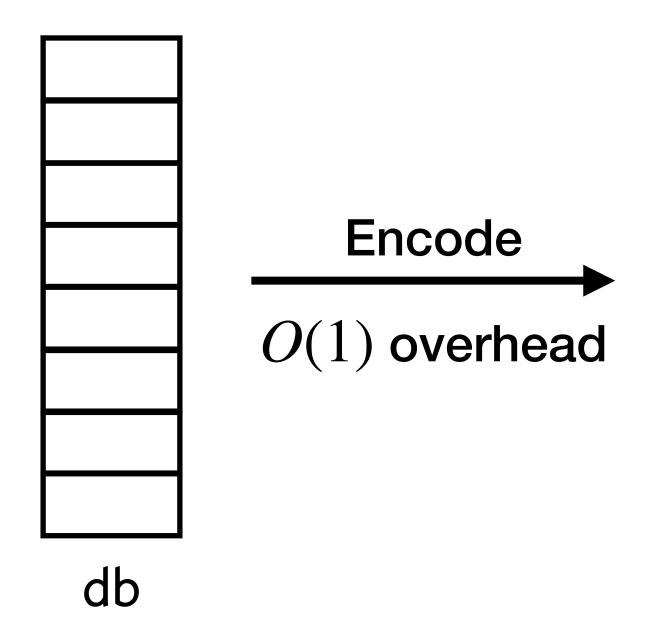


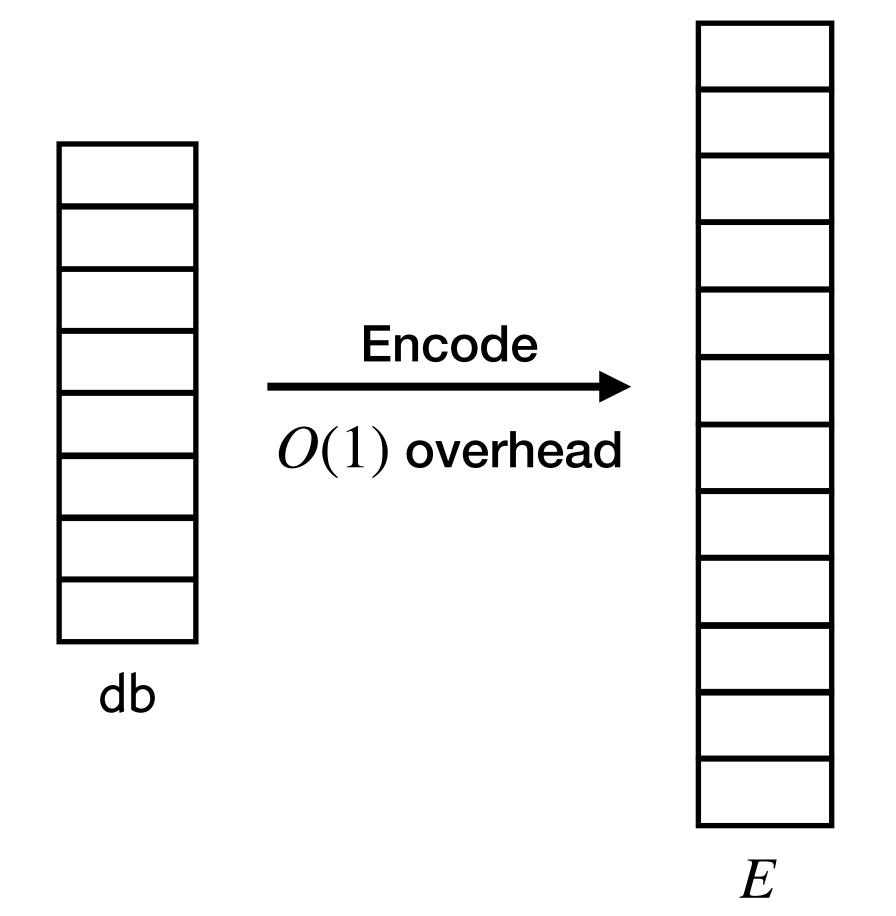


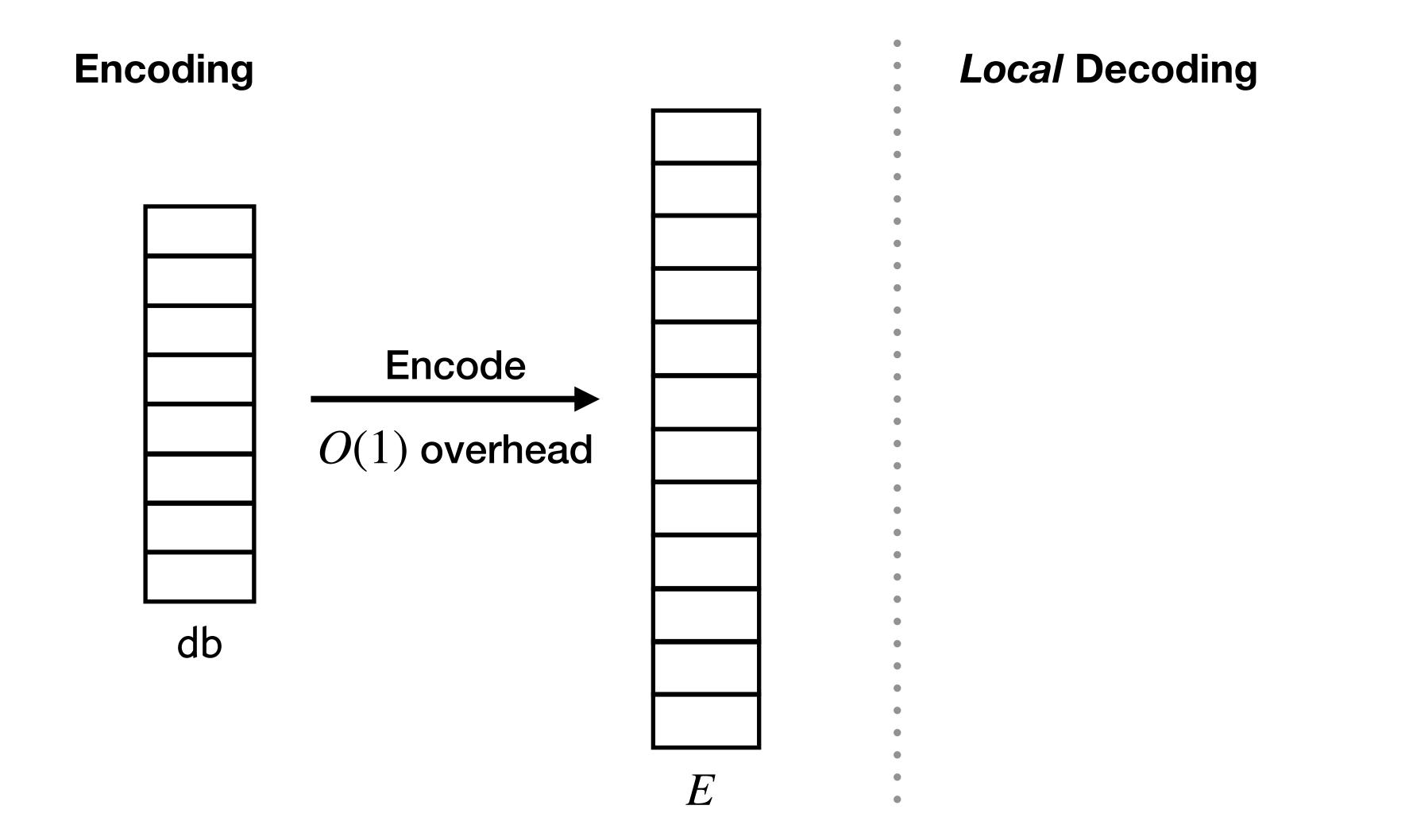


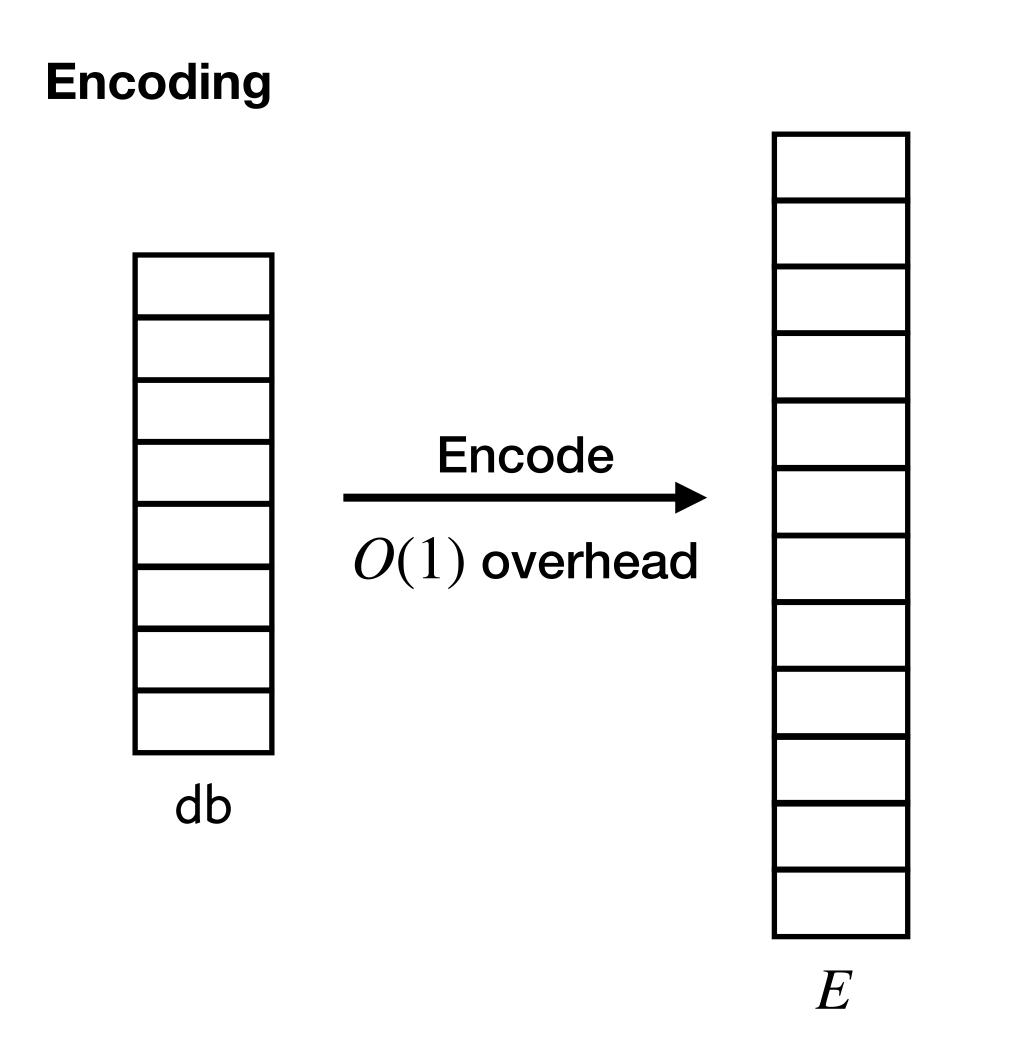




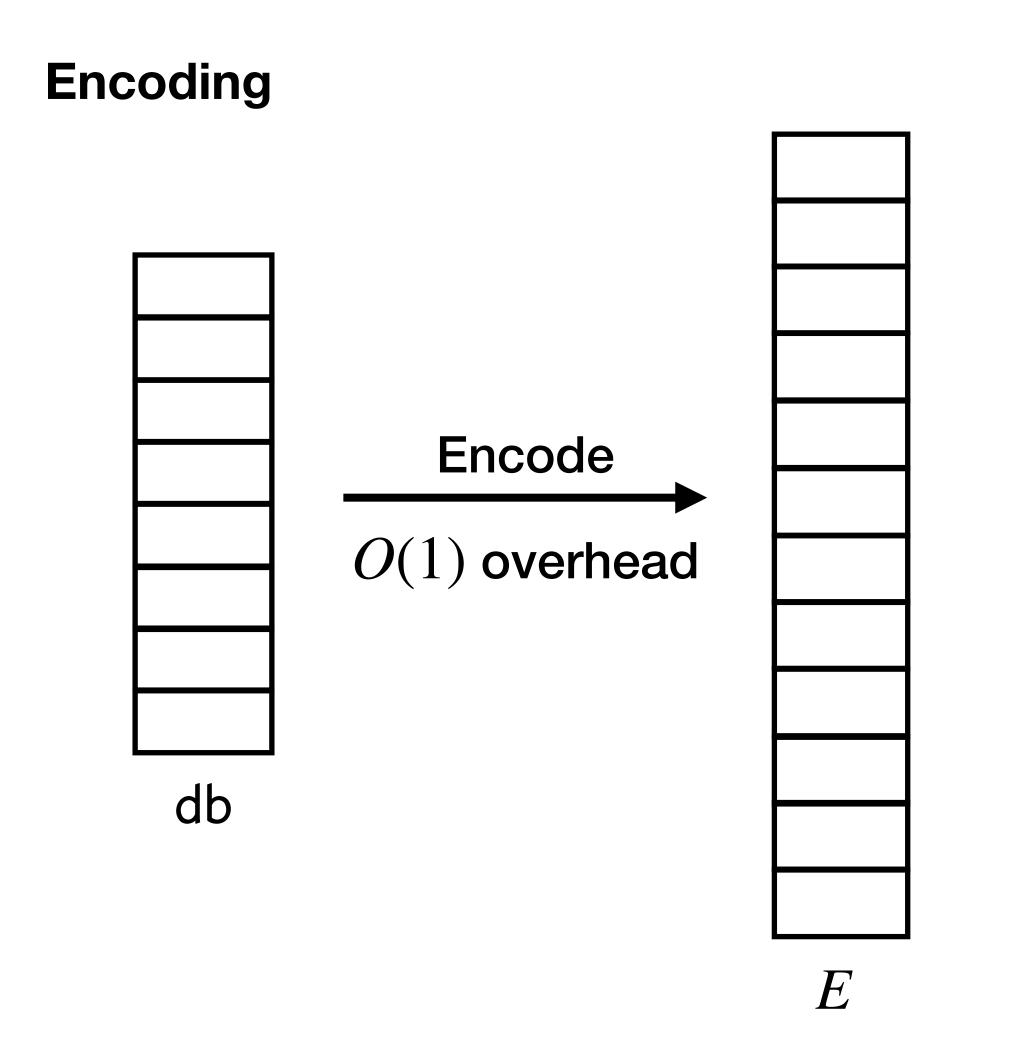






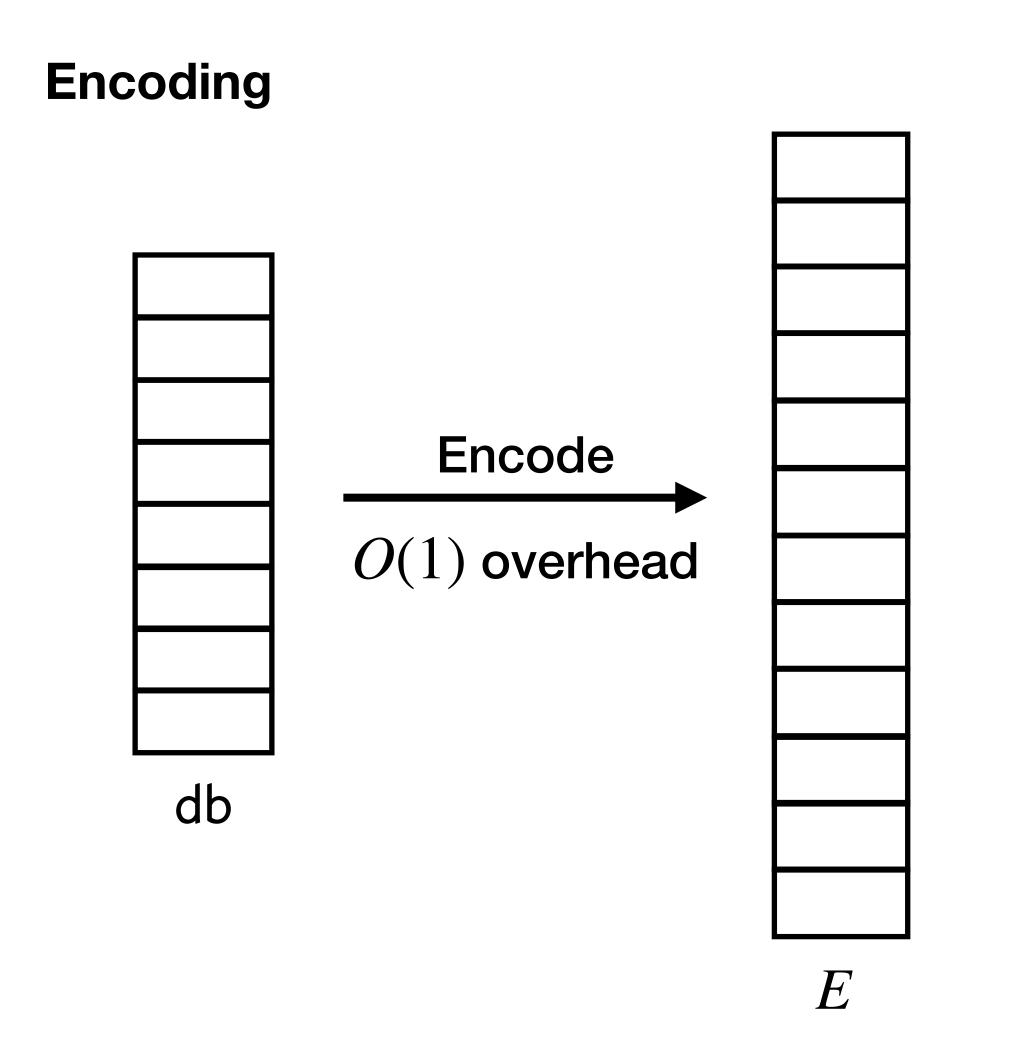


Local Decoding



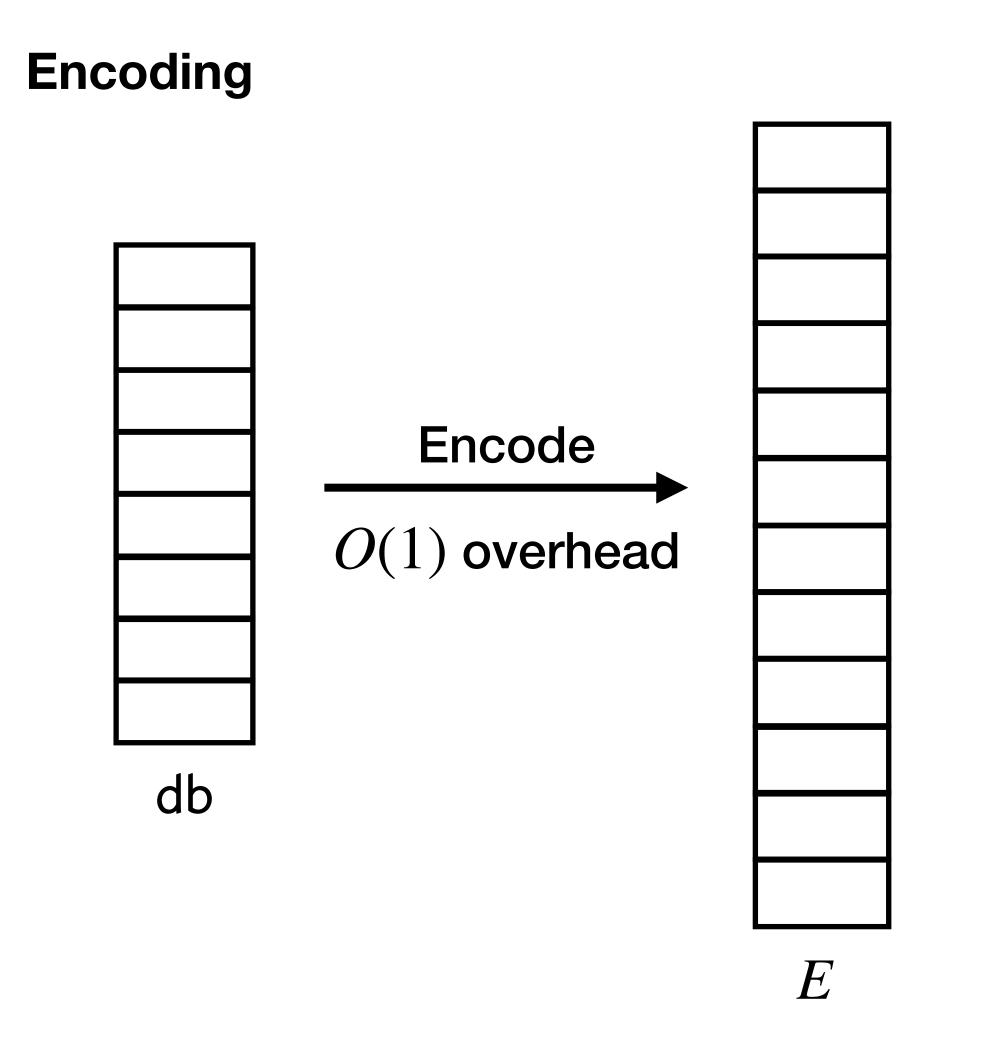
Local Decoding

$$Q \leftarrow \mathsf{LDC}.\mathsf{Que}(i)$$



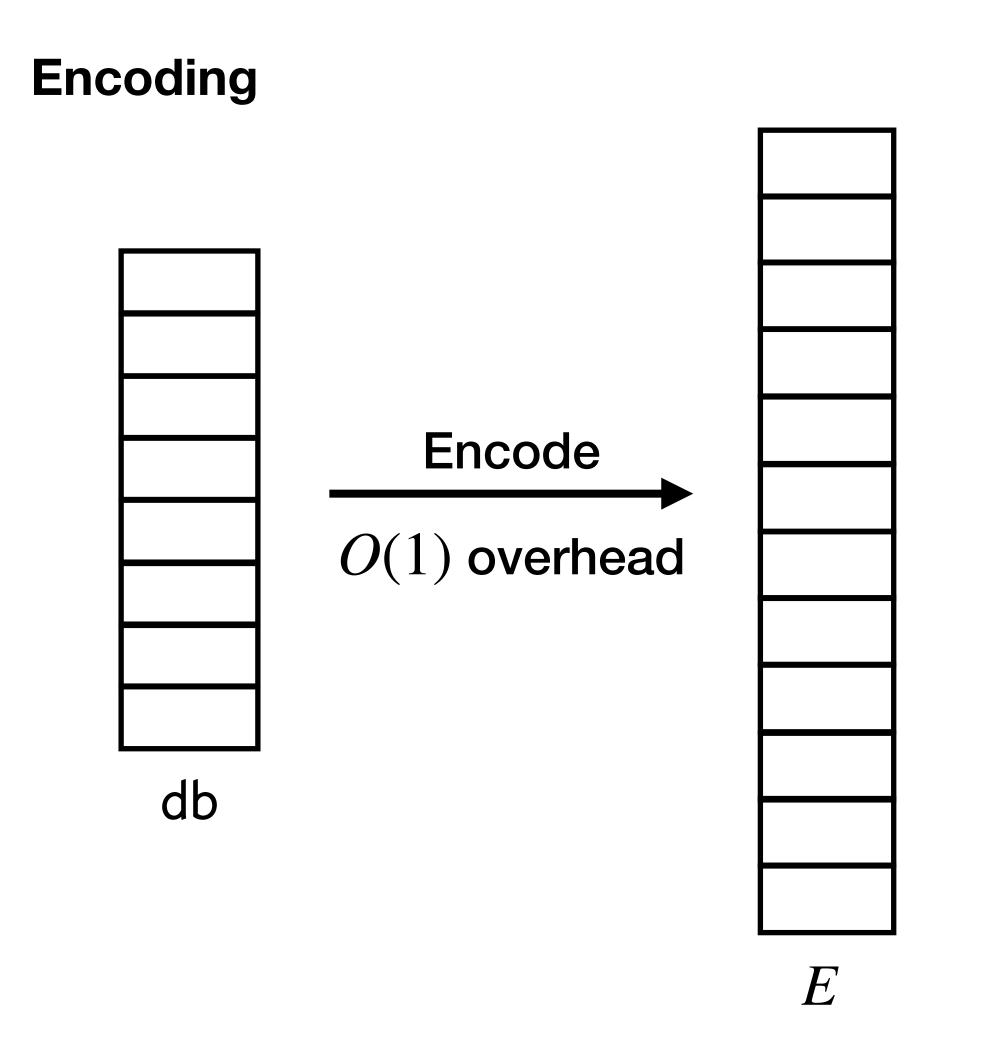
Local Decoding

$$Q \leftarrow \mathsf{LDC}.\mathsf{Que}(i)$$



Local Decoding

$$\Pr\left[\mathsf{db}_i = \mathsf{LDC}.\mathsf{Dec}(E_Q): \ Q \leftarrow \mathsf{LDC}.\mathsf{Que}(i) \ \right] > 2/3$$



Local Decoding

If there are < 1/3 corruptions, for all i:

$$\Pr\left[\mathsf{db}_i = \mathsf{LDC}.\mathsf{Dec}(E_Q): \ Q \leftarrow \mathsf{LDC}.\mathsf{Que}(i) \ \right] > 2/3$$

Encoding Encode O(1) overhead db

Local Decoding

If there are < 1/3 corruptions, for all i:

$$\Pr\left[\mathsf{db}_i = \mathsf{LDC.Dec}(E_Q): \ Q \leftarrow \mathsf{LDC.Que}(i) \ \right] > 2/3$$

(Which means Q is "pretty random").

Encoding Encode O(1) overhead db

Local Decoding

If there are < 1/3 corruptions, for all i:

$$\Pr\left[\mathsf{db}_i = \mathsf{LDC.Dec}(E_Q): \ Q \leftarrow \mathsf{LDC.Que}(i) \ \right] > 2/3$$

(Which means Q is "pretty random").

Encoding Encode O(1) overhead db

Local Decoding

If there are < 1/3 corruptions, for all i:

$$\Pr\left[\mathsf{db}_i = \mathsf{LDC}.\mathsf{Dec}(E_Q): \ Q \leftarrow \mathsf{LDC}.\mathsf{Que}(i) \ \right] > 2/3$$

(Which means Q is "pretty random").

Smoothness:

Encoding Encode O(1) overhead db

Local Decoding

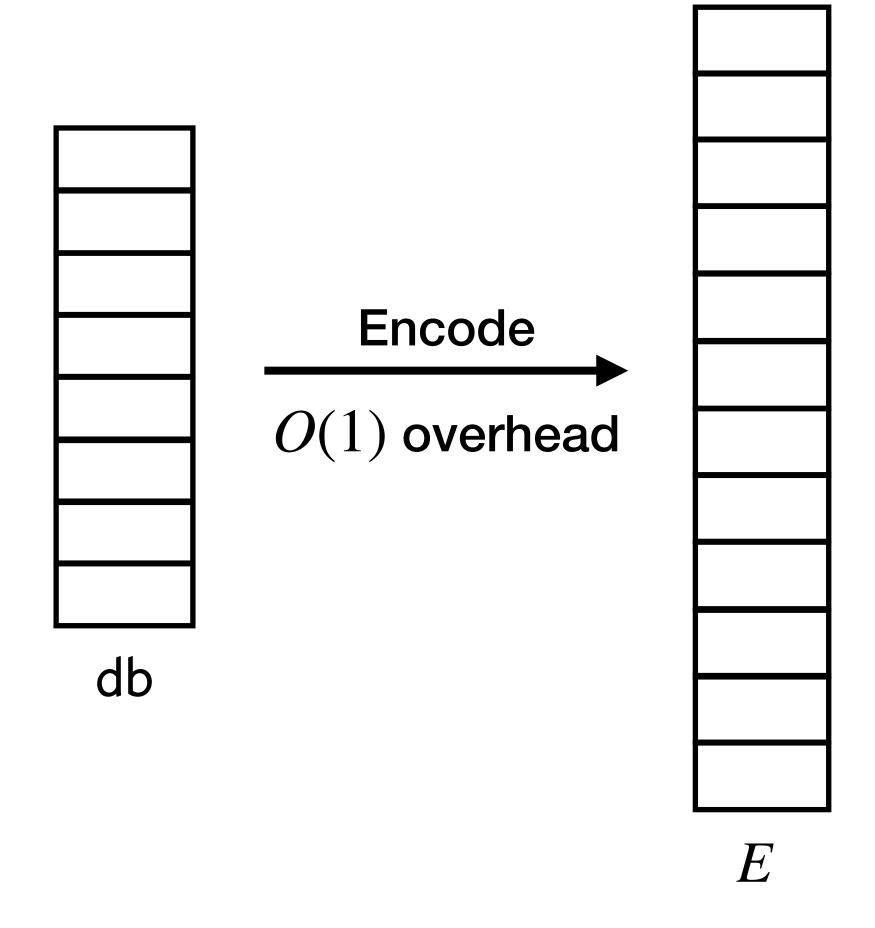
If there are < 1/3 corruptions, for all i:

$$\Pr\left[\mathsf{db}_i = \mathsf{LDC}.\mathsf{Dec}(E_Q): \ Q \leftarrow \mathsf{LDC}.\mathsf{Que}(i) \ \right] > 2/3$$

(Which means Q is "pretty random").

Smoothness:

Encoding



Local Decoding

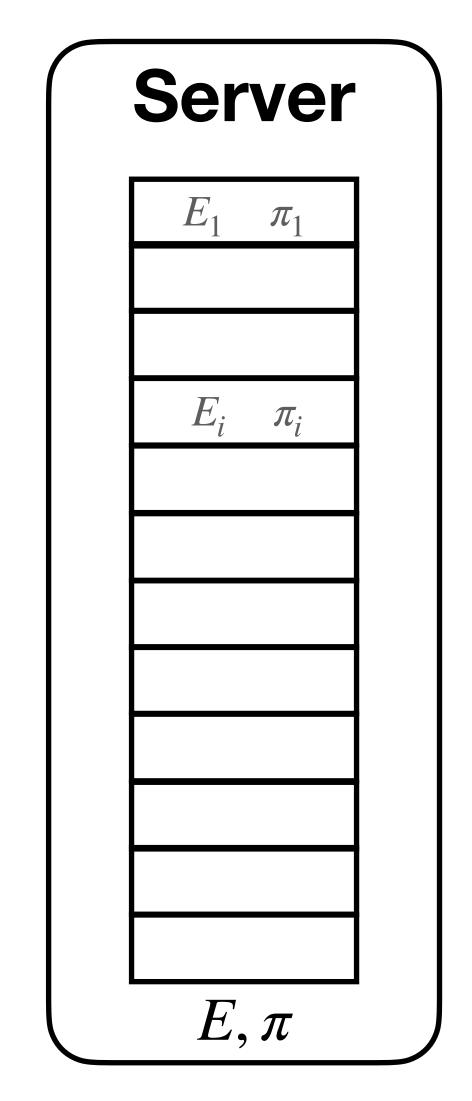
If there are < 1/3 corruptions, for all i:

$$\Pr\left[\mathsf{db}_i = \mathsf{LDC}.\mathsf{Dec}(E_Q): \ Q \leftarrow \mathsf{LDC}.\mathsf{Que}(i) \ \right] > 2/3$$

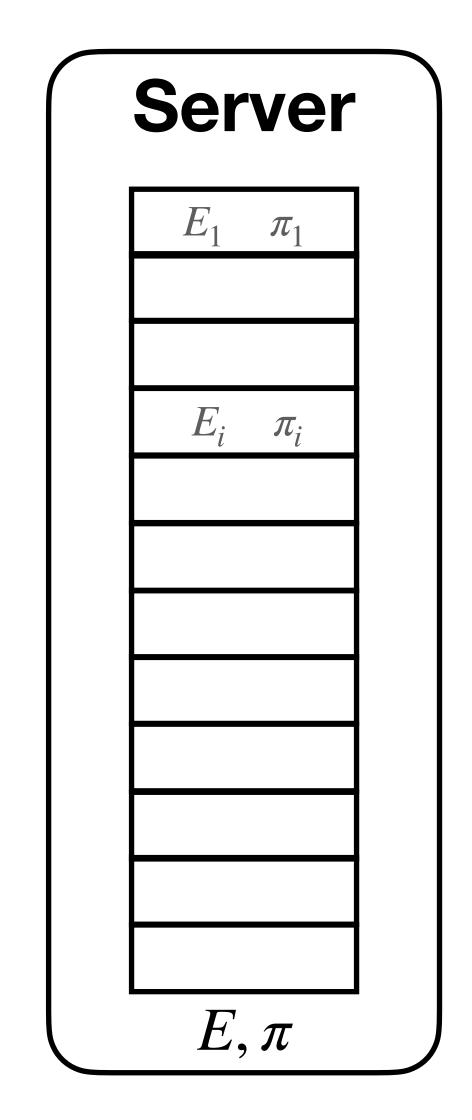
(Which means Q is "pretty random").

Smoothness:

For all $i: x \leftarrow \{Q \leftarrow \mathsf{LDC.Que}(i)\}$ is uniformly random in [|E|]

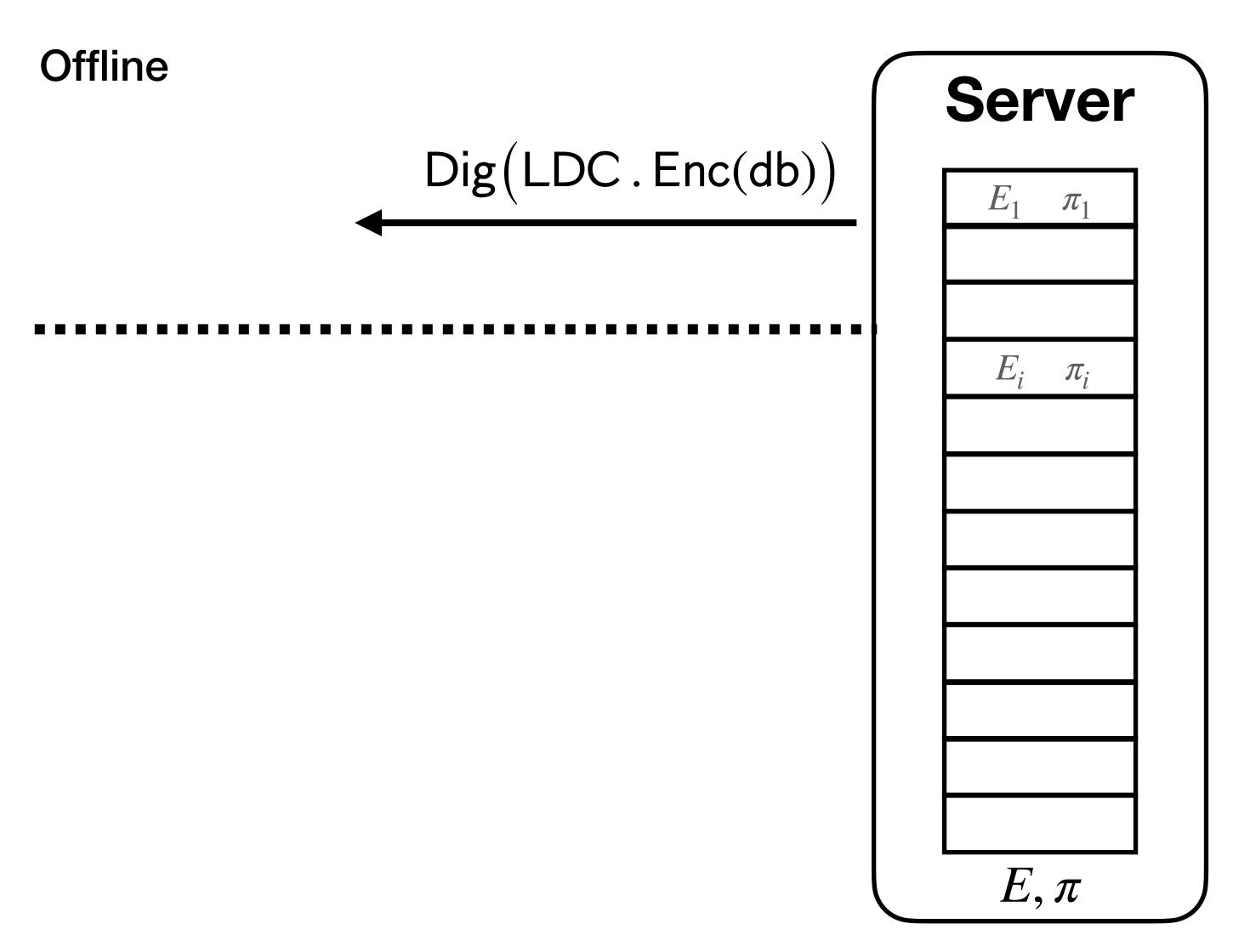


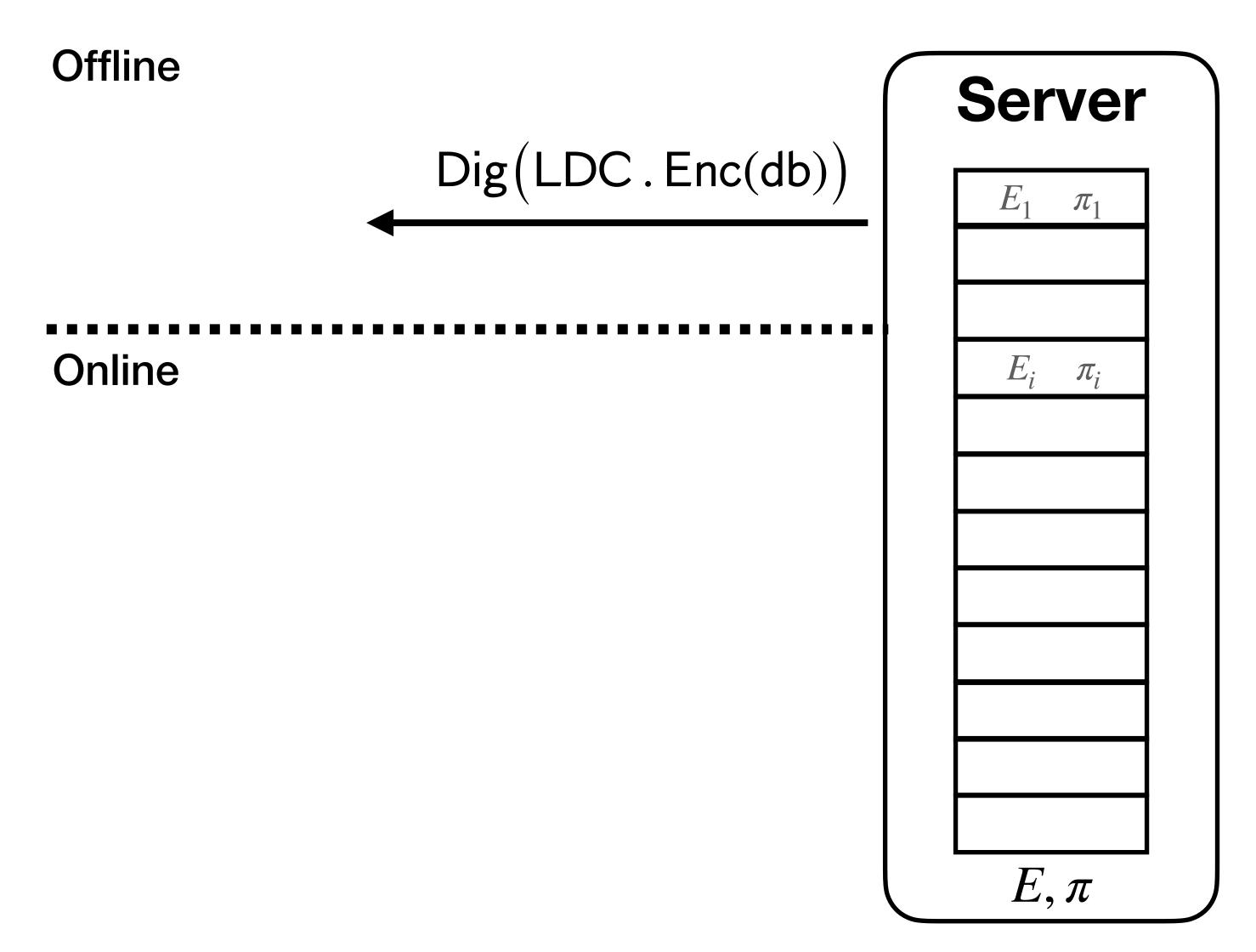
Offline

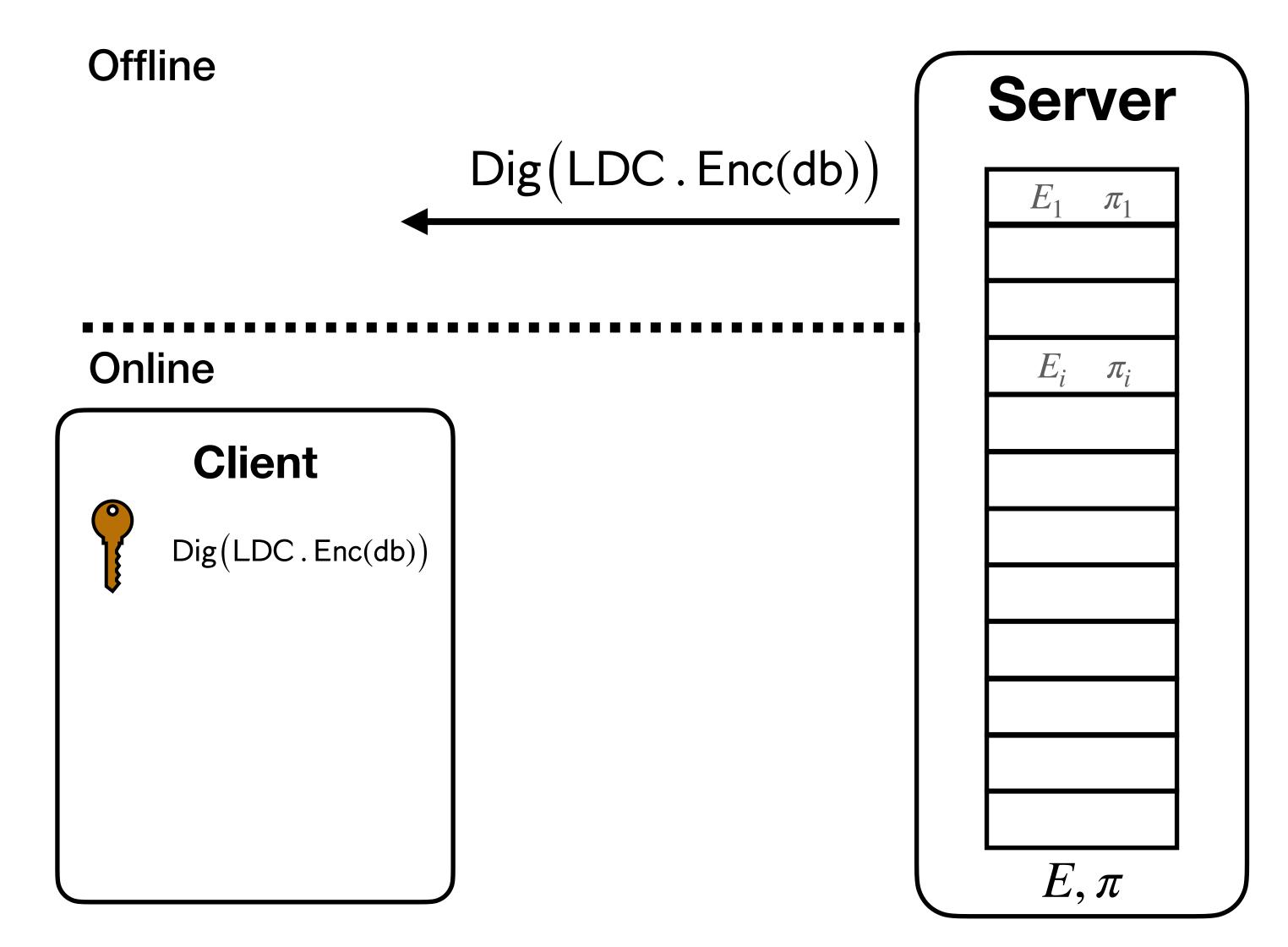


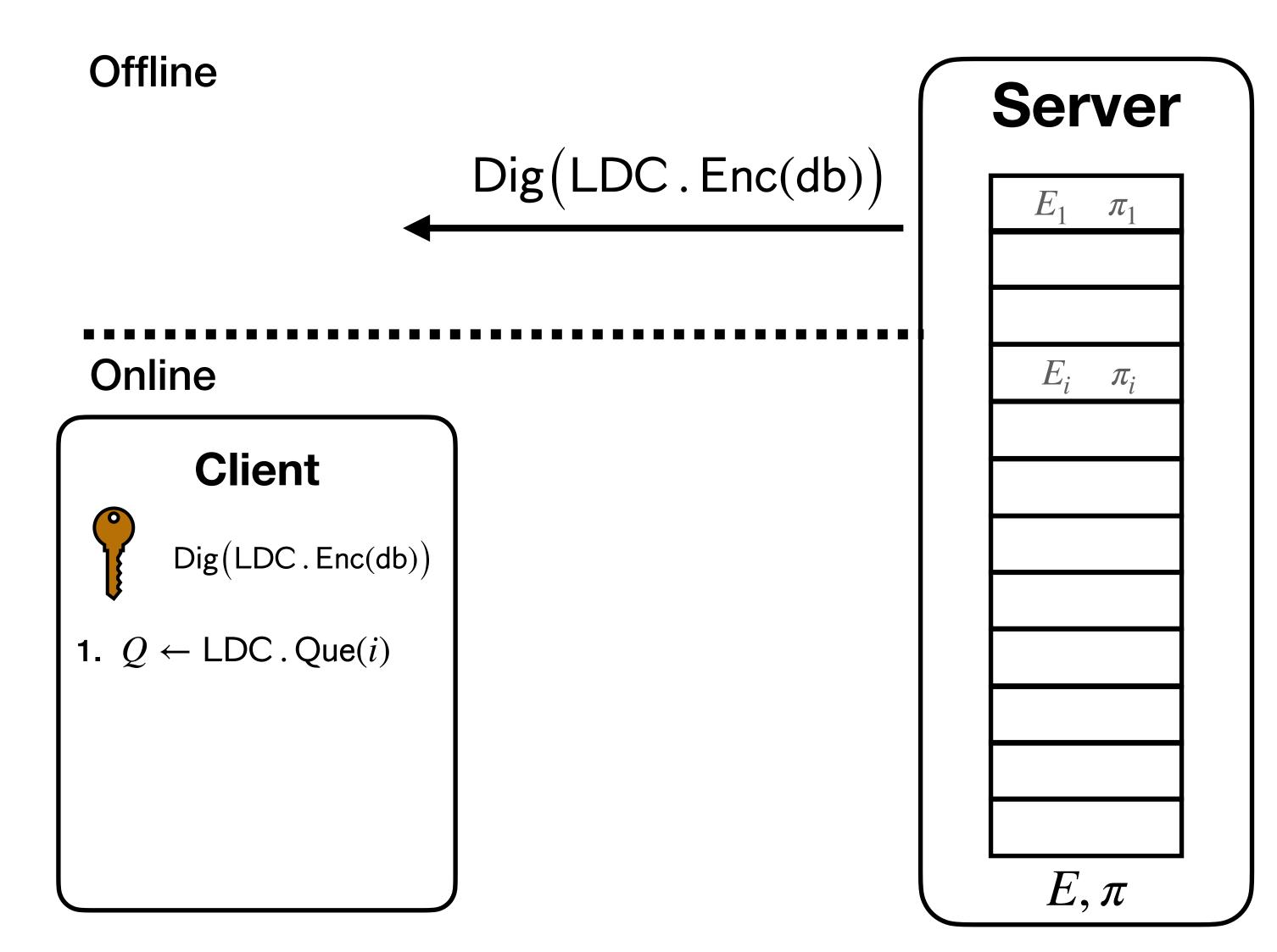
Offline

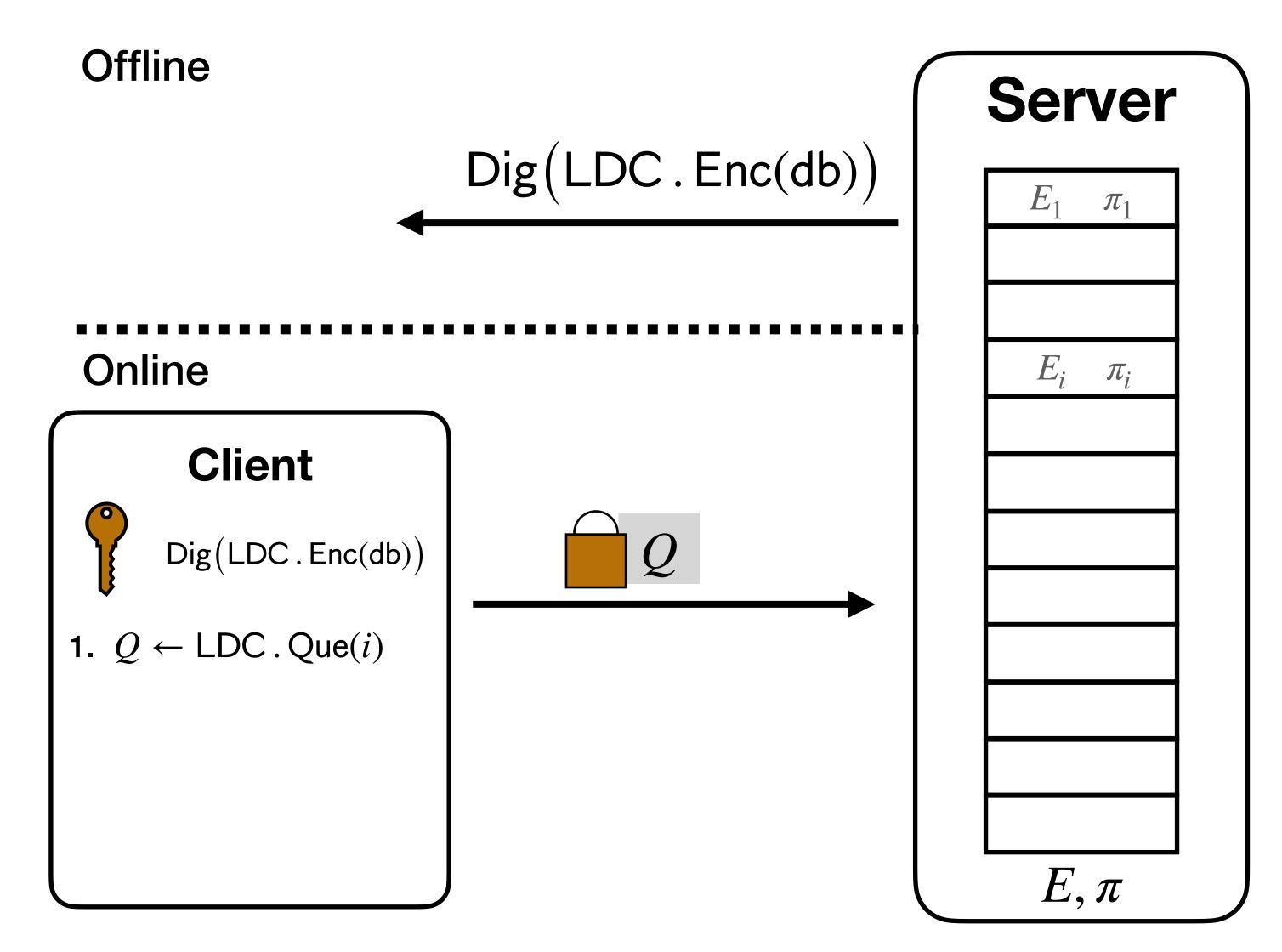
Server Dig(LDC.Enc(db)) E,π

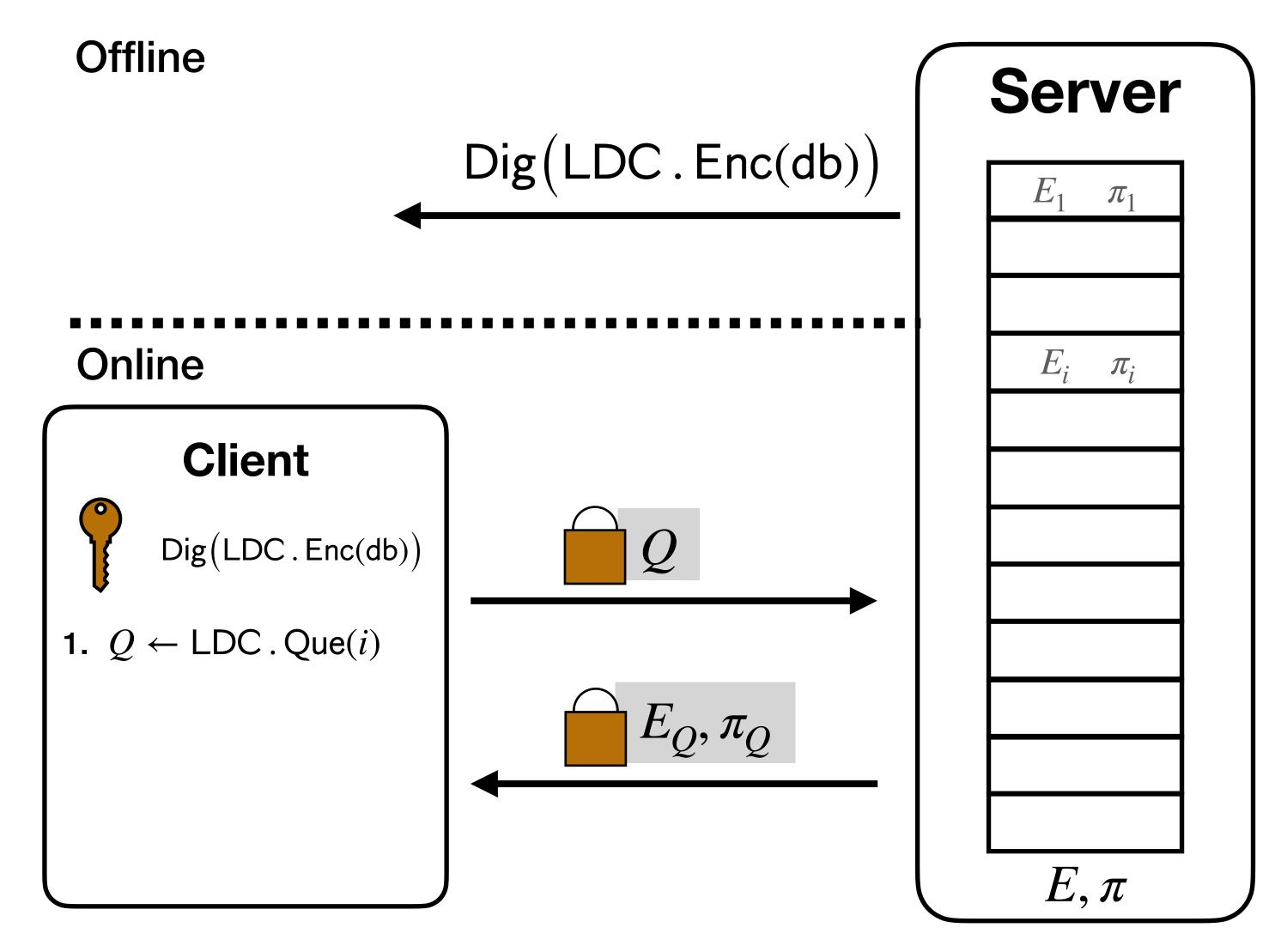


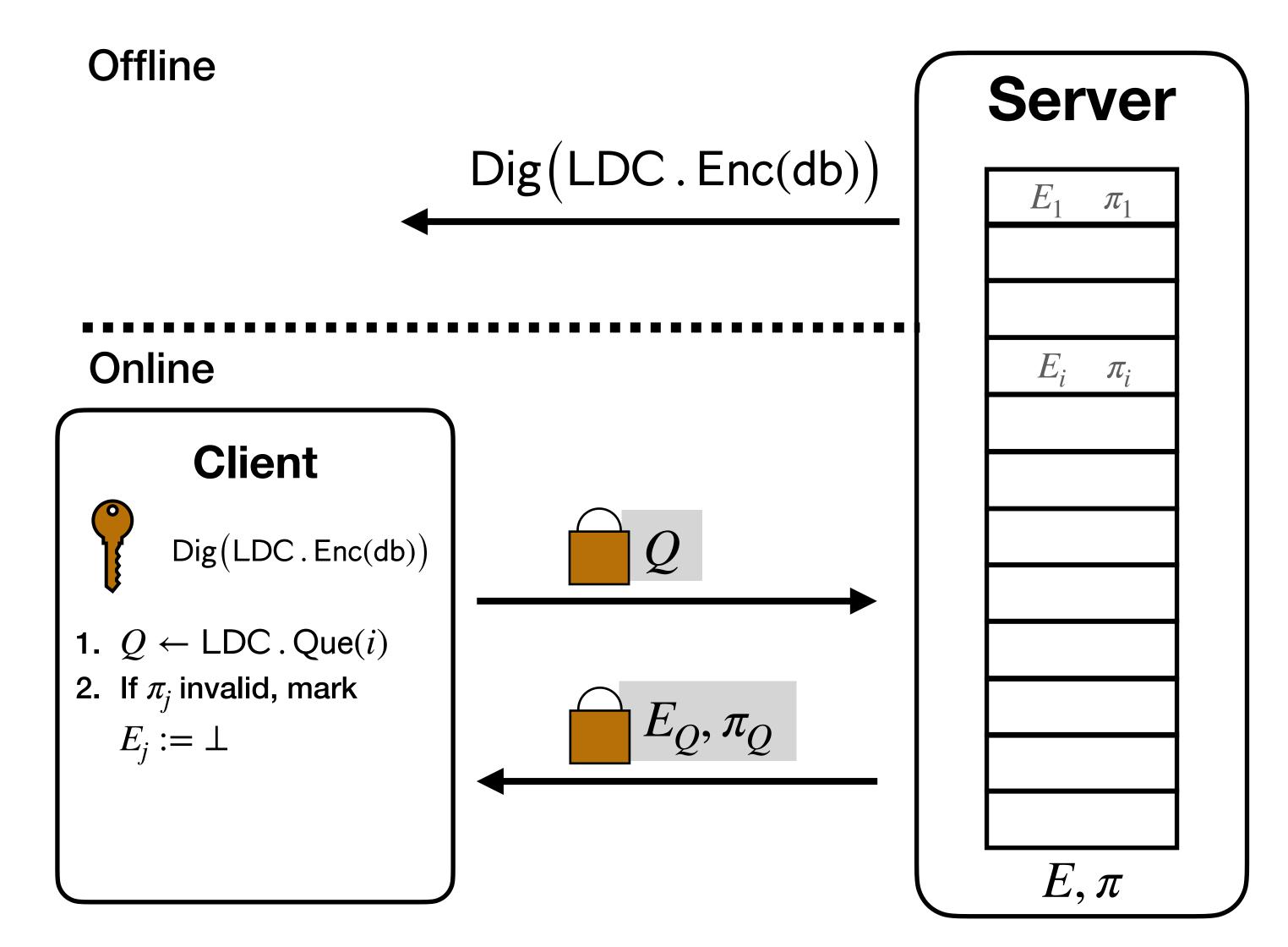


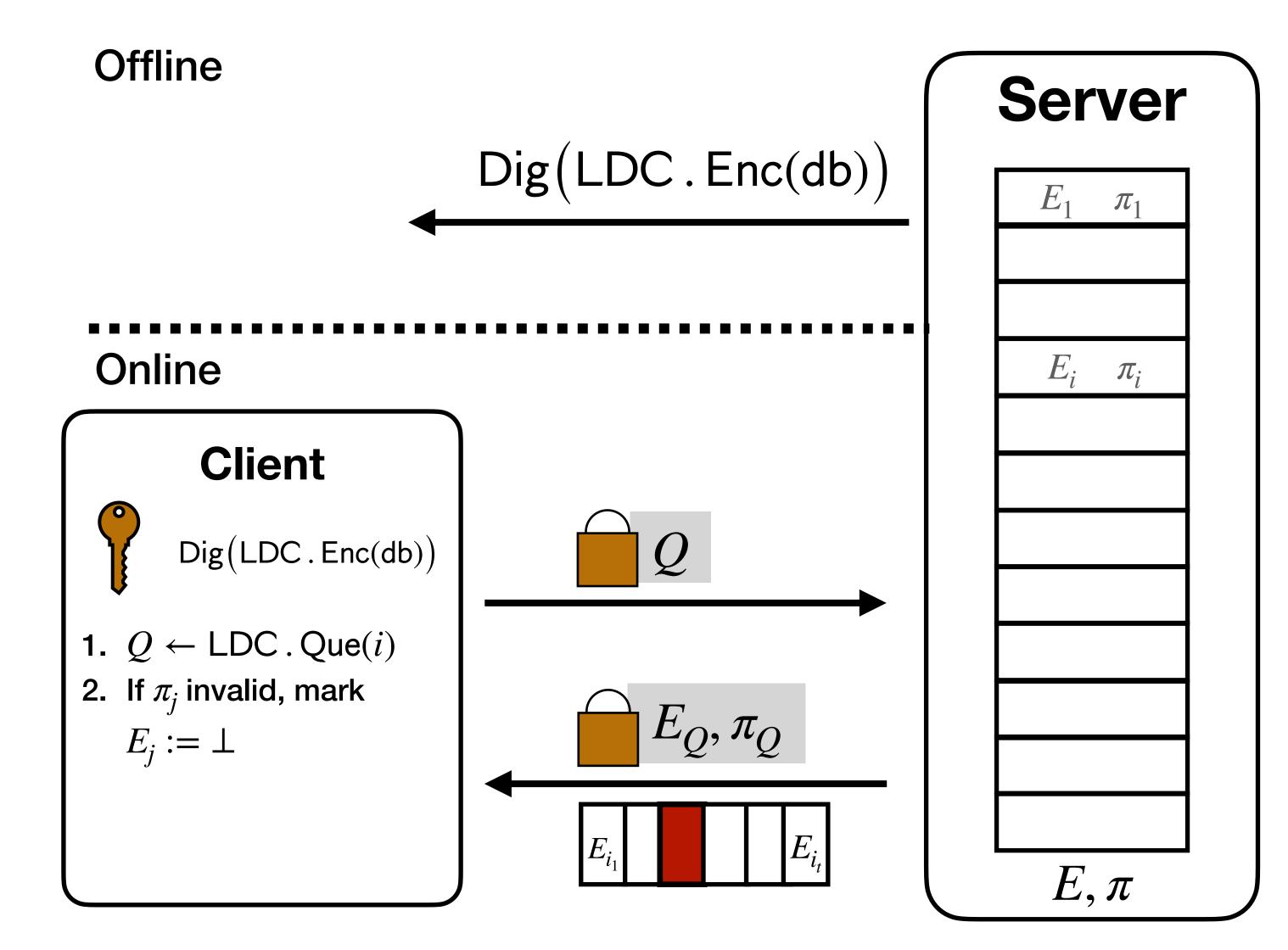


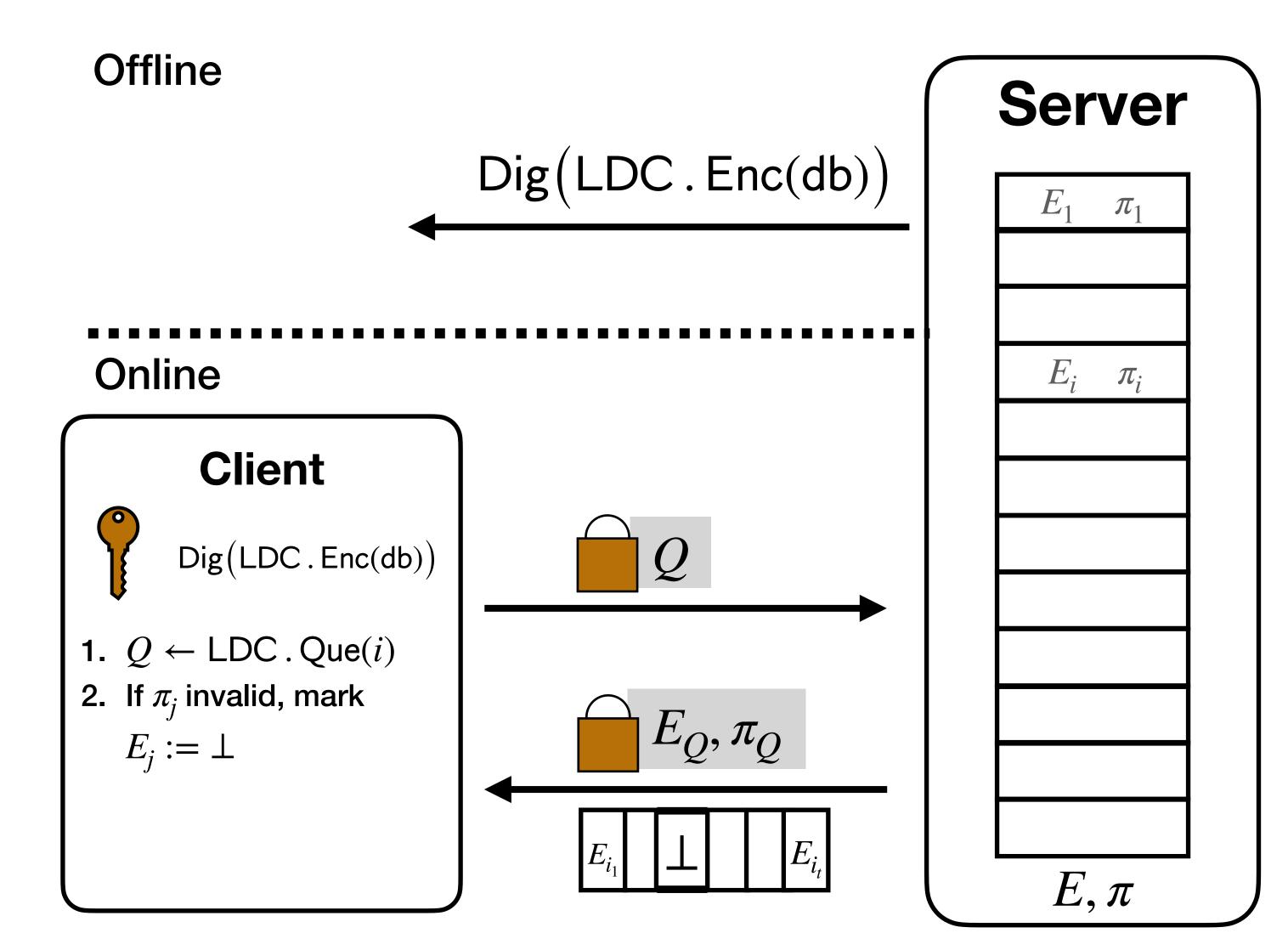


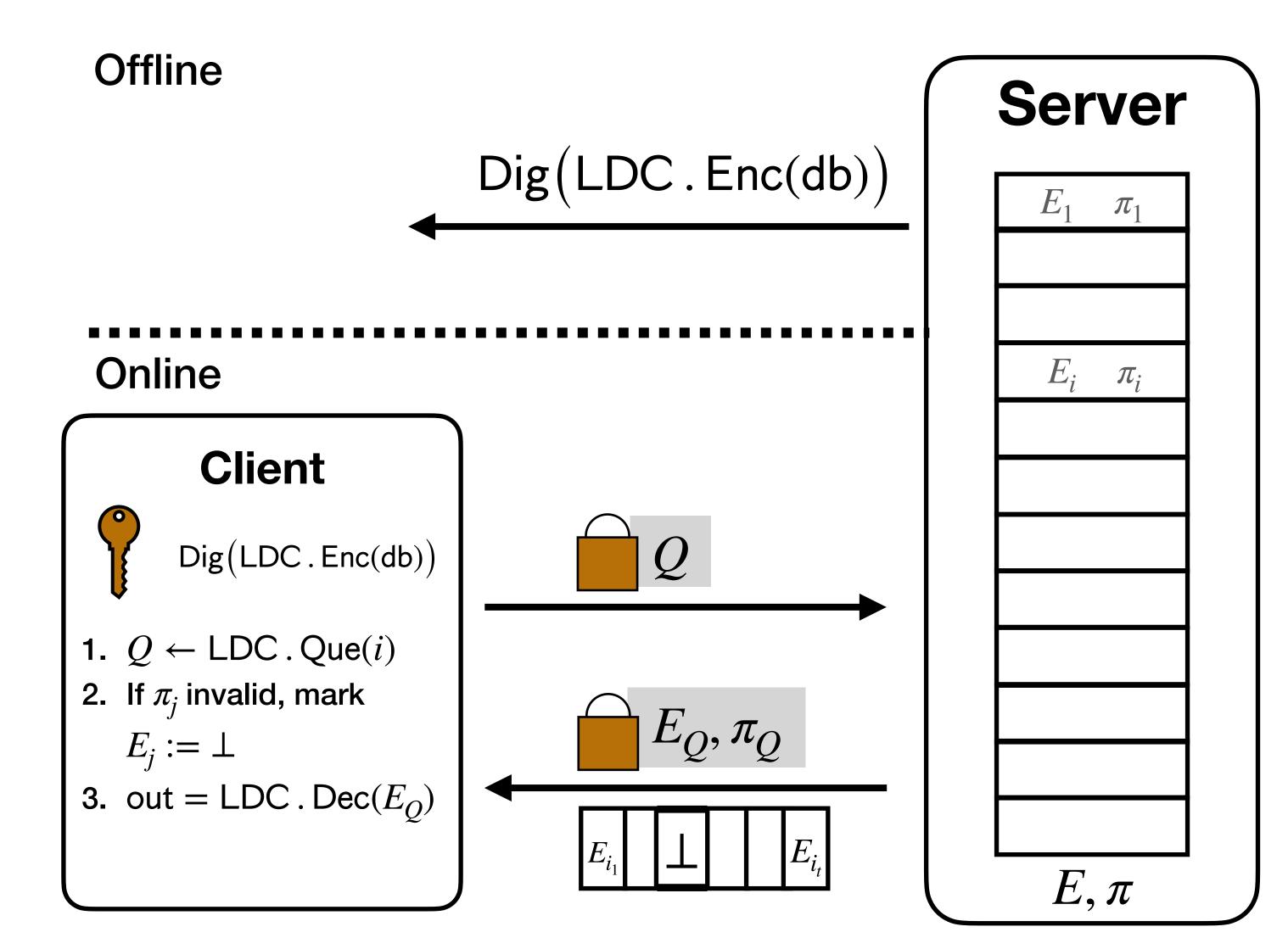


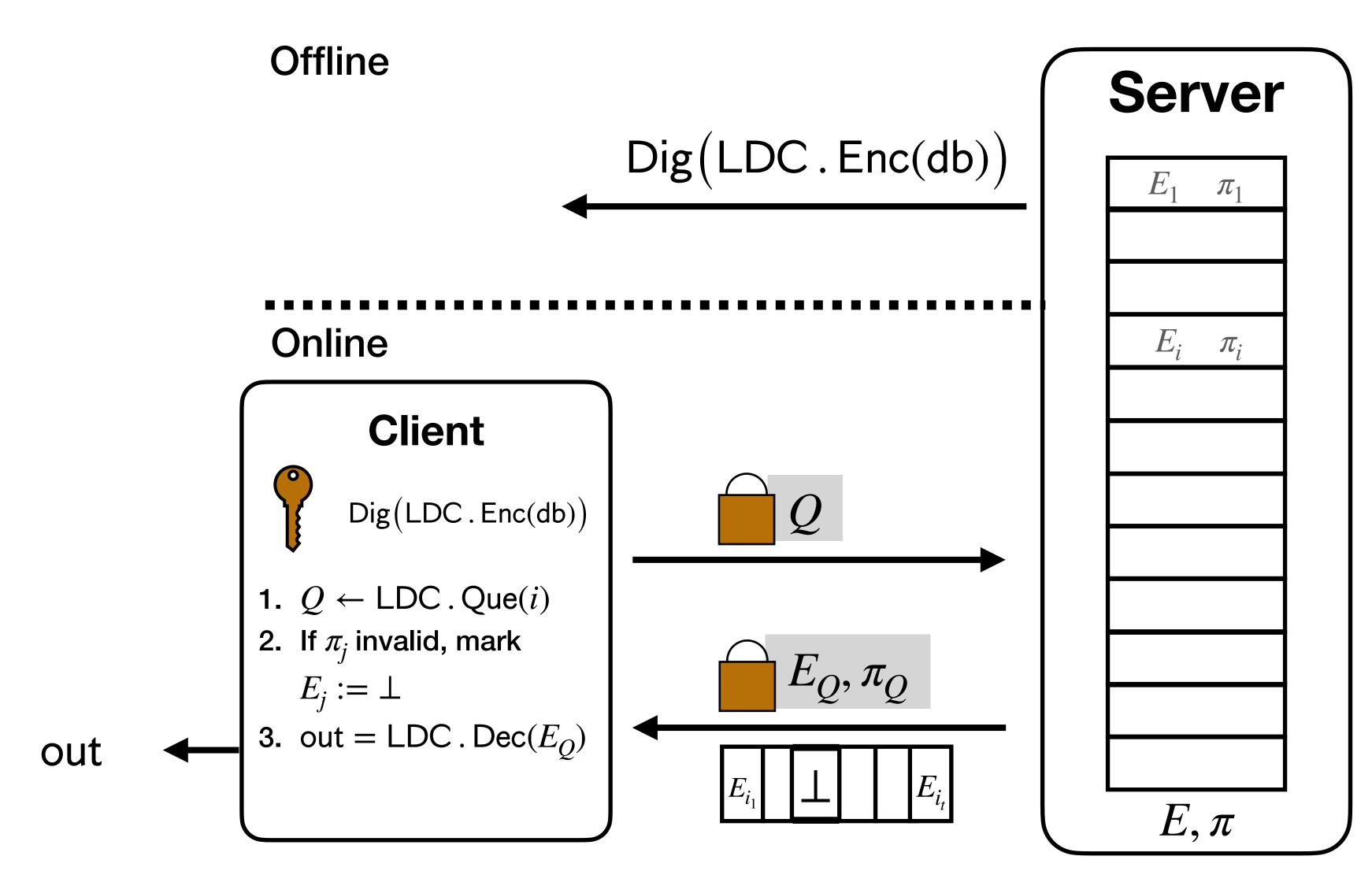








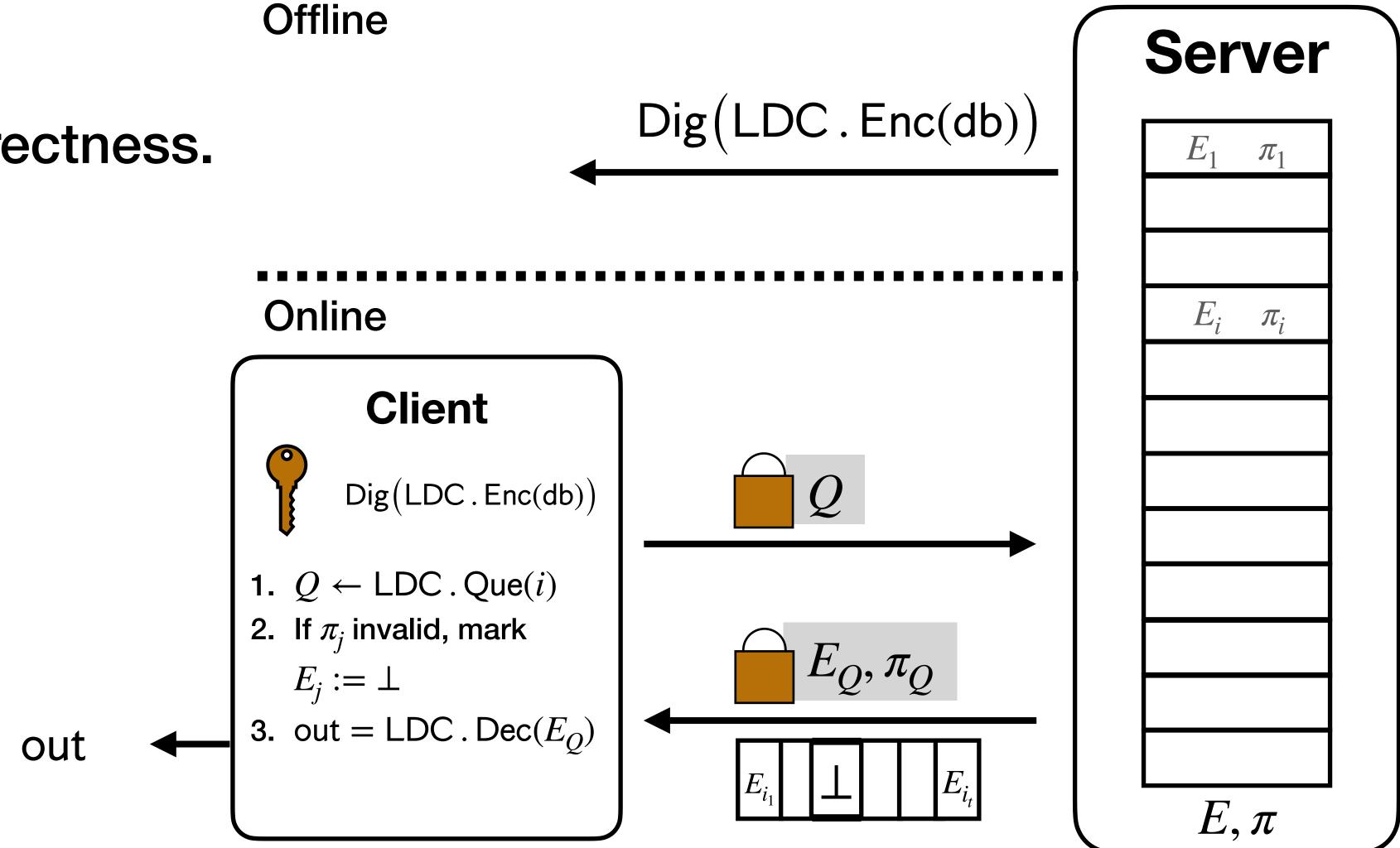




Offline Server **Properties** Dig(LDC.Enc(db)) Online π_i Client Dig(LDC.Enc(db))Q1. $Q \leftarrow LDC . Que(i)$ 2. If π_j invalid, mark 3. $\operatorname{out} = \operatorname{LDC} . \operatorname{Dec}(E_Q)$ out E,π

Properties

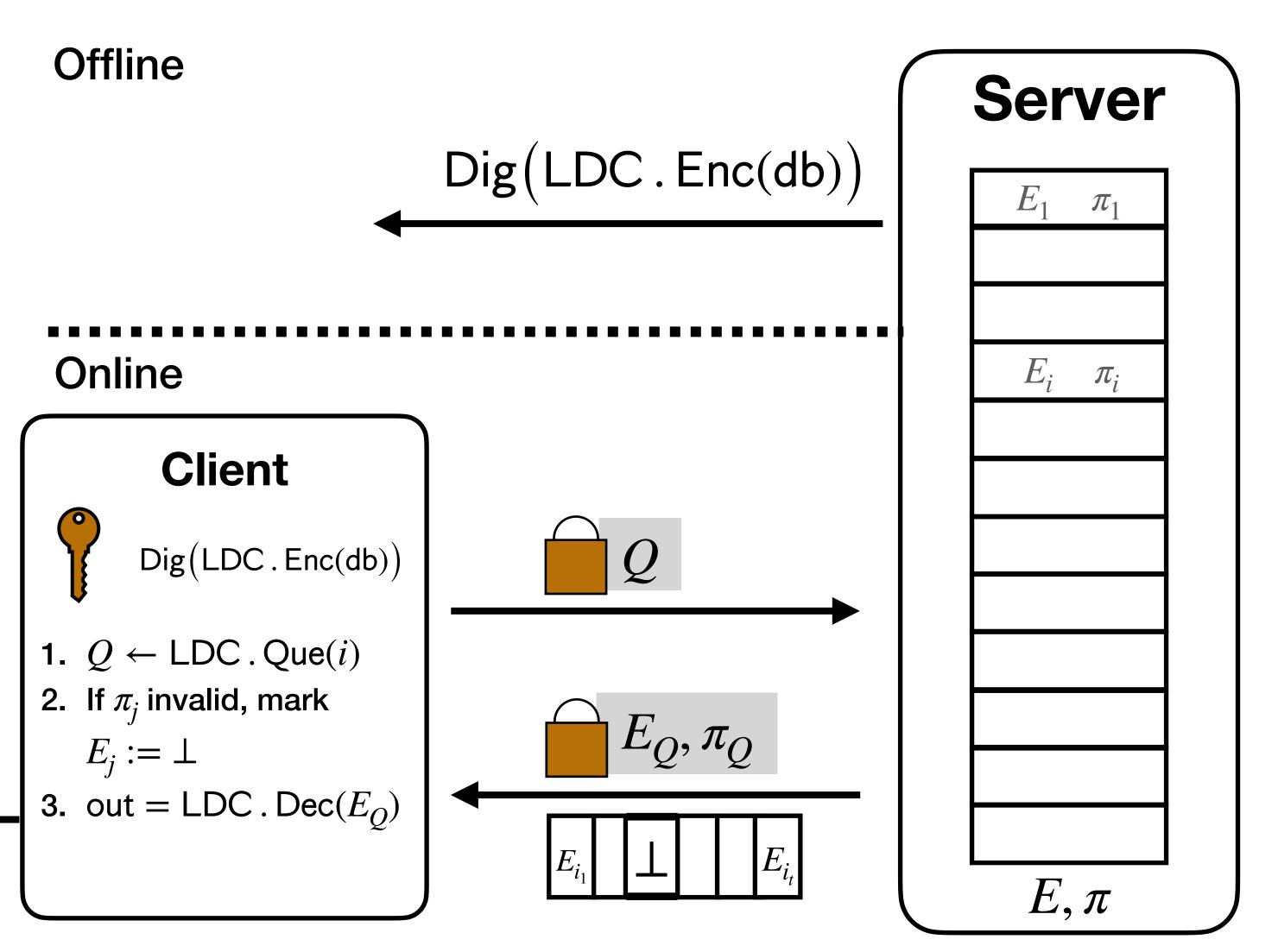
1. Preserves correctness.



out

Properties

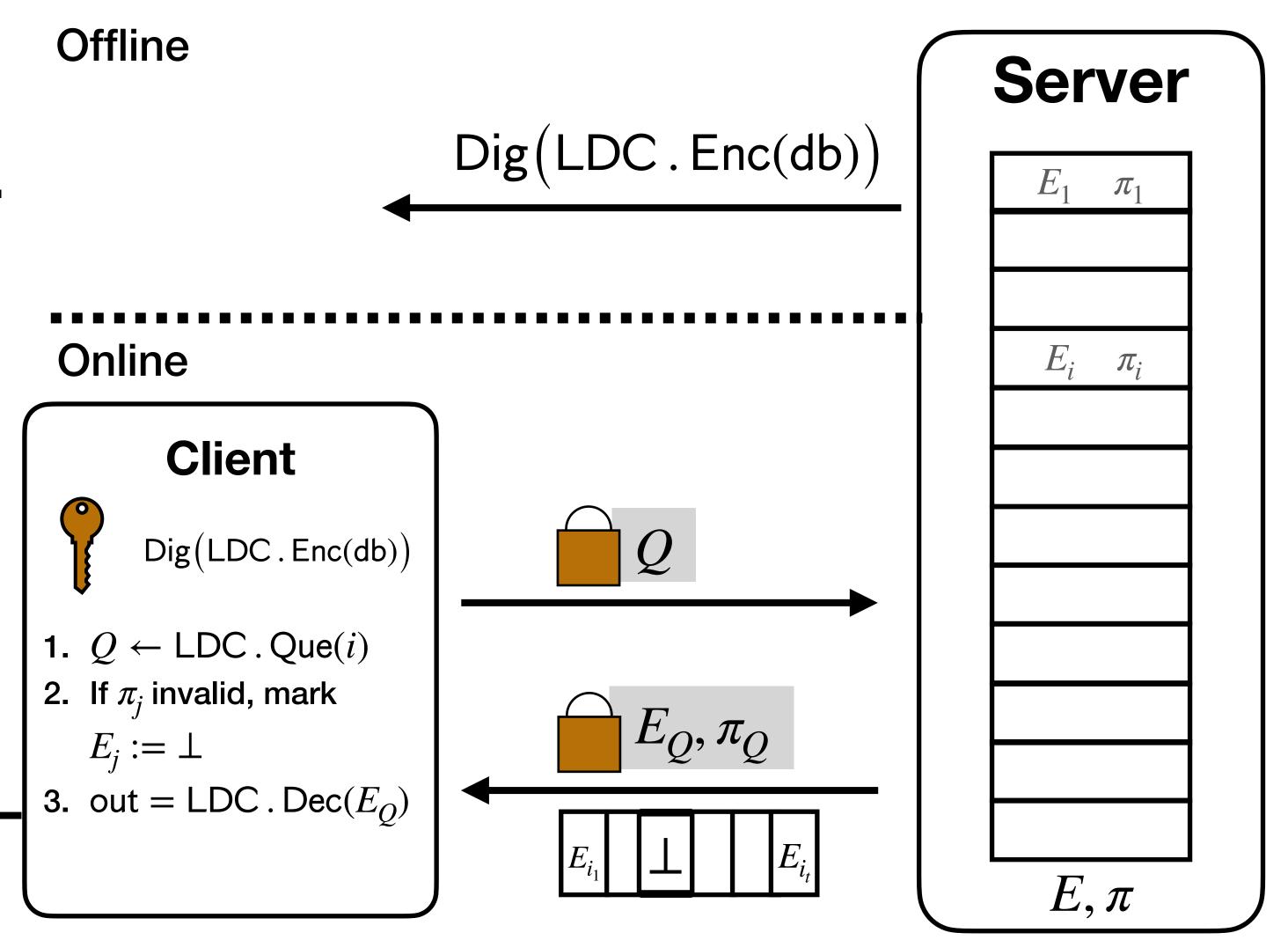
- 1. Preserves correctness.
- 2. Preserves coherence because LDC always outputs \bot or db_i .



out

Properties

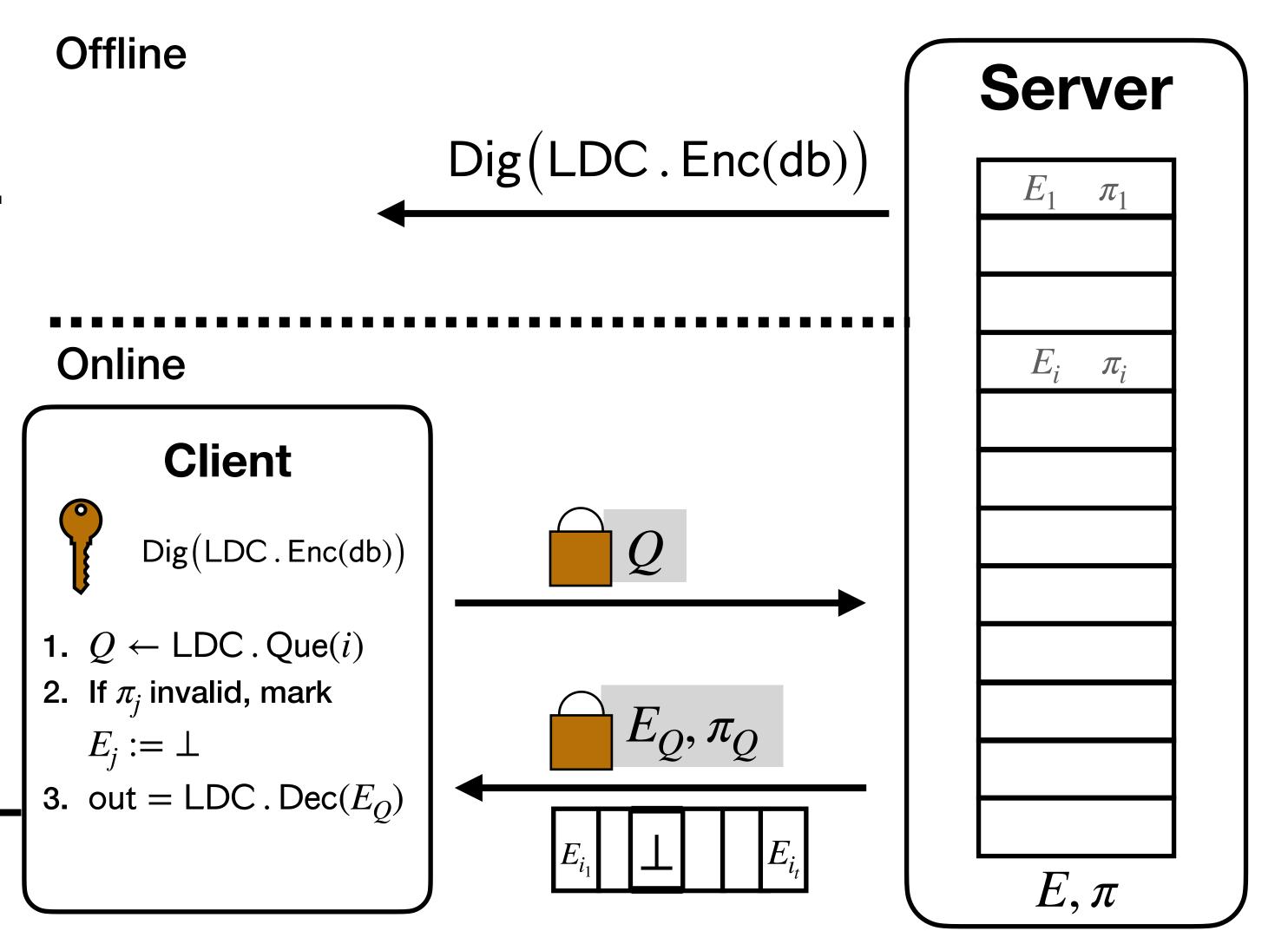
- 1. Preserves correctness.
- 2. Preserves coherence because LDC always outputs \bot or db_i .
- 3. $O(N^{\epsilon})$ overhead.



out

Properties

- 1. Preserves correctness.
- 2. Preserves coherence because LDC always outputs \bot or db_i .
- 3. $O(N^{\epsilon})$ overhead.
- 4. Privacy?



Encoding

Encoding

1. Interpolate a bivariate polynomial f(X, Y) of total degree d that agrees with db.

Encoding

- 1. Interpolate a bivariate polynomial f(X, Y) of total degree d that agrees with db.
- 2. The codeword E is the evaluations of f(x, y) for all $x, y \in \mathbb{F}_p \times \mathbb{F}_p$

Local decoding

Local decoding

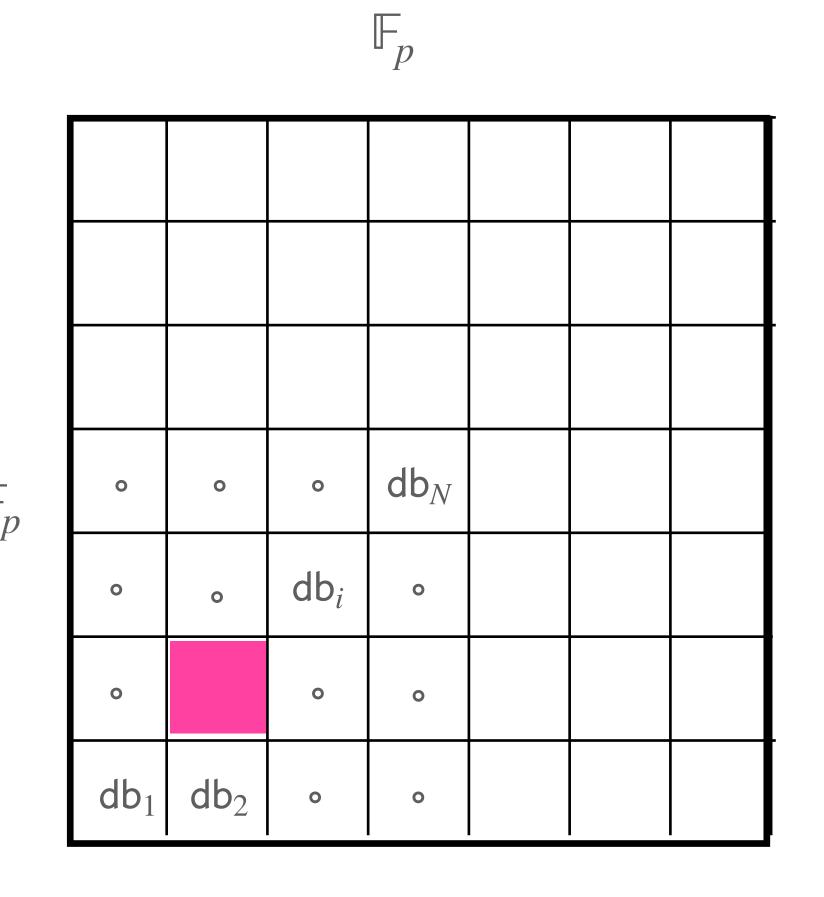
1. Want: db_j

Local decoding

- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$: let Q be a random line through db_j .

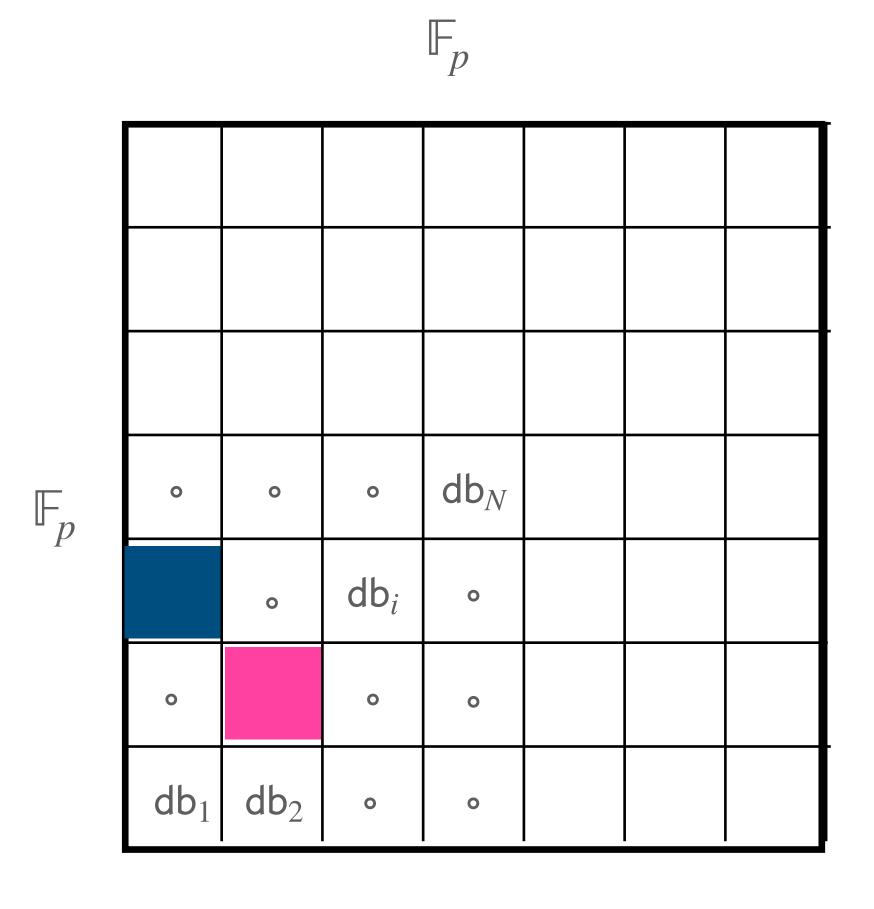
Local decoding

- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$: let Q be a random line through db_j .



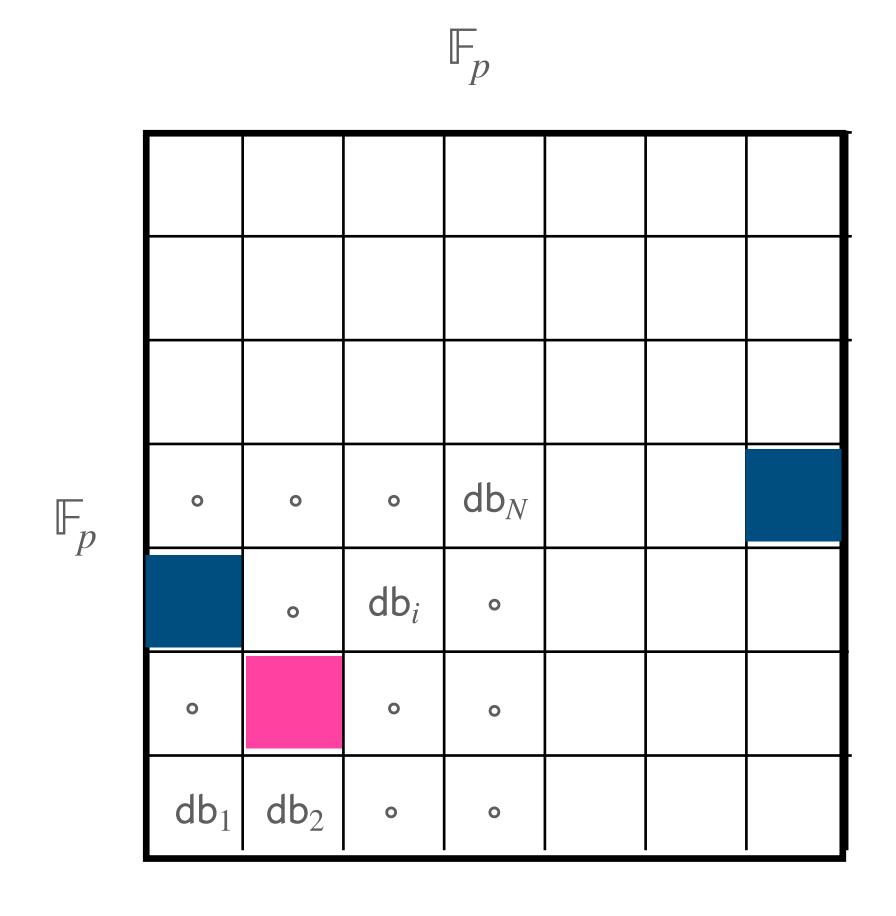
Local decoding

- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$: let Q be a random line through db_j .

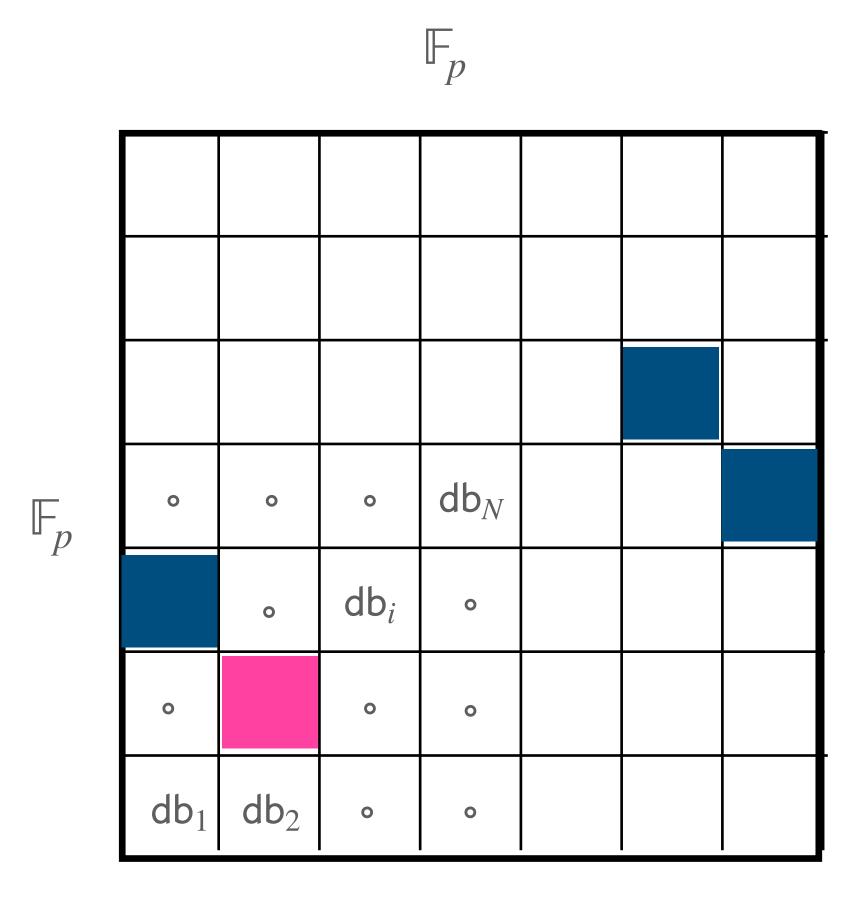


Local decoding

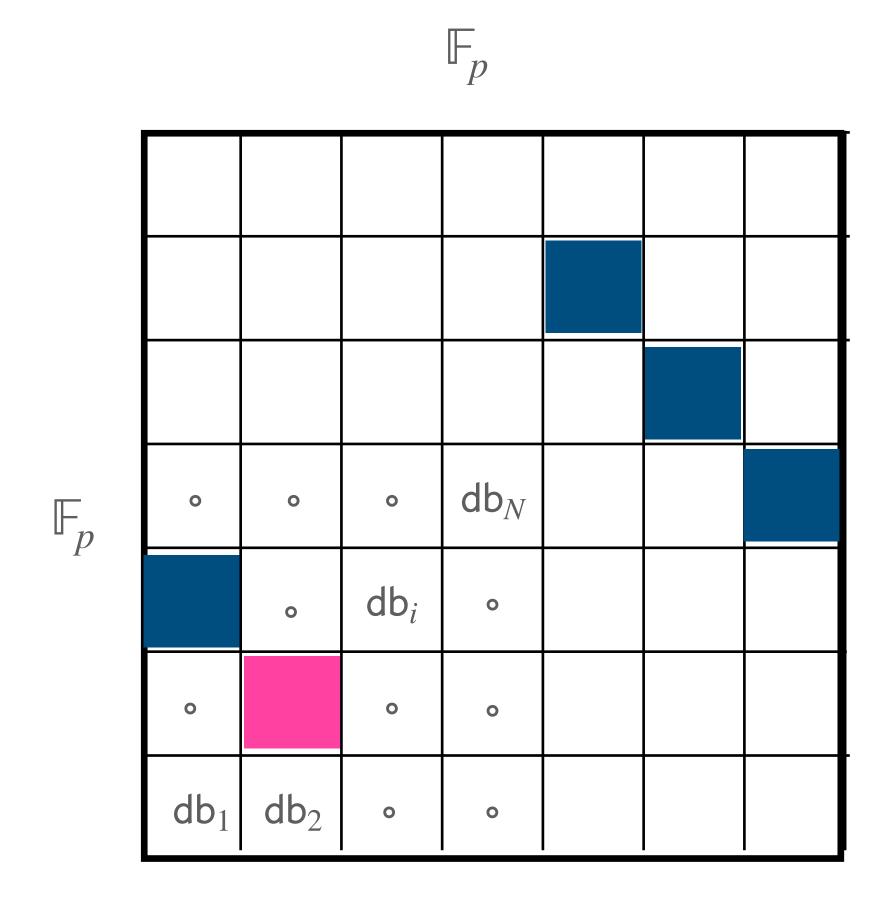
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$: let Q be a random line through db_j .



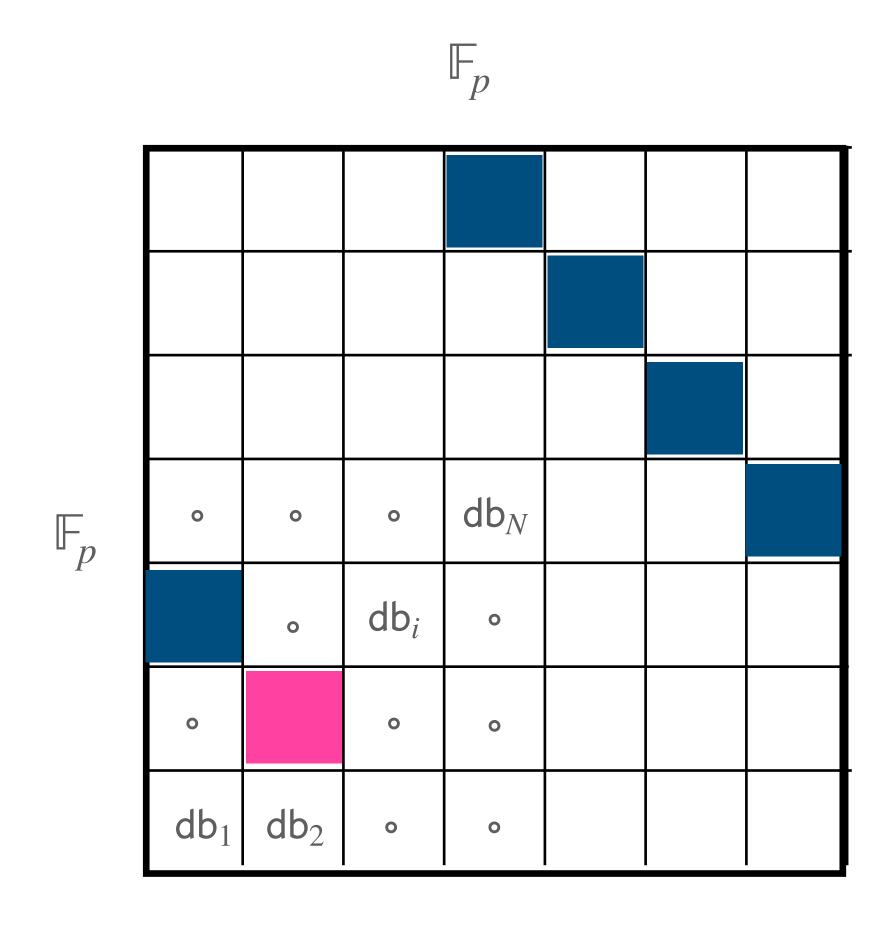
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$: let Q be a random line through db_j .



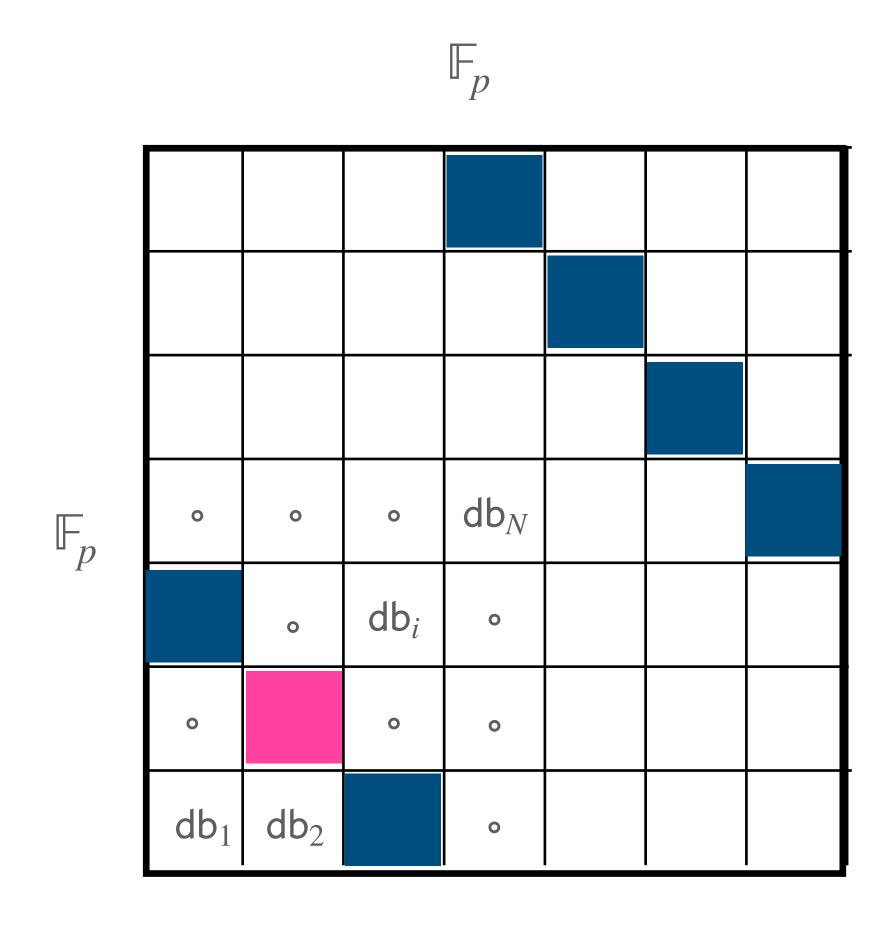
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$: let Q be a random line through db_j .



- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$: let Q be a random line through db_j .



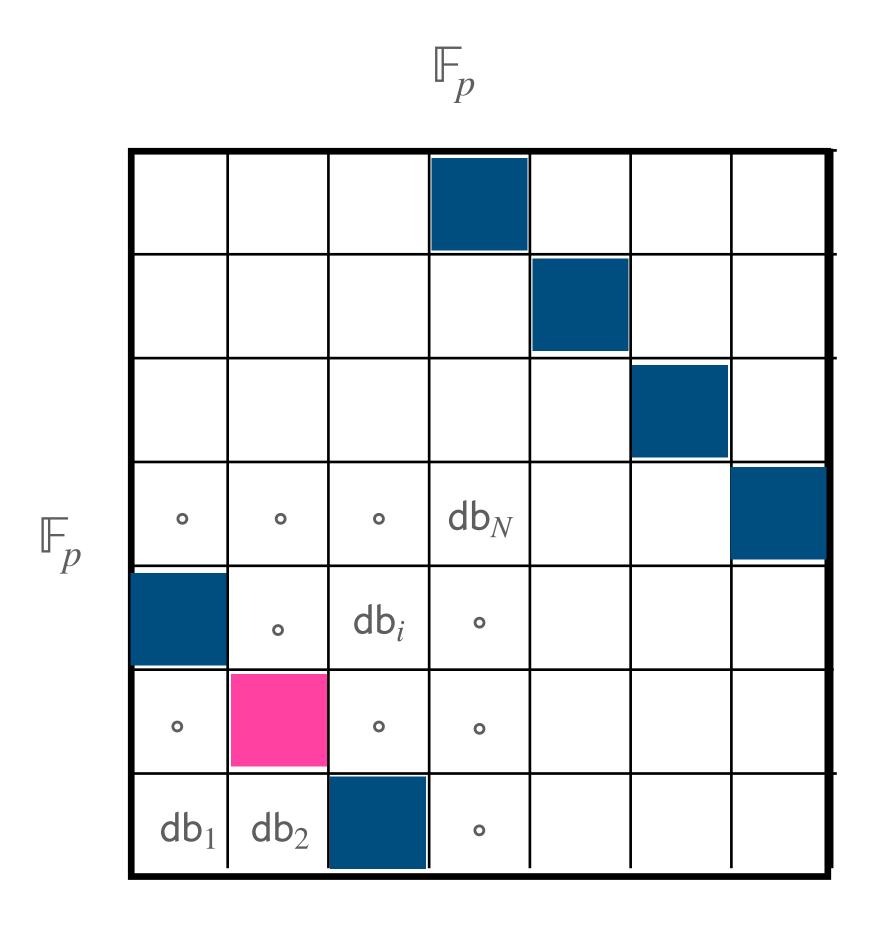
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$: let Q be a random line through db_j .



Local decoding

- 1. Want: db_j
- 2. RM . Que $(j) \rightarrow Q$: let Q be a random line through db_j.
- 3. RM . $\mathrm{Dec}(E_Q) \to \mathrm{db}_j$: E_Q is a univariate polynomial. Can retrieve db_j from E_Q .

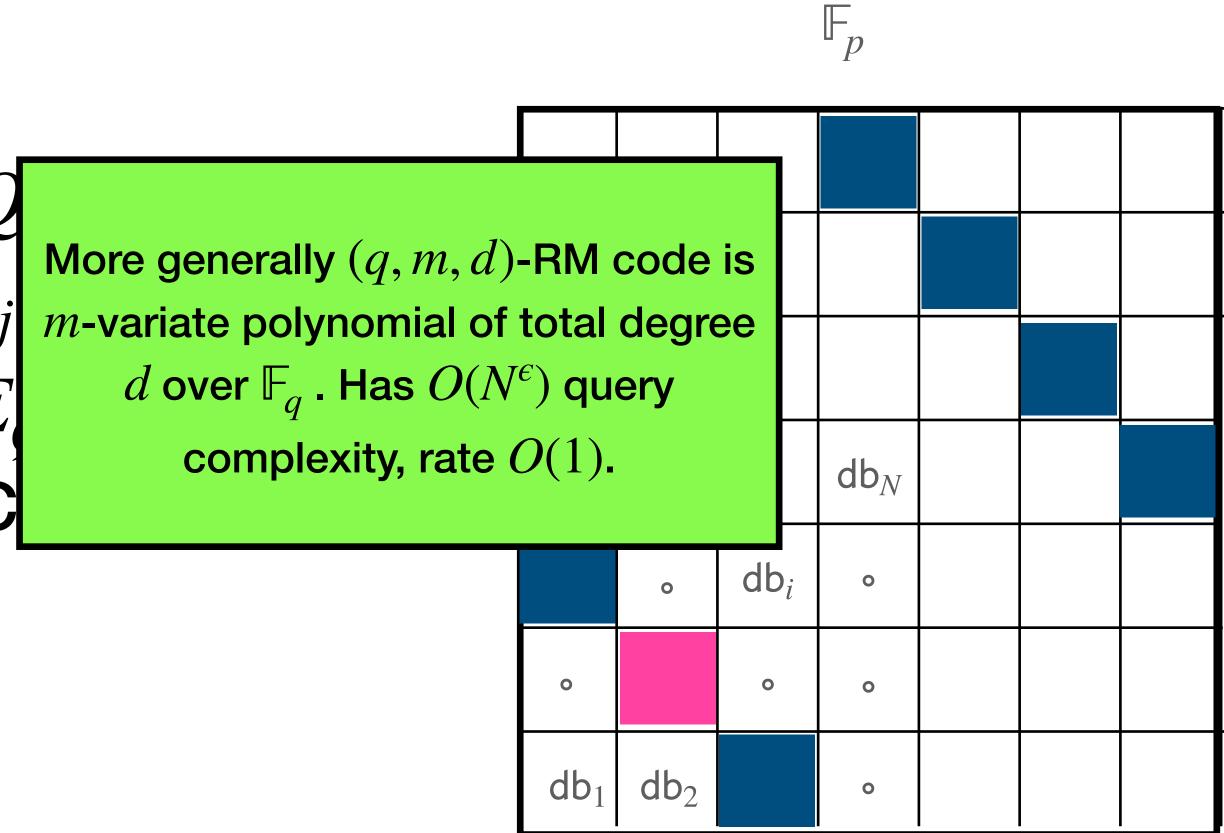
Decoder reads only $p = O(N^{1/2})$ elements!

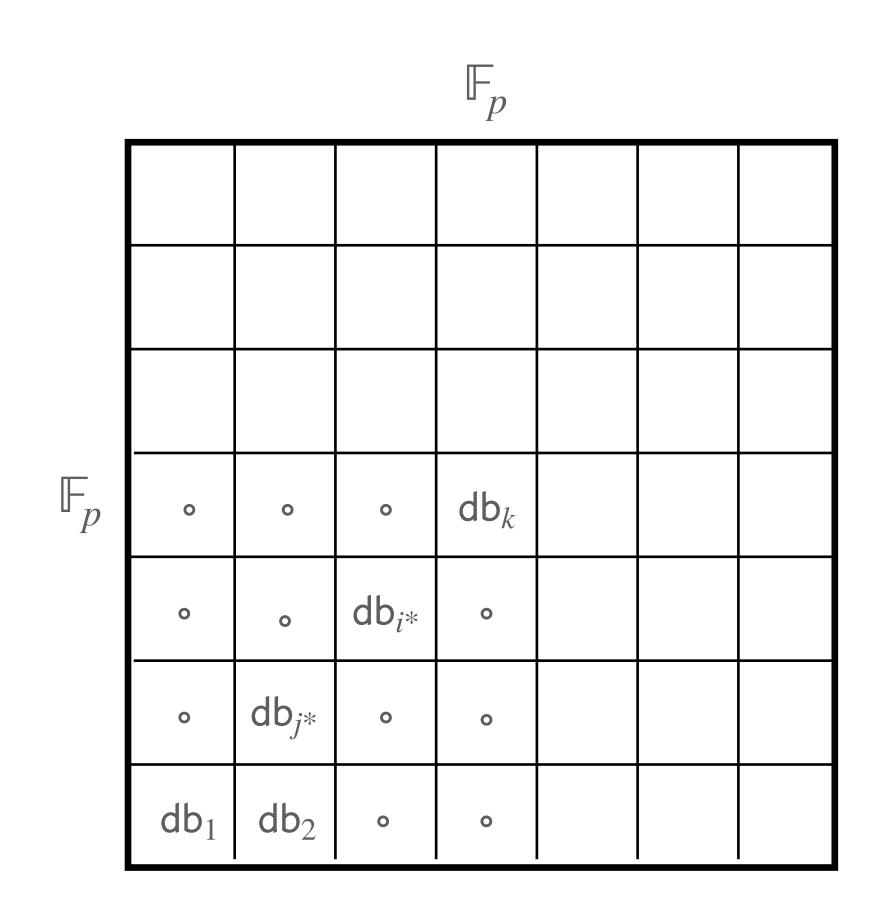


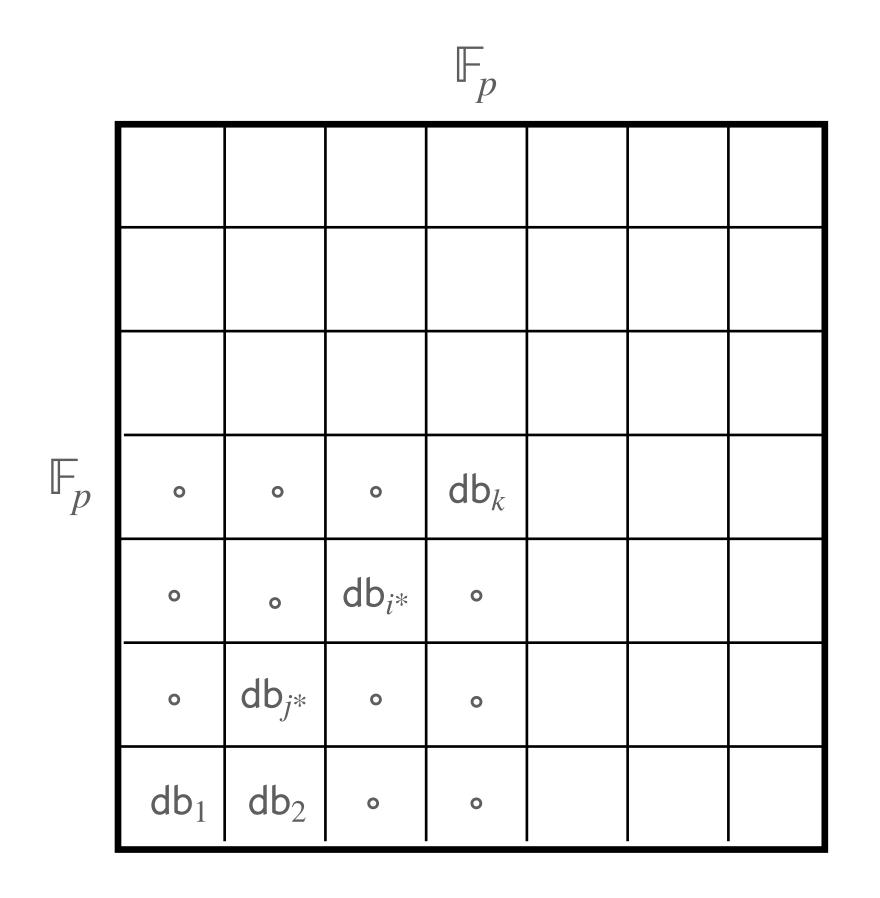
Local decoding

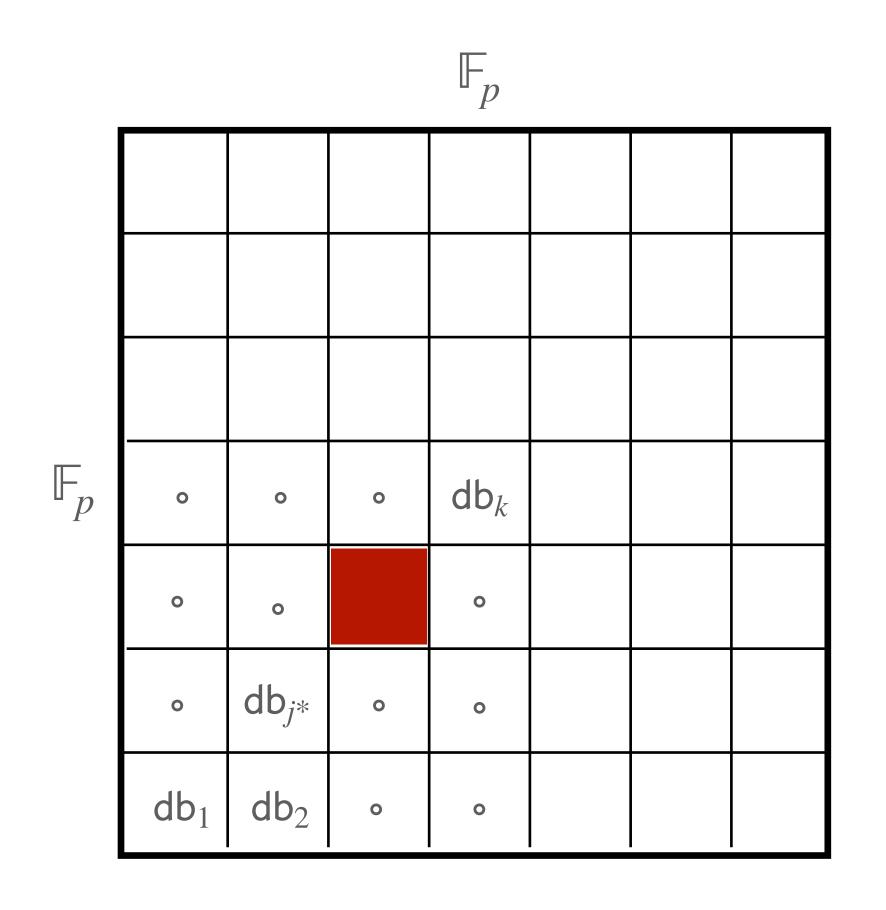
- 1. Want: db_j
- 2. RM . Que(j) \rightarrow Q: let Q random line through db_j
- 3. RM . $\mathrm{Dec}(E_Q) \to \mathrm{db}_j$: E_Q univariate polynomial. C retrieve db_j from E_Q .

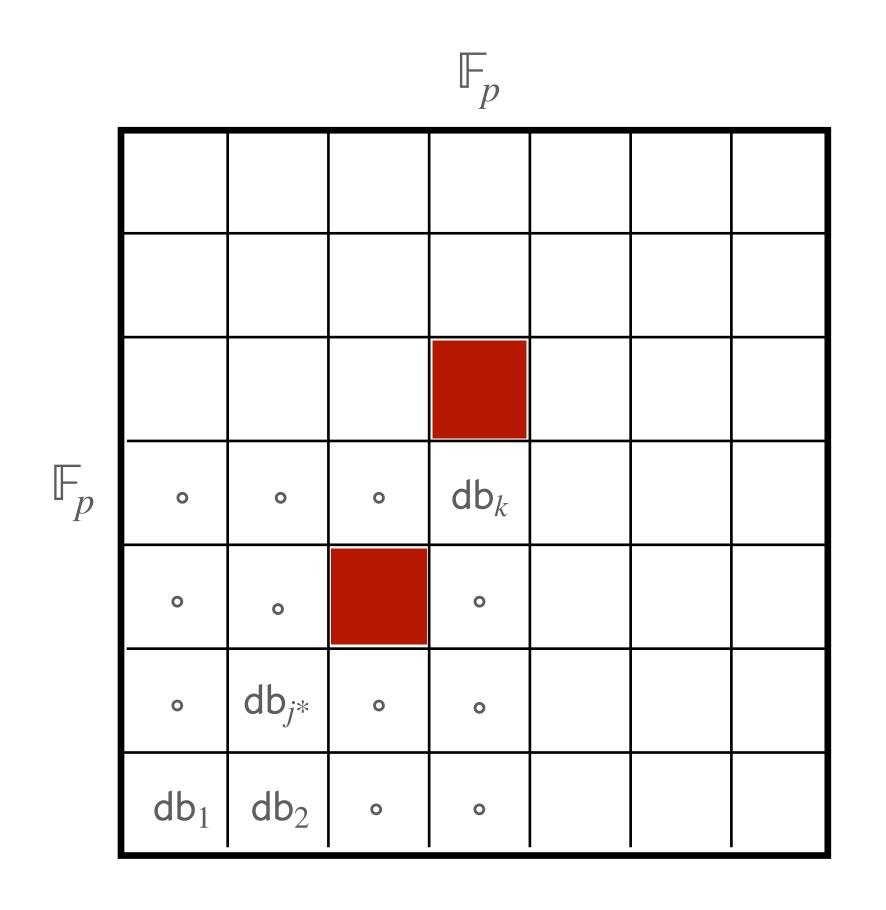
Decoder reads only $p = O(N^{1/2})$ elements!

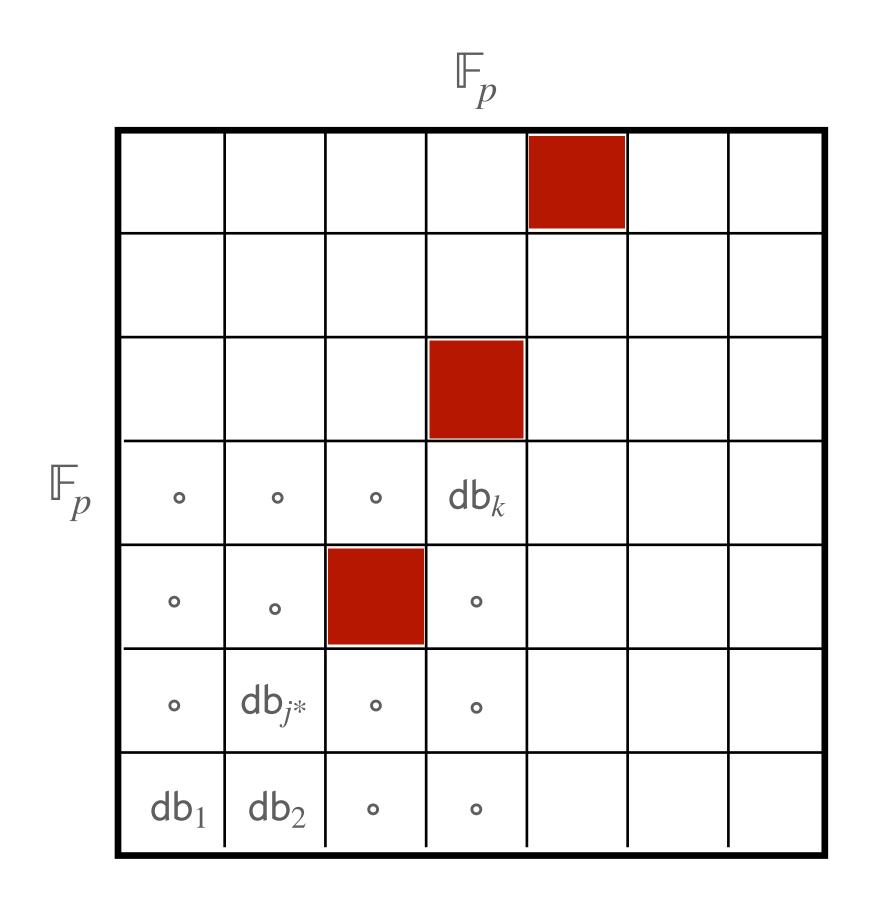


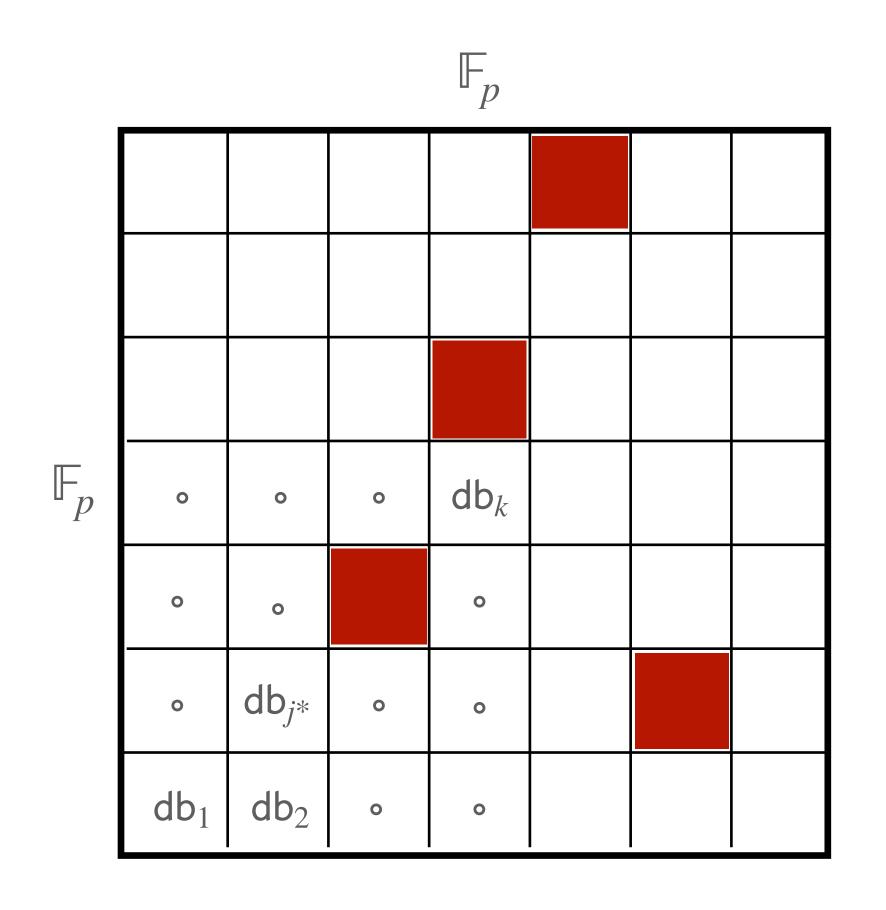


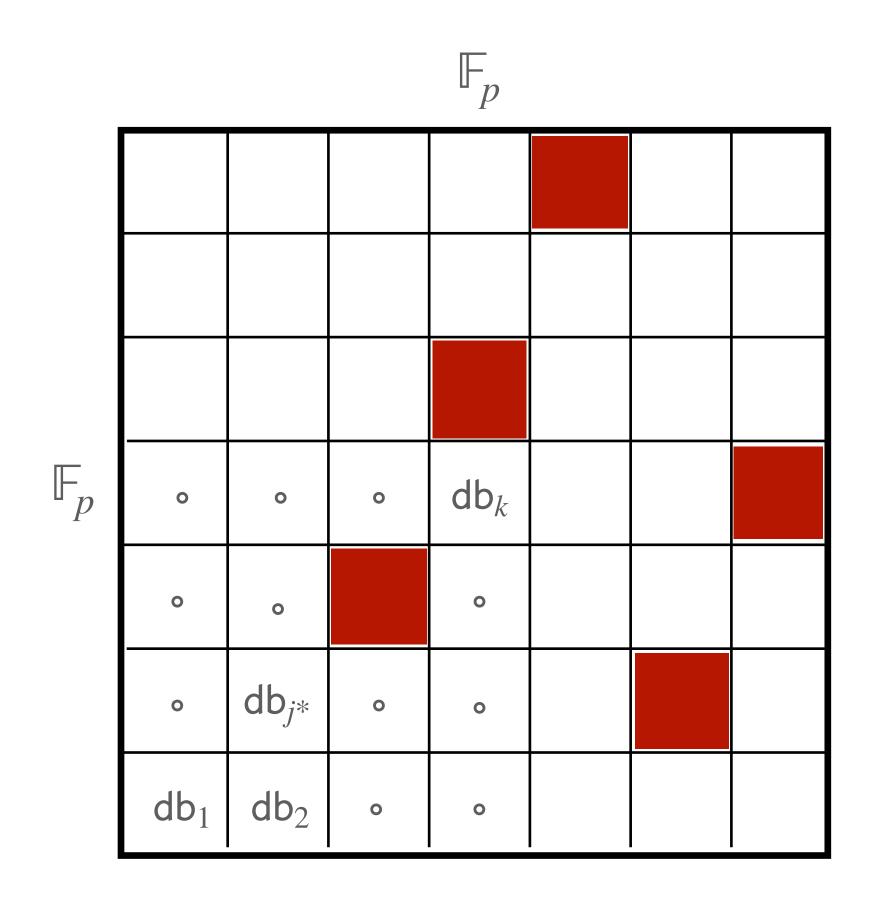


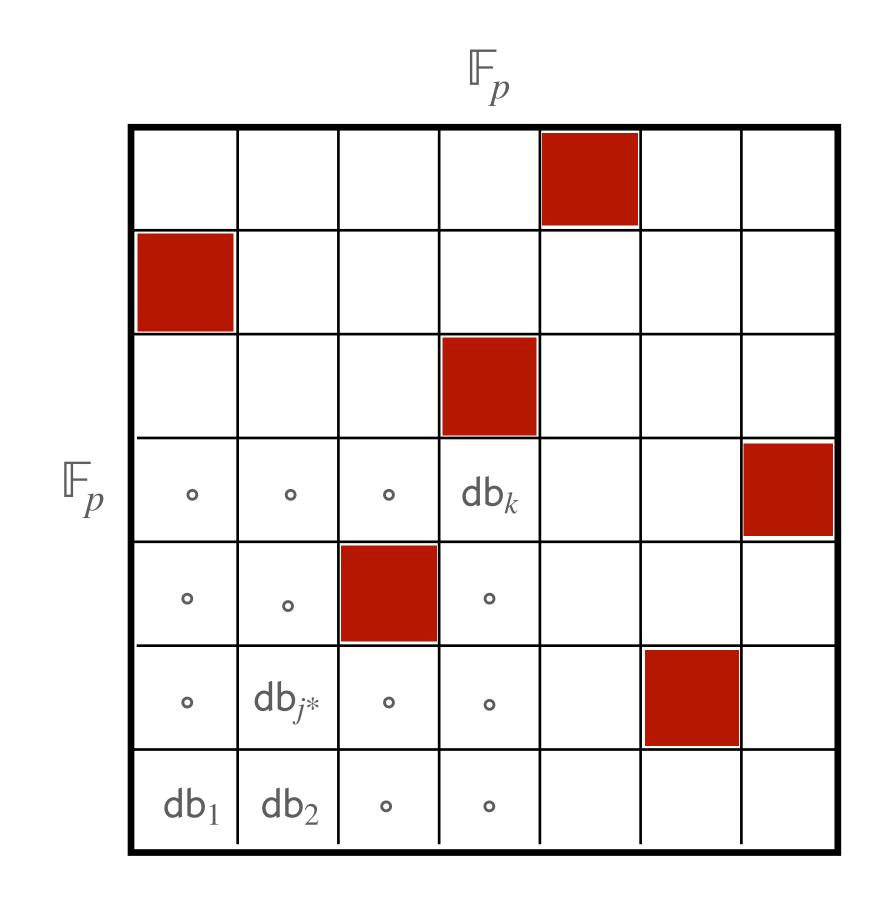


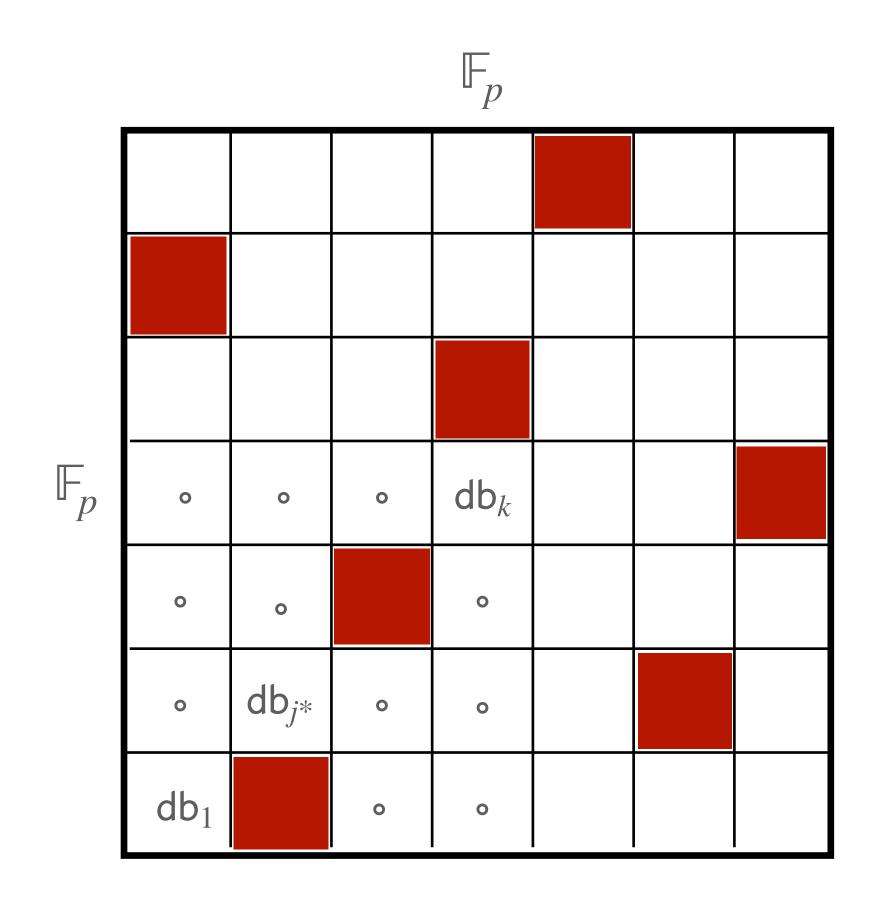






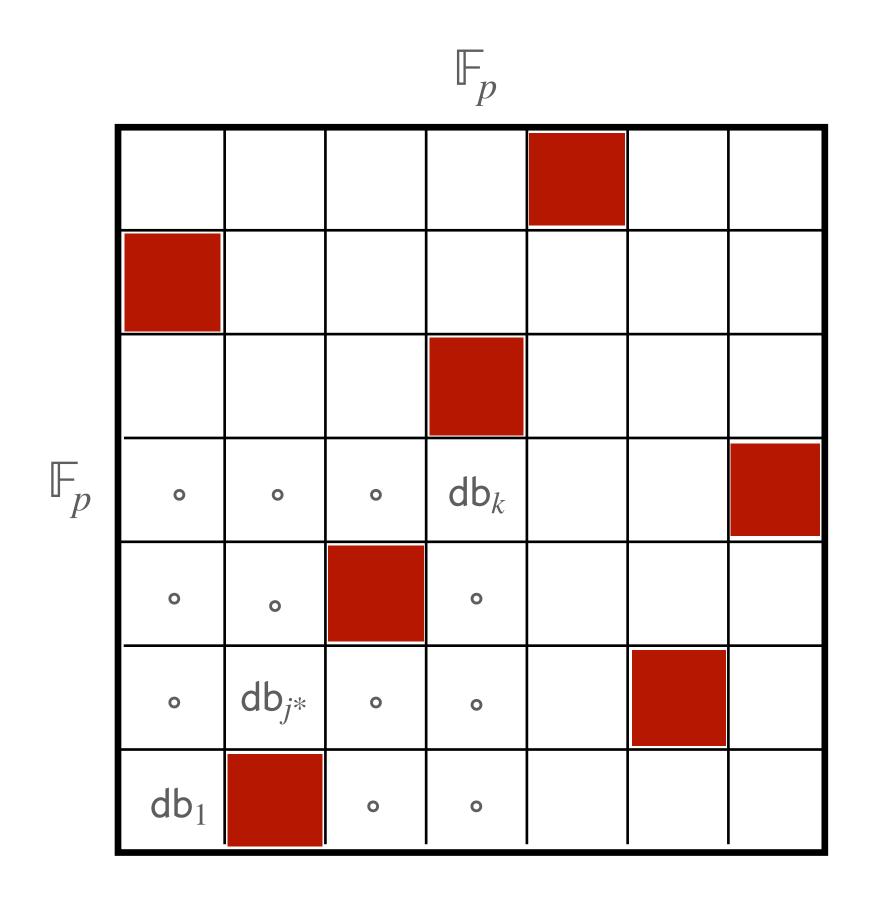




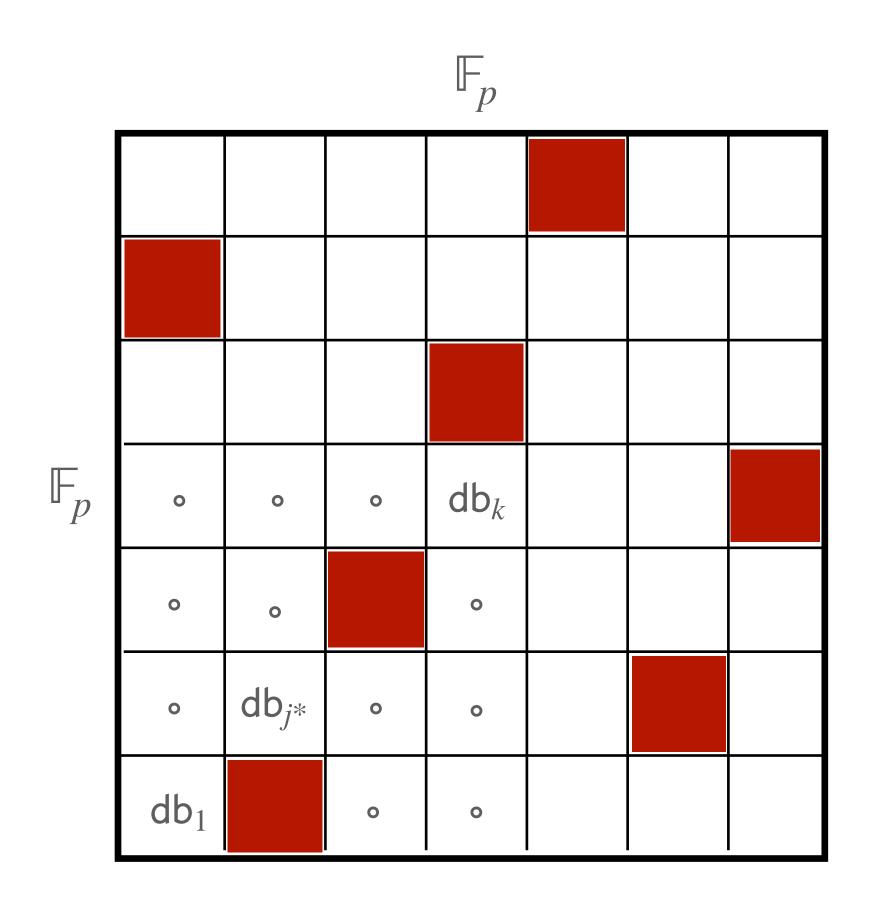


To introduce selective failure on index i, the adversary corrupts (opening proofs on) line ℓ through db_i :

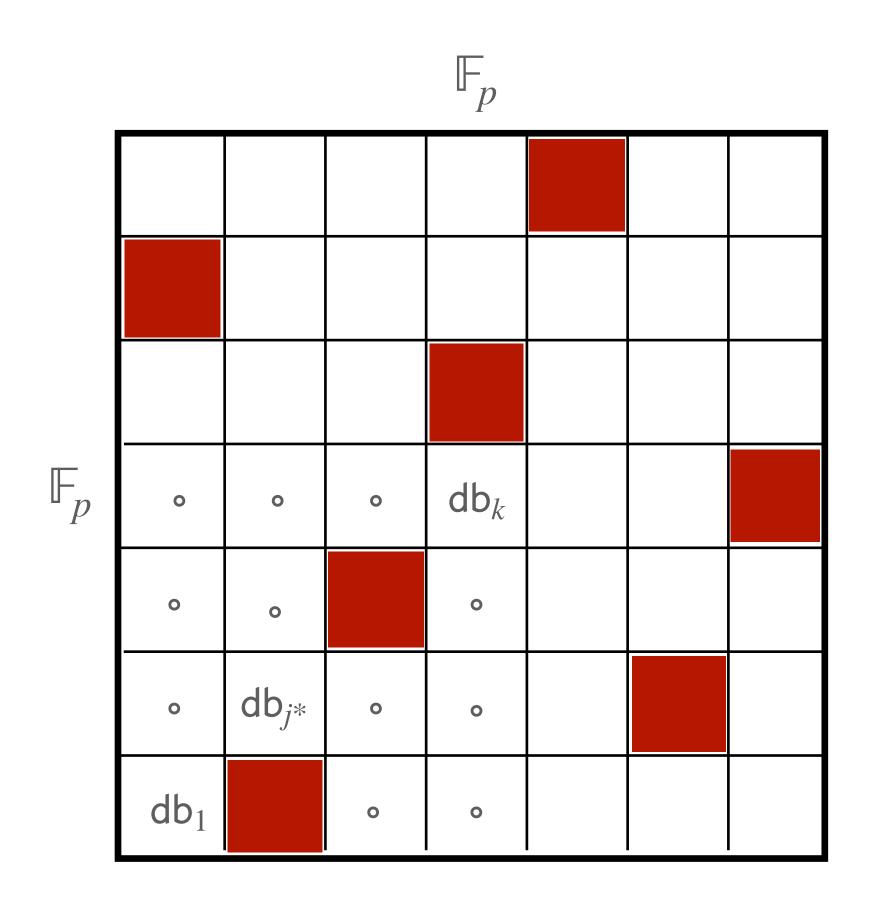
• Client queries for i: query line ℓ w/ prob. 1/poly(N) (there are poly-many lines) and aborts.



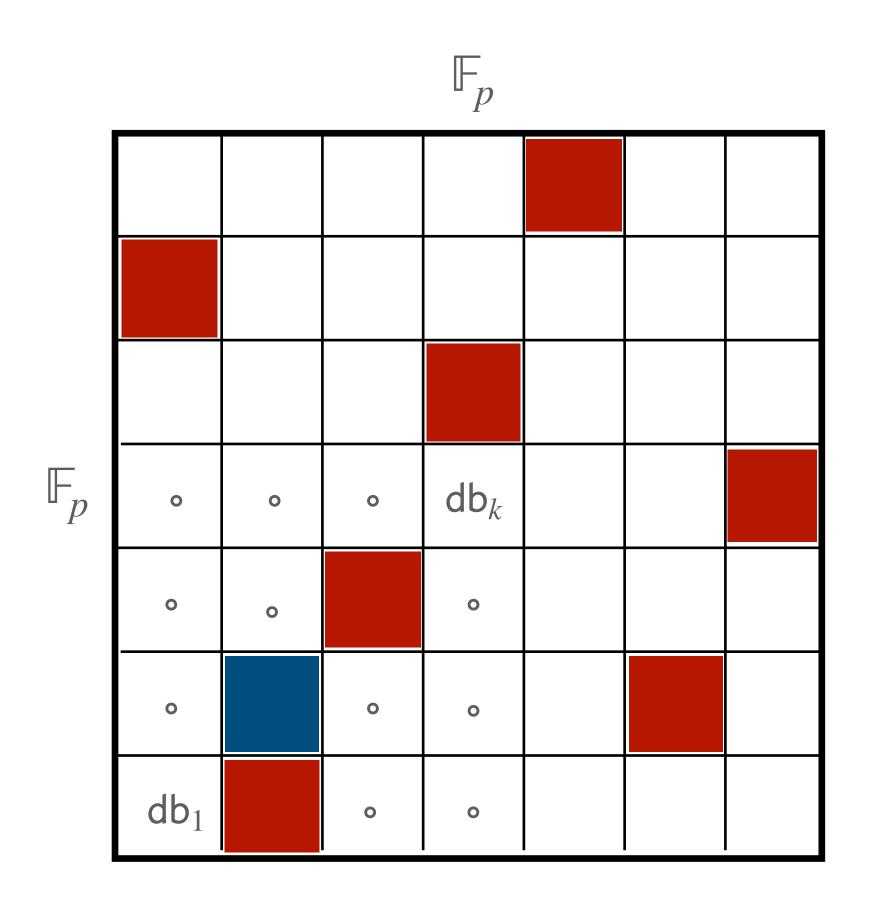
- Client queries for i: query line ℓ w/ prob. 1/poly(N) (there are poly-many lines) and aborts.
- If client queries for $j \neq i$: only one point on the line is corrupt. Client never aborts.



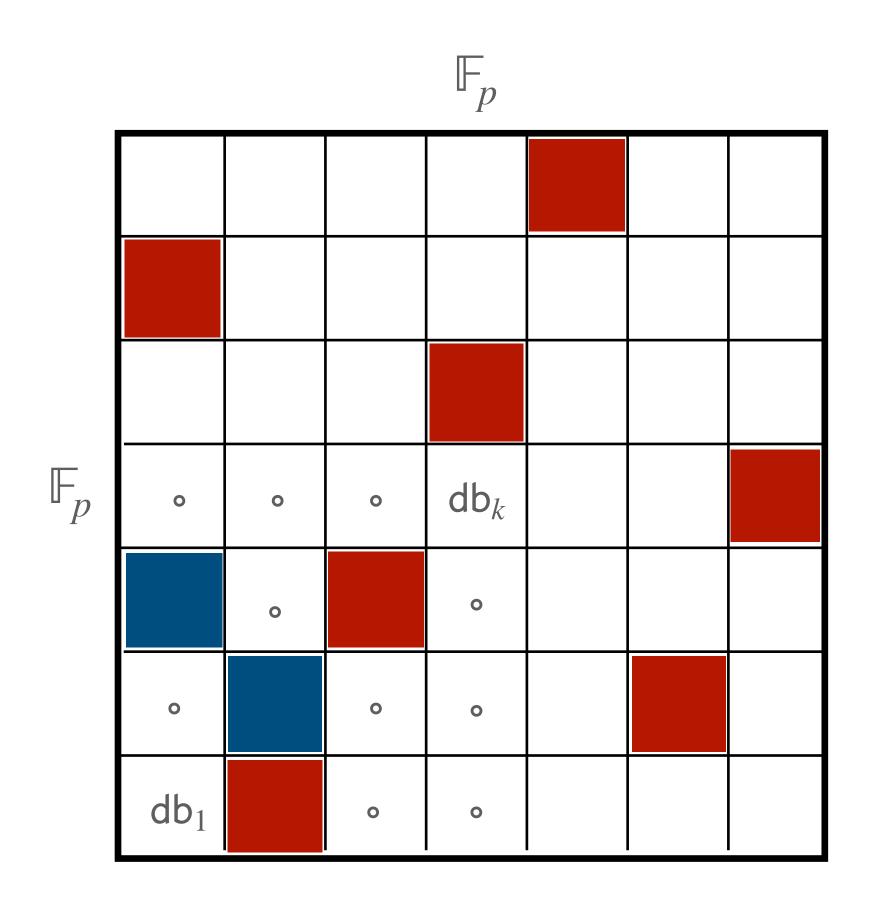
- Client queries for i: query line ℓ w/ prob. 1/poly(N) (there are poly-many lines) and aborts.
- If client queries for $j \neq i$: only one point on the line is corrupt. Client never aborts.



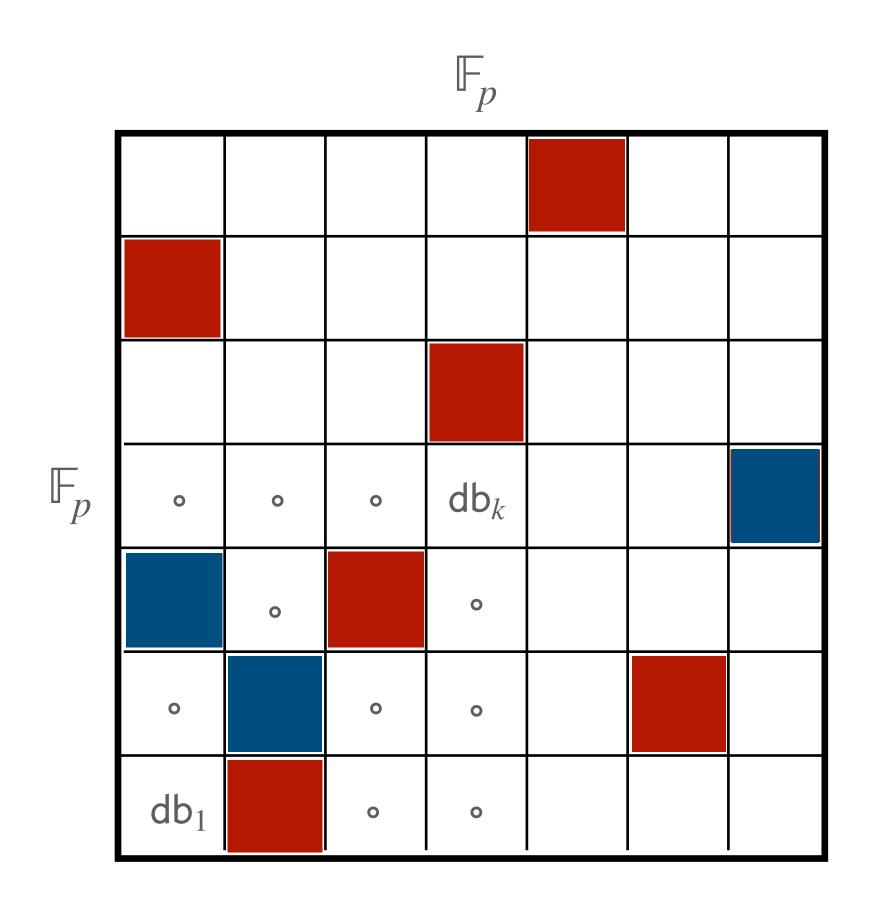
- Client queries for i: query line ℓ w/ prob. 1/poly(N) (there are poly-many lines) and aborts.
- If client queries for $j \neq i$: only one point on the line is corrupt. Client never aborts.



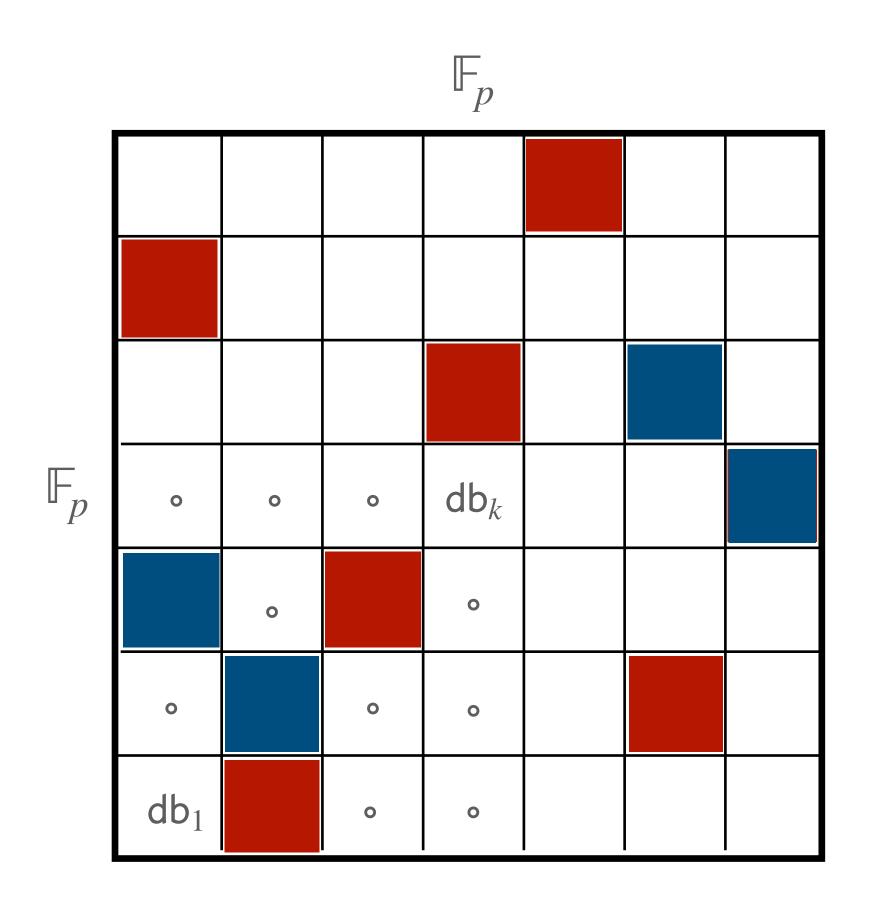
- Client queries for i: query line ℓ w/ prob. 1/poly(N) (there are poly-many lines) and aborts.
- If client queries for $j \neq i$: only one point on the line is corrupt. Client never aborts.



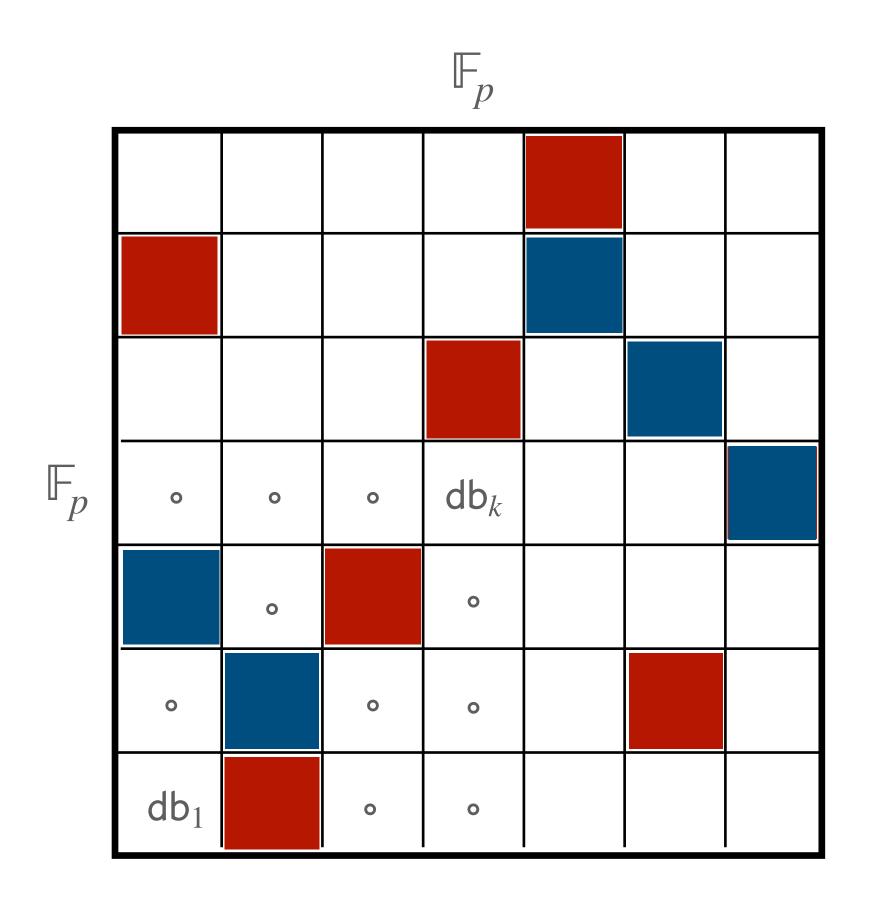
- Client queries for i: query line ℓ w/ prob. 1/poly(N) (there are poly-many lines) and aborts.
- If client queries for $j \neq i$: only one point on the line is corrupt. Client never aborts.



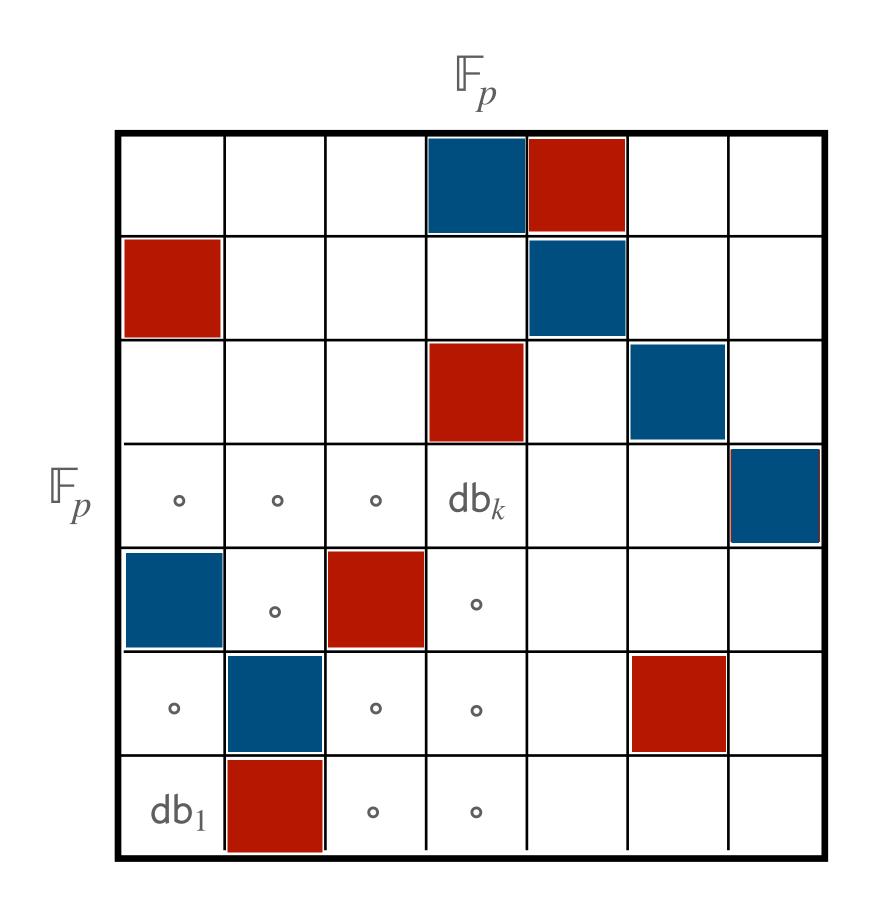
- Client queries for i: query line ℓ w/ prob. 1/poly(N) (there are poly-many lines) and aborts.
- If client queries for $j \neq i$: only one point on the line is corrupt. Client never aborts.



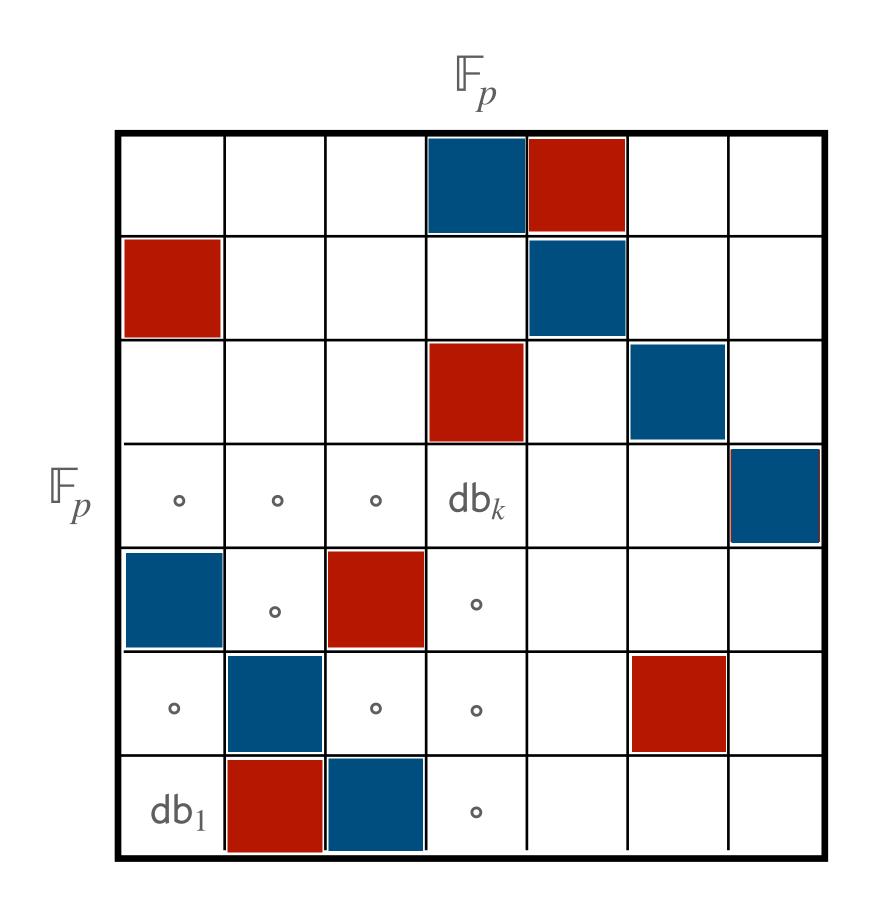
- Client queries for i: query line ℓ w/ prob. 1/poly(N) (there are poly-many lines) and aborts.
- If client queries for $j \neq i$: only one point on the line is corrupt. Client never aborts.



- Client queries for i: query line ℓ w/ prob. 1/poly(N) (there are poly-many lines) and aborts.
- If client queries for $j \neq i$: only one point on the line is corrupt. Client never aborts.



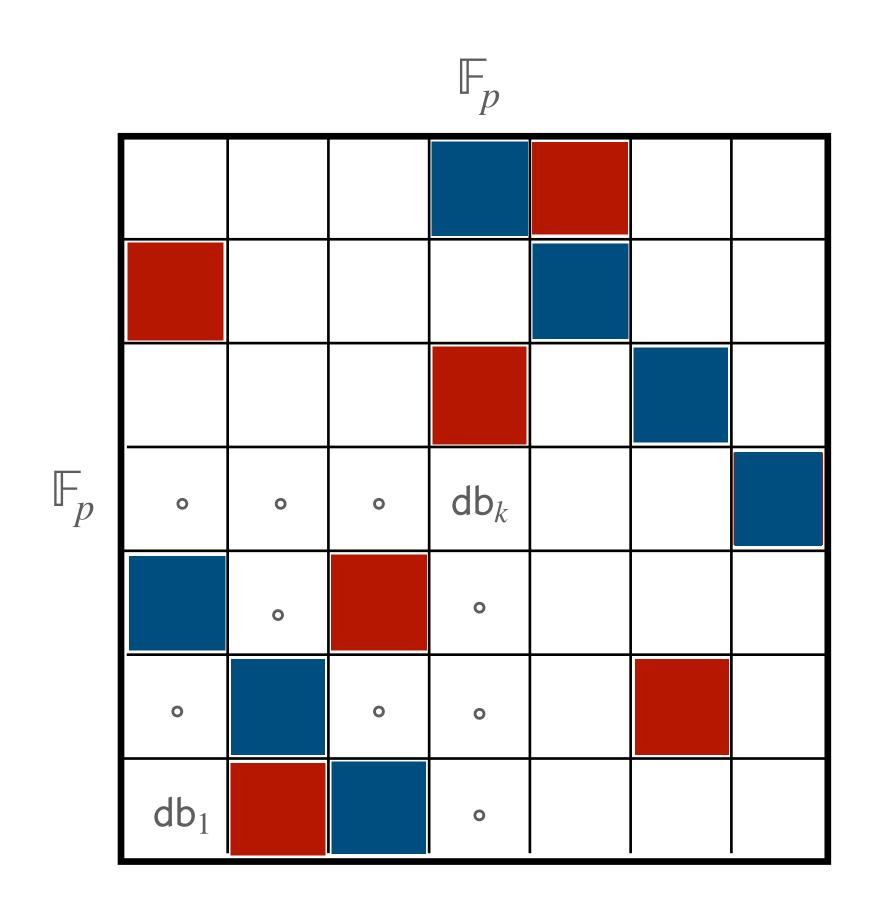
- Client queries for i: query line ℓ w/ prob. 1/poly(N) (there are poly-many lines) and aborts.
- If client queries for $j \neq i$: only one point on the line is corrupt. Client never aborts.



To introduce selective failure on index i, the adversary corrupts (opening proofs on) line ℓ through db_i :

- Client queries for i: query line ℓ w/ prob. 1/poly(N) (there are poly-many lines) and aborts.
- If client queries for $j \neq i$: only one point on the line is corrupt. Client never aborts.

Selective Failure attack!



Ana Both indices decoded with good probability nce attack"

To introd adversar

 ℓ throug

Client 1/poly(aborts.

• If client queries for $j \neq i$: only one point on the line is corrupt. Client never aborts.

> Selective Failure attack!

 db_k

Ana Both indices decoded with good probability nce attack" Pr[decode i] > 2/3

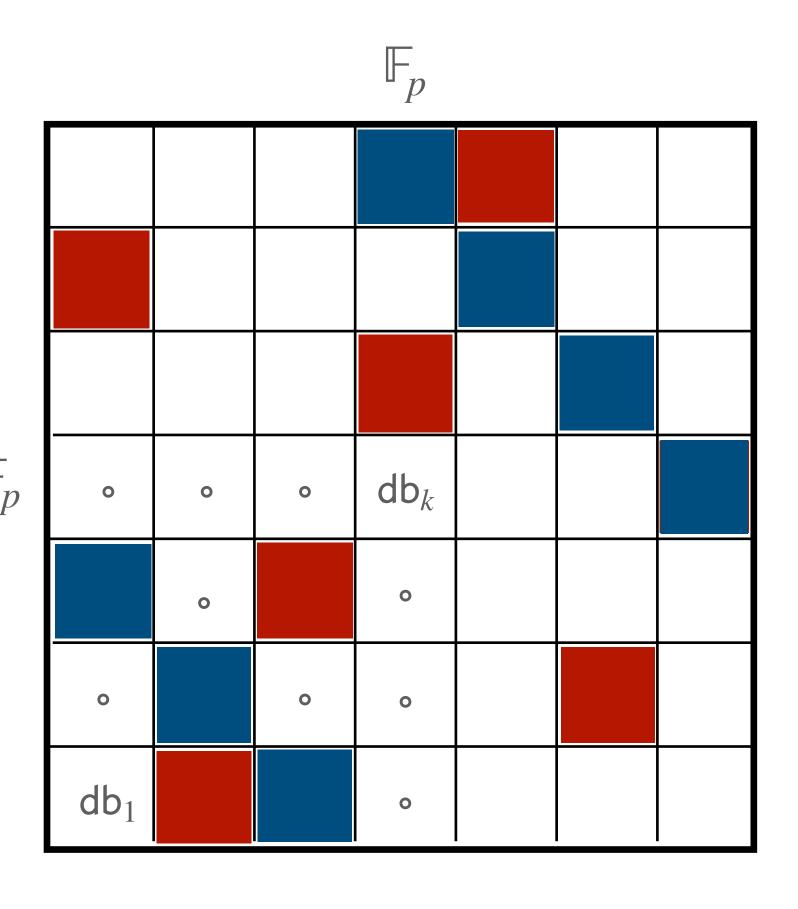
To introd adversar

 ℓ throug

Client 1/poly aborts.

• If client queries for $j \neq i$: only one point on the line is corrupt. Client never aborts.

> Selective Failure attack!



Ana Both indices decoded with good probability nce attack"

Pr[decode i] > 2/3

Pr[decode j] > 2/3

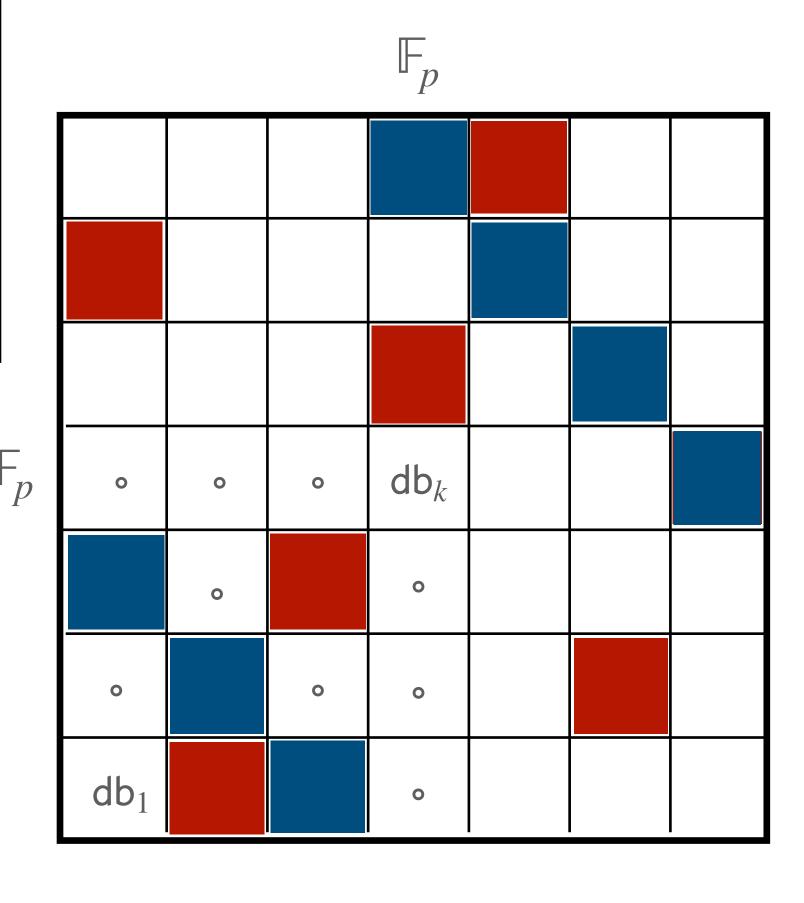
To introd adversar

 ℓ throug

Client 1/poly aborts.

• If client queries for $j \neq i$: only one point on the line is corrupt. Client never aborts.

> Selective Failure attack!



Ana Both indices decoded with good probability nce attack"

Pr[decode i] > 2/3

Pr[decode j] > 2/3

To introd

 ℓ throug

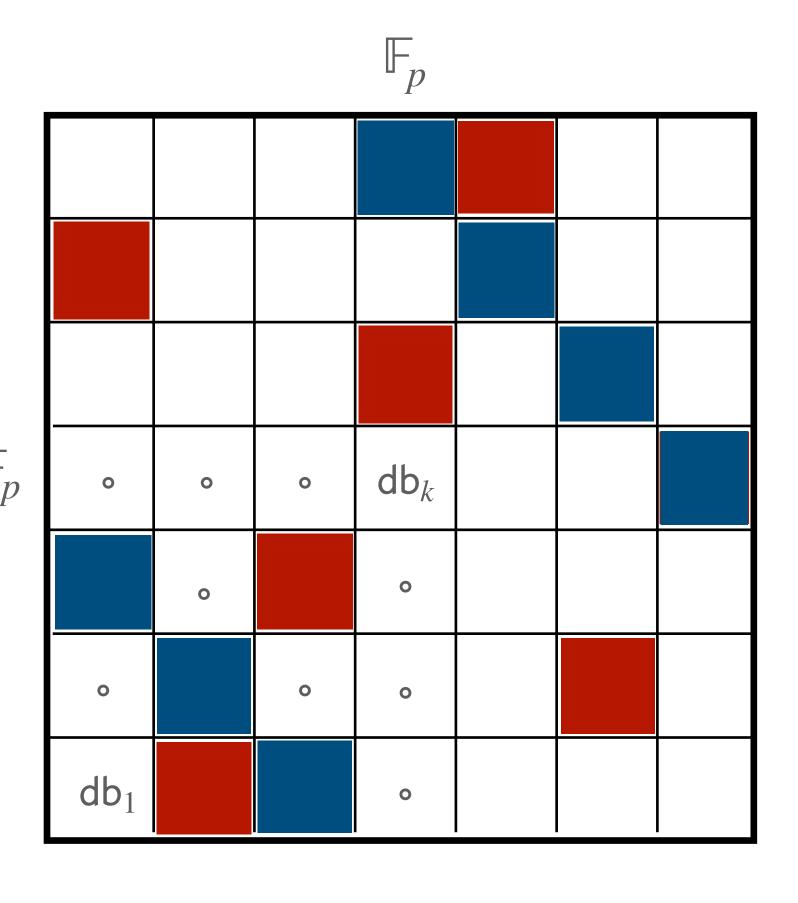
Client 1/poly aborts.

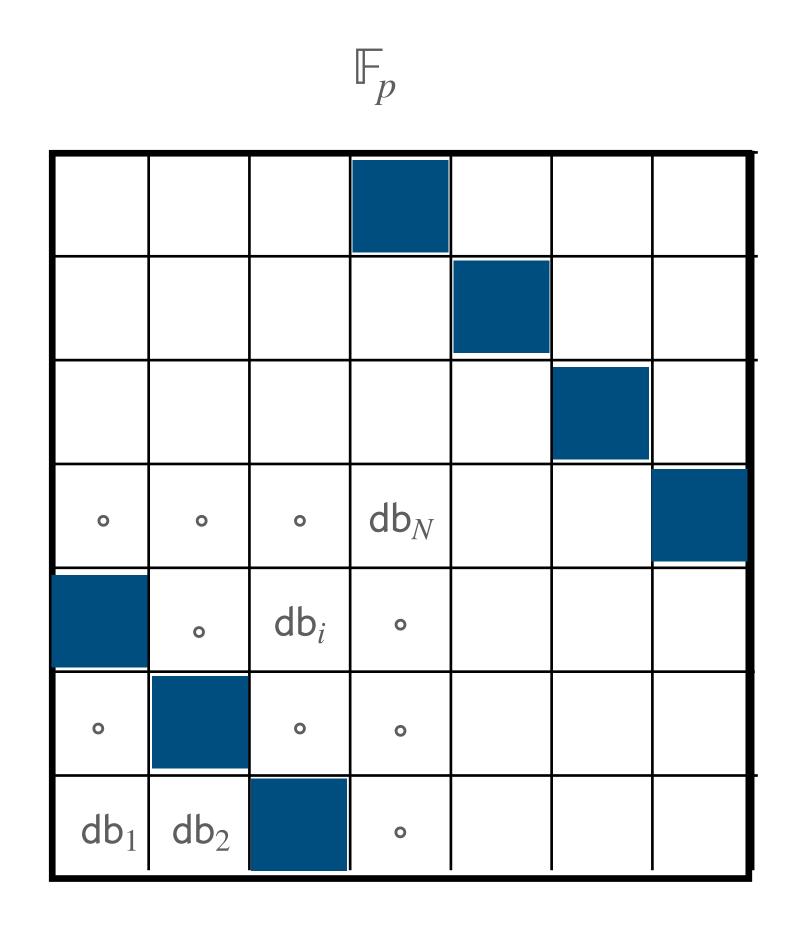
adversar However, there could be a big gap between the decoding probabilities:

 $|\Pr[\text{decode } i] - \Pr[\text{decode } j]| > \text{notice}(n)$

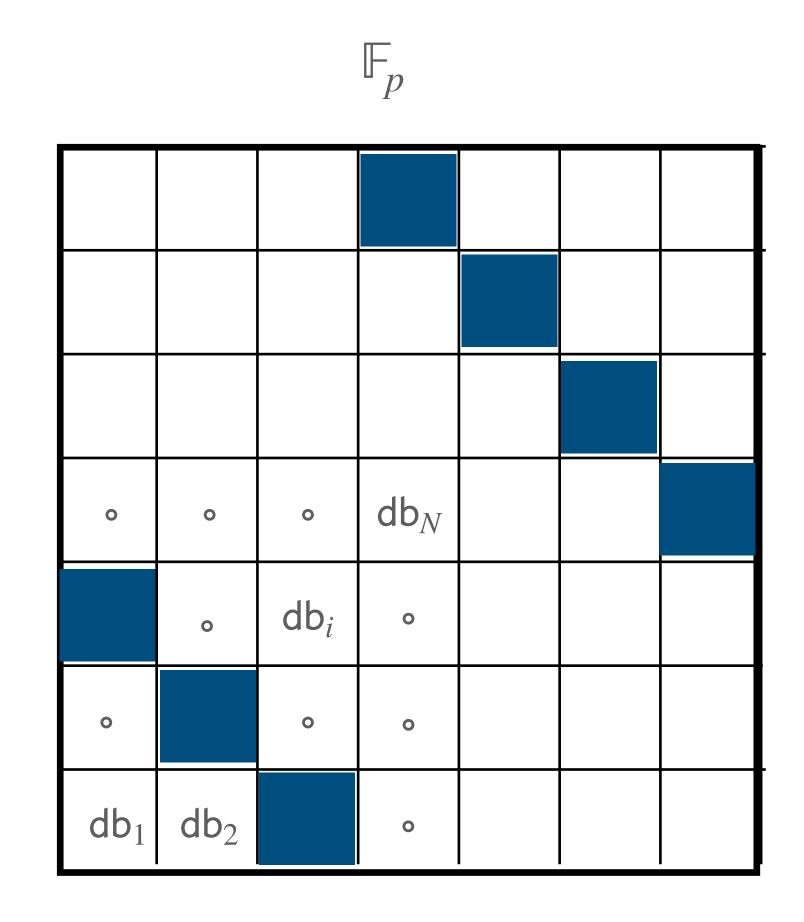
• If client queries for $j \neq i$: only one point on the line is corrupt. Client never aborts.

> Selective Failure attack!

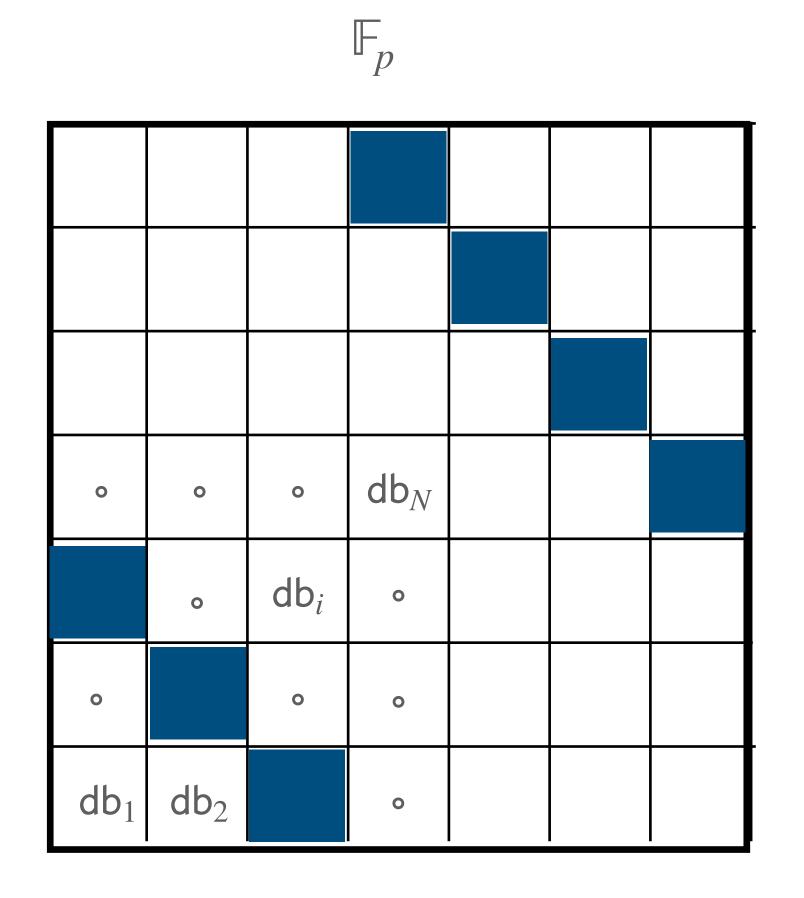




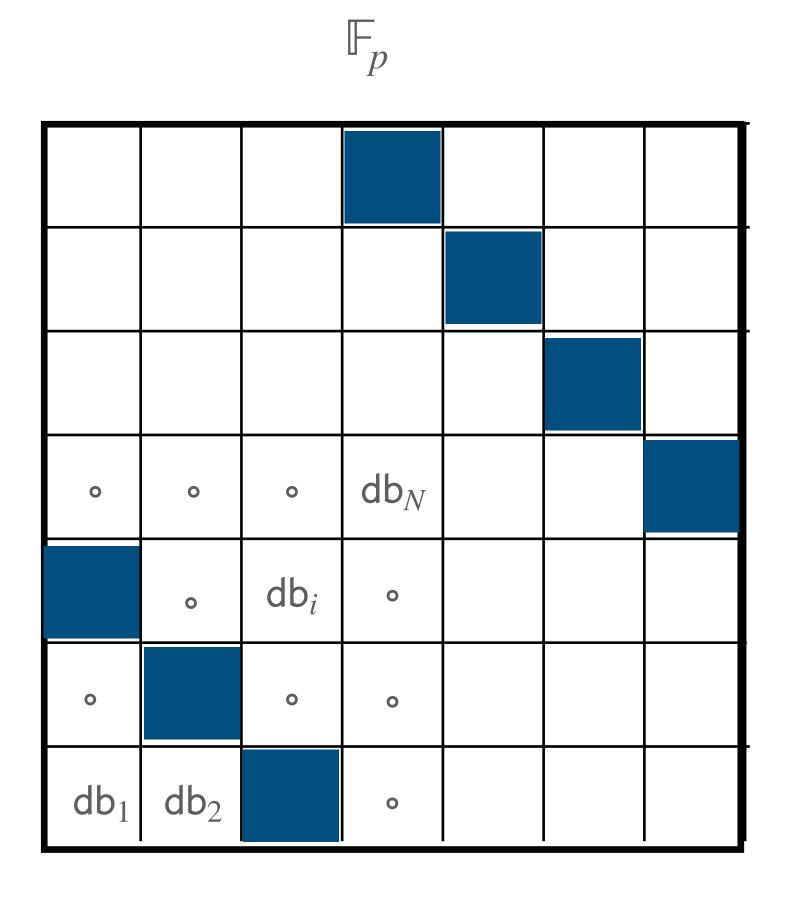
• The approach so far: try to recover from corruptions.



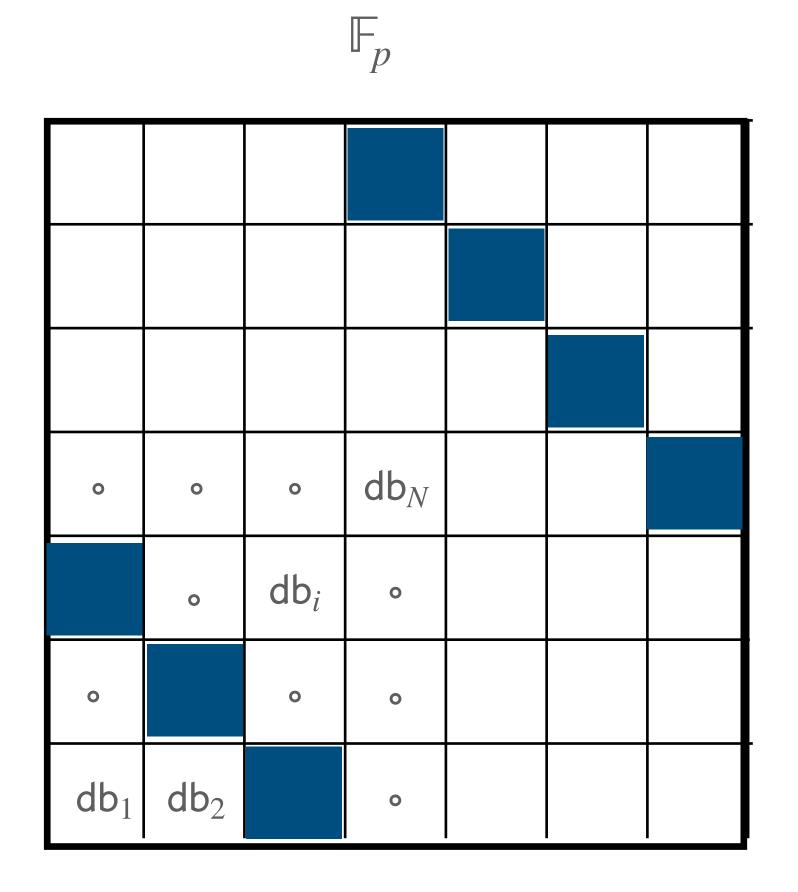
- The approach so far: try to recover from corruptions.
- Naive idea: make more queries to shrink decoding probability gap (recover from even more corruptions).



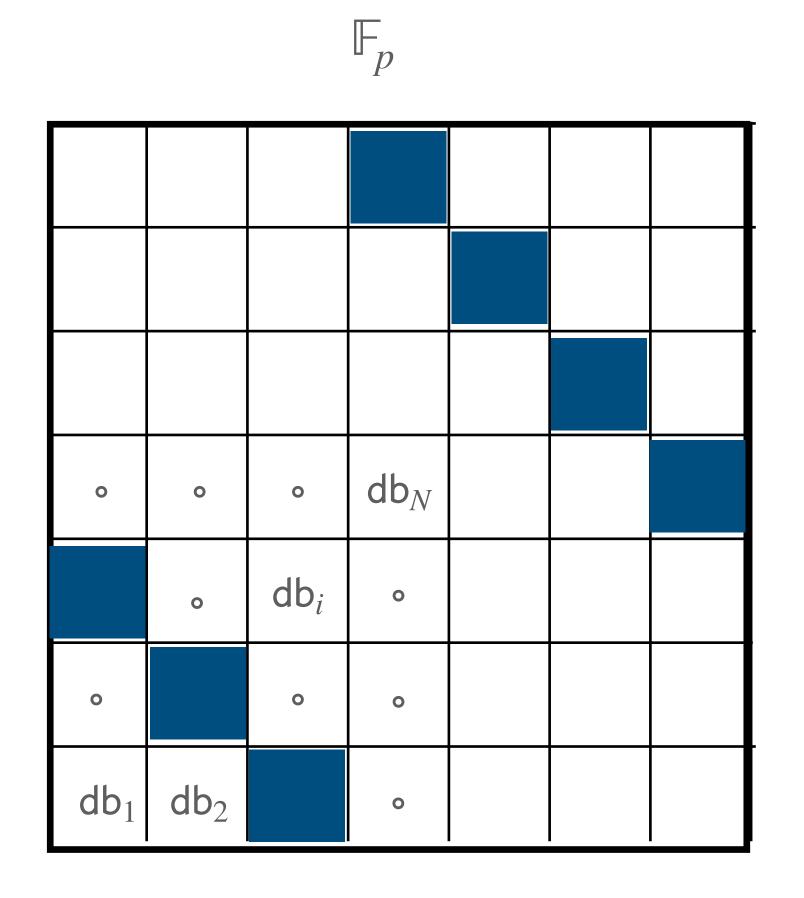
- The approach so far: try to recover from corruptions.
- Naive idea: make more queries to shrink decoding probability gap (recover from even more corruptions).
 - Requires too many queries!



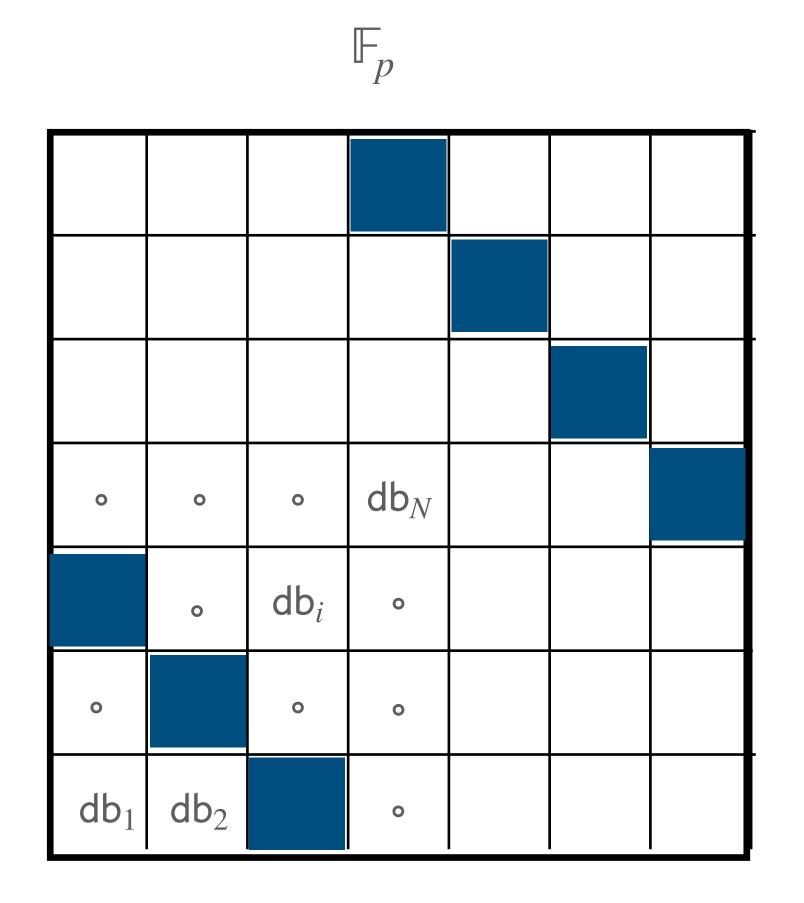
- The approach so far: try to recover from corruptions.
- Naive idea: make more queries to shrink decoding probability gap (recover from even more corruptions).
 - Requires too many queries!
- New approach: try to detect corruptions and reject.



- The approach so far: try to recover from corruptions.
- Naive idea: make more queries to shrink decoding probability gap (recover from even more corruptions).
 - Requires too many queries!
- New approach: try to detect corruptions and reject.
 - Rejecting corruptions in the LDC query introduces selective failure attack because the locations queried are correlated with *i*.



- The approach so far: try to recover from corruptions.
- Naive idea: make more queries to shrink decoding probability gap (recover from even more corruptions).
 - Requires too many queries!
- New approach: try to detect corruptions and reject.
 - Rejecting corruptions in the LDC query introduces selective failure attack because the locations queried are correlated with *i*.
 - Instead we detect corruptions on a set of random *test* points.



 \mathbb{F}_p db_N db_i db_i

Modified local decoding with test queries

 \mathbb{F}_{p} db_N db_i db_i

Modified local decoding with test queries

1. Want: db_j

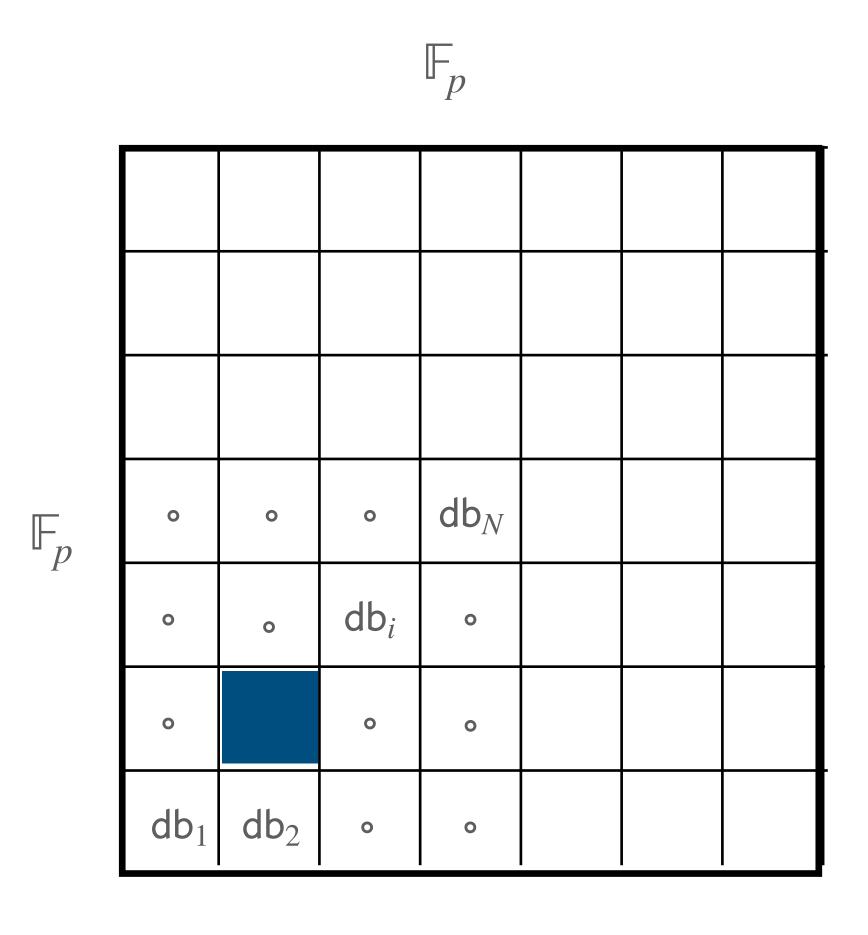
 \mathbb{F}_p db_N db_i db_i

Modified local decoding with test queries

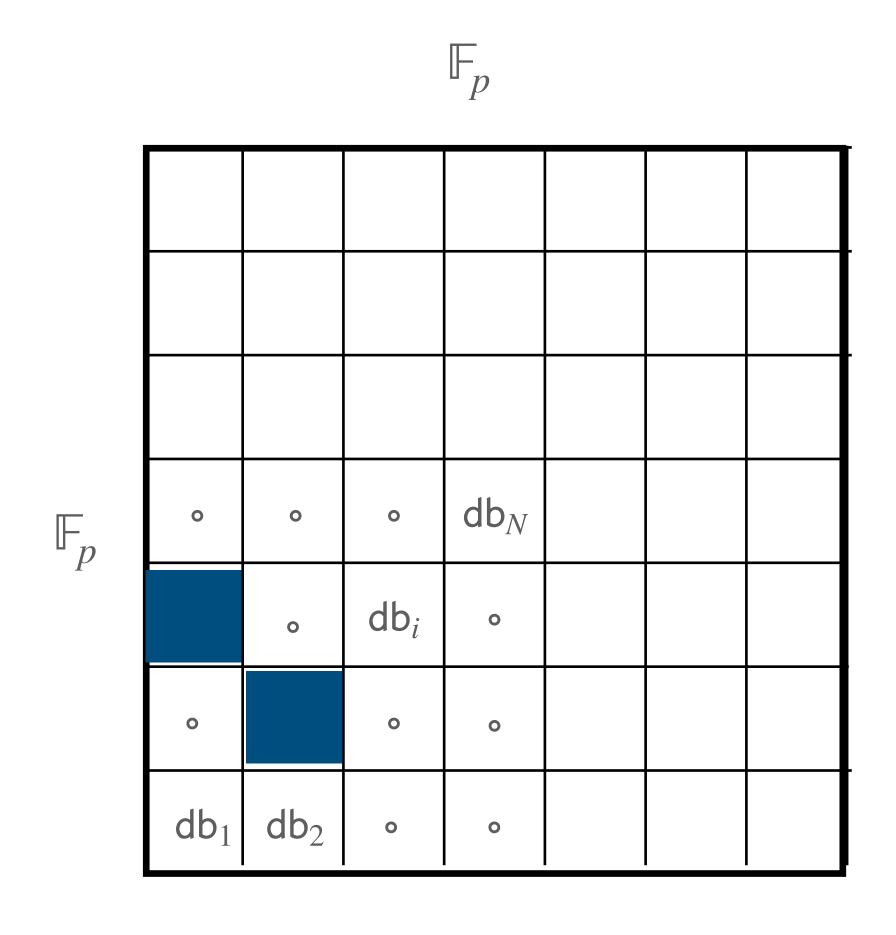
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:

 \mathbb{F}_p db_N db_i db_i

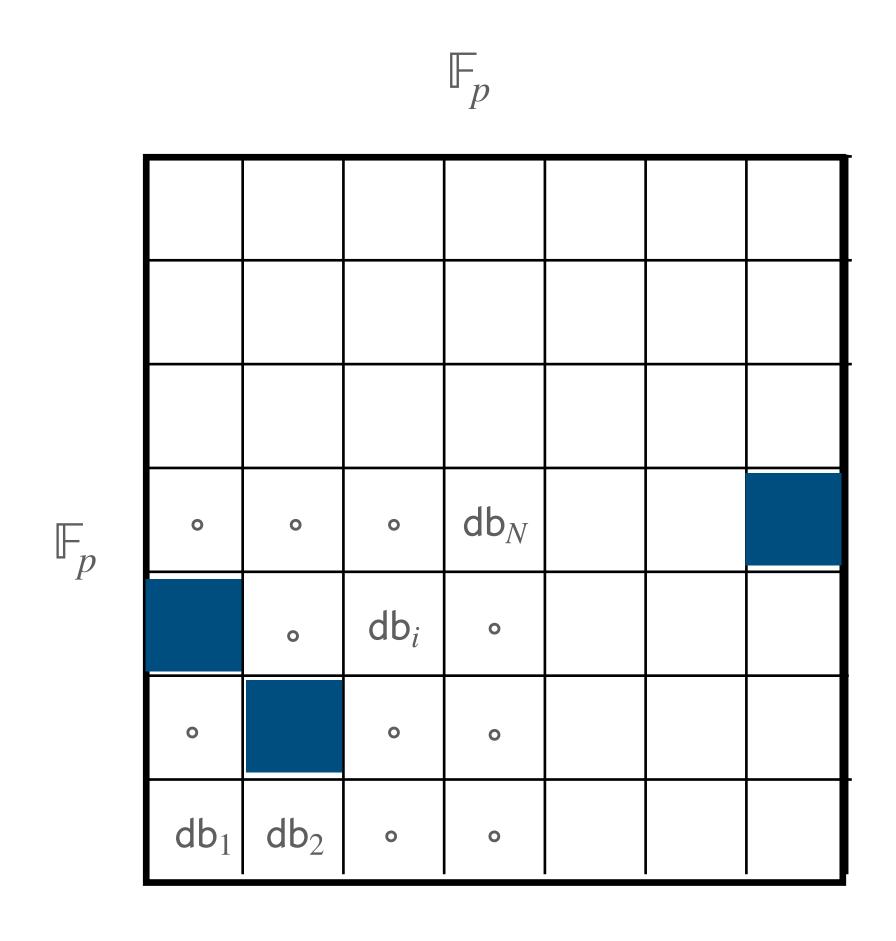
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:



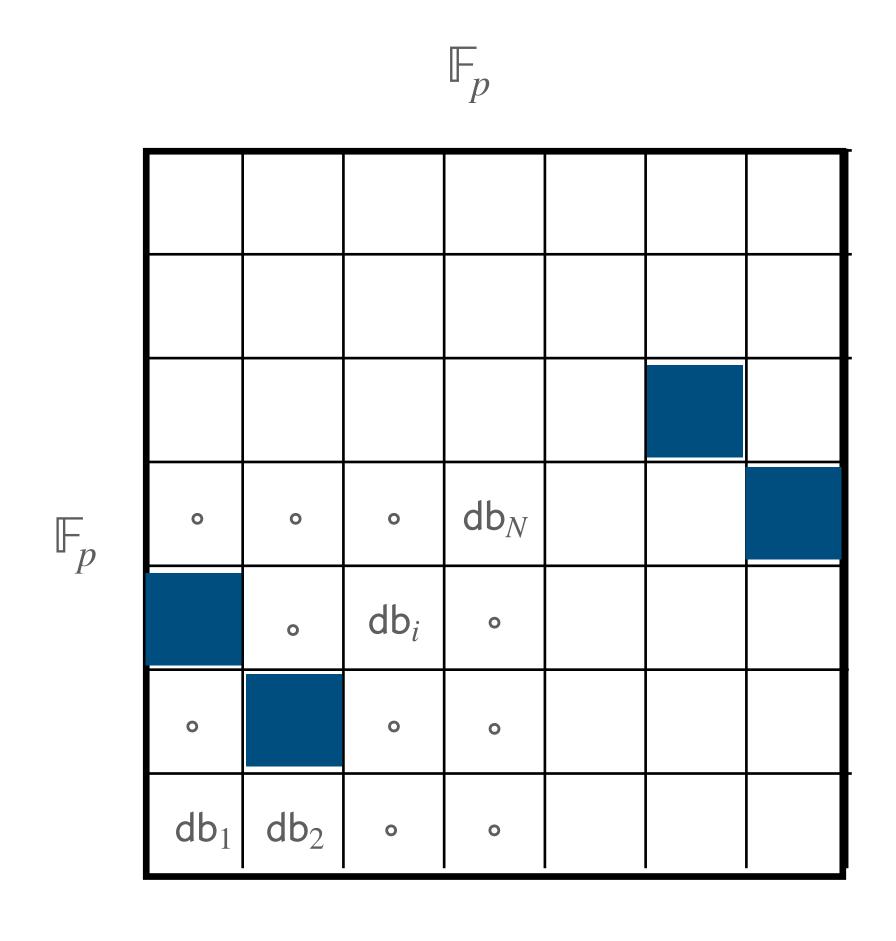
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:



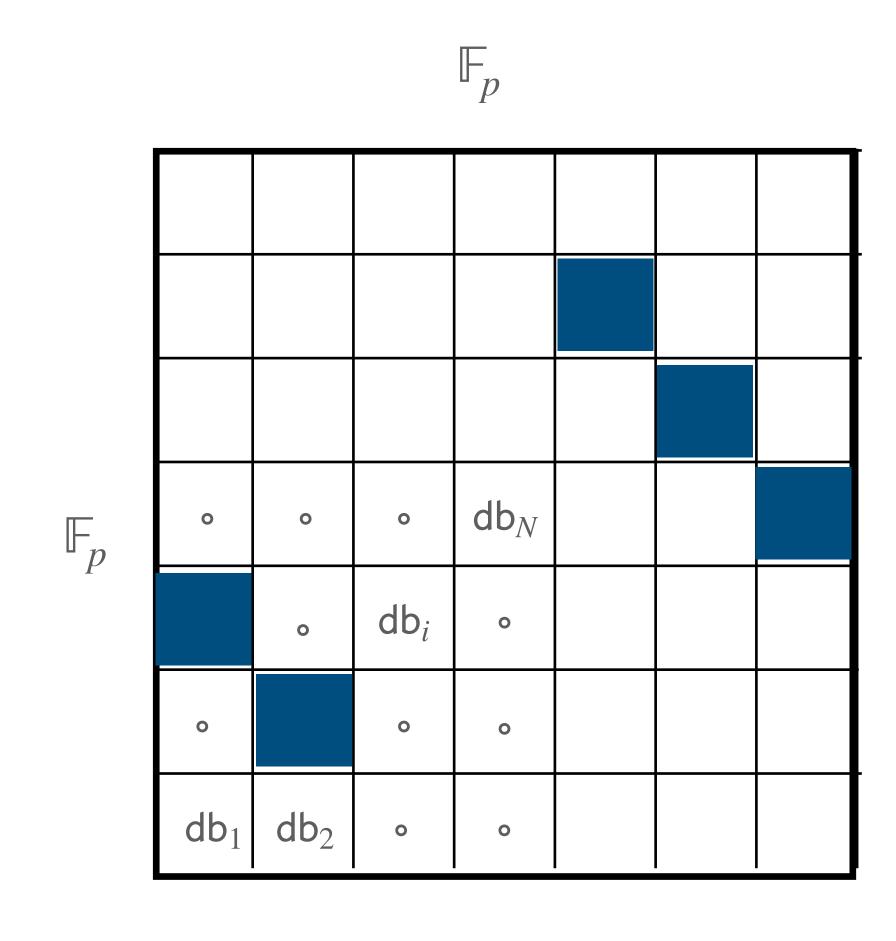
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:



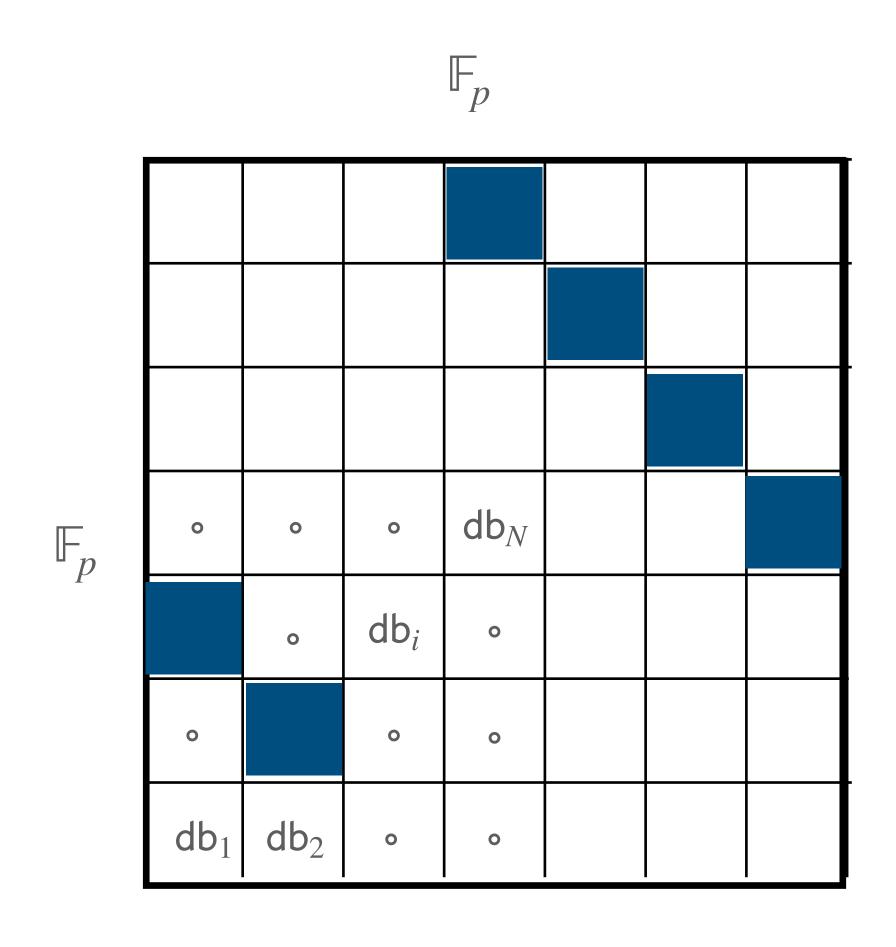
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:



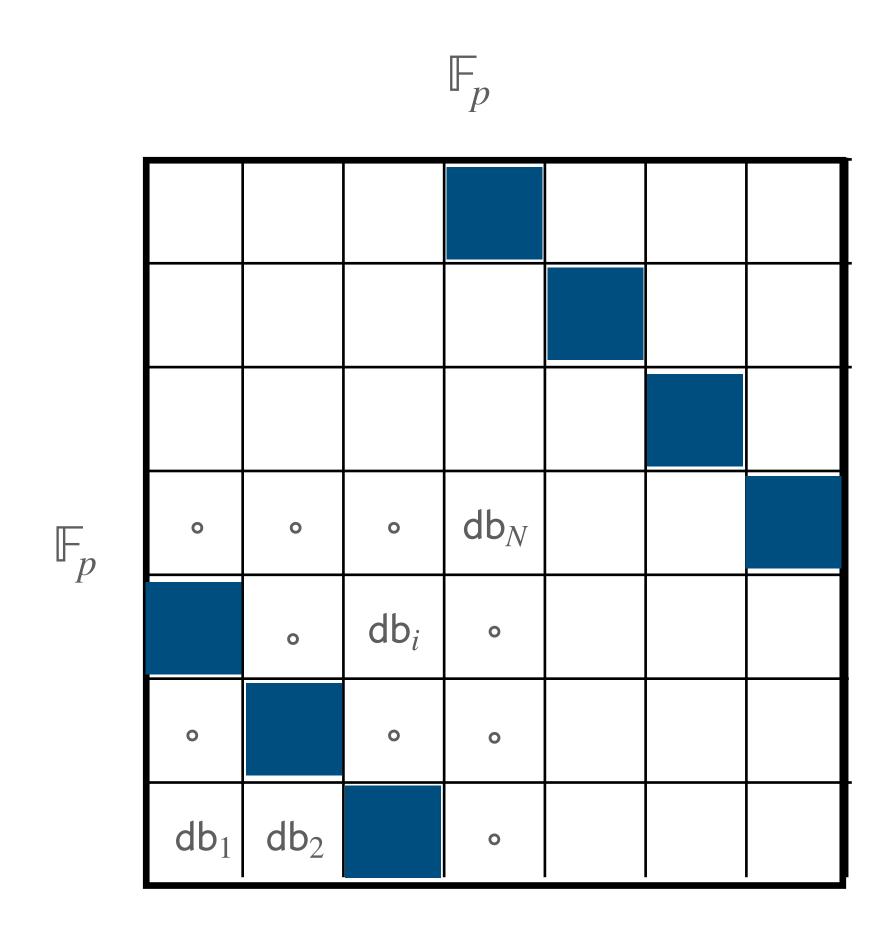
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:



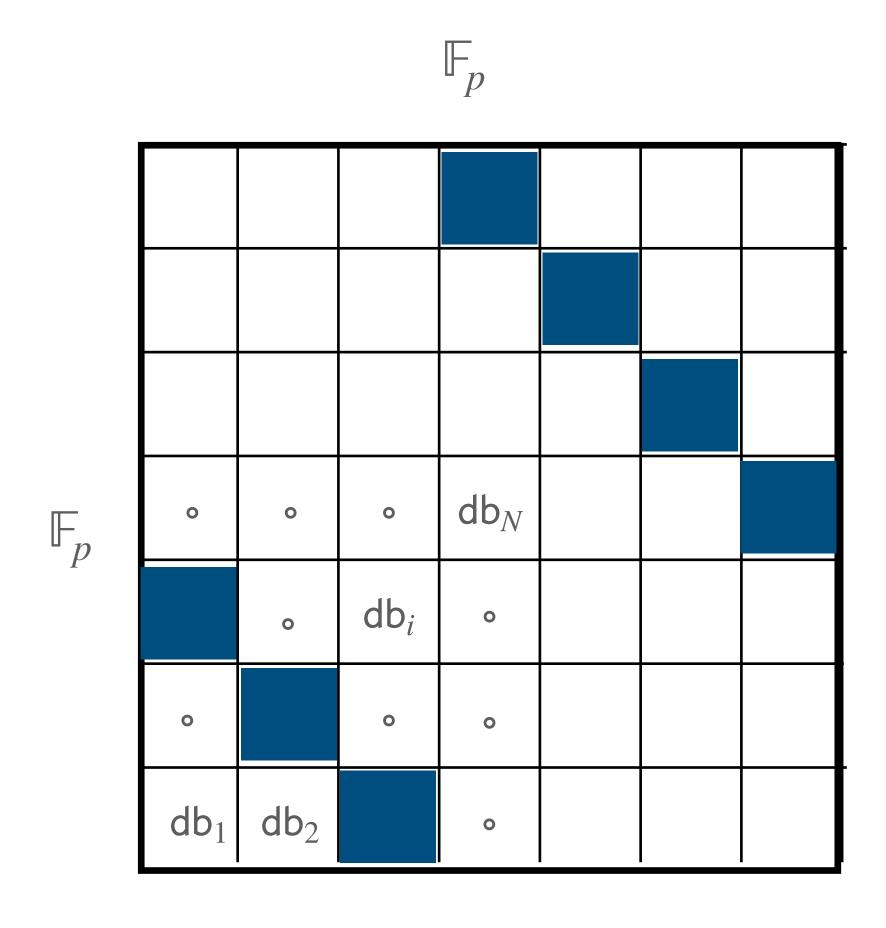
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:



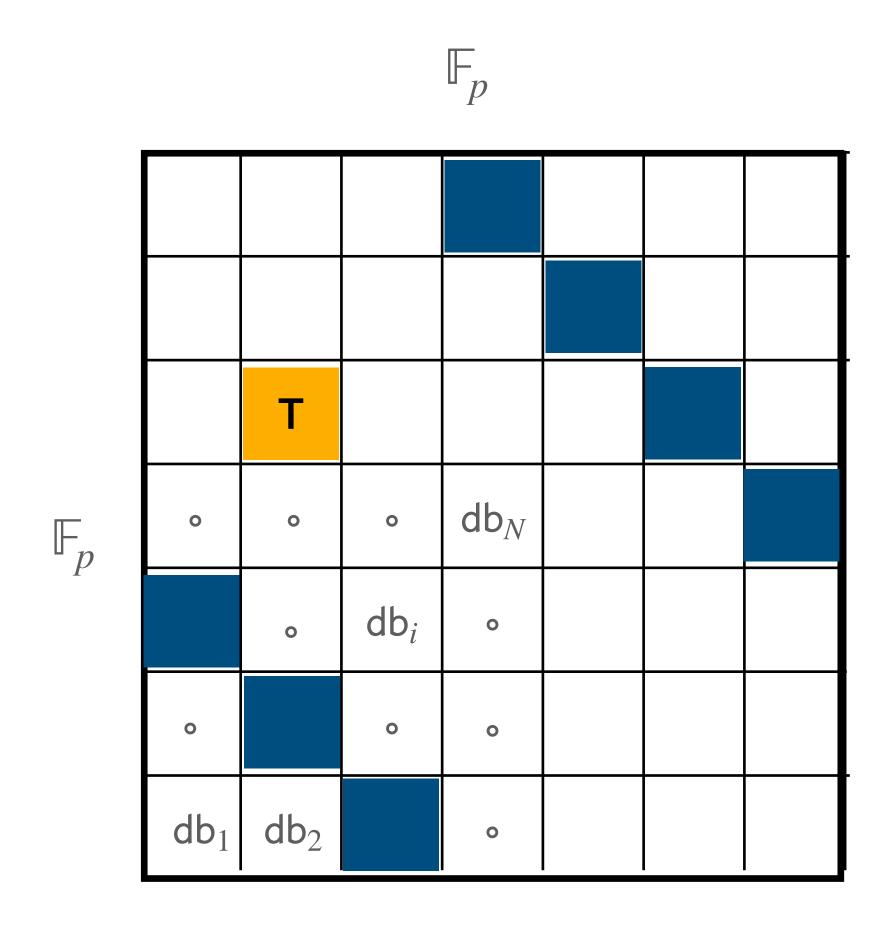
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:



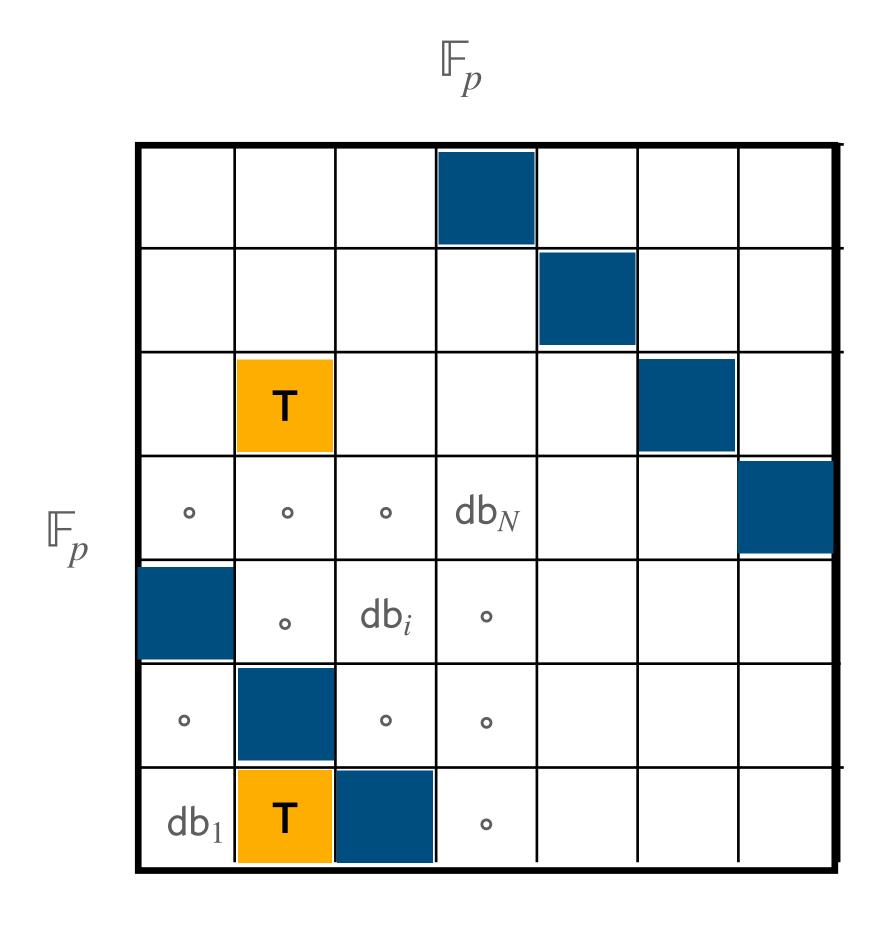
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L = L_1, ..., L_t$ be random lines through db_{i} .



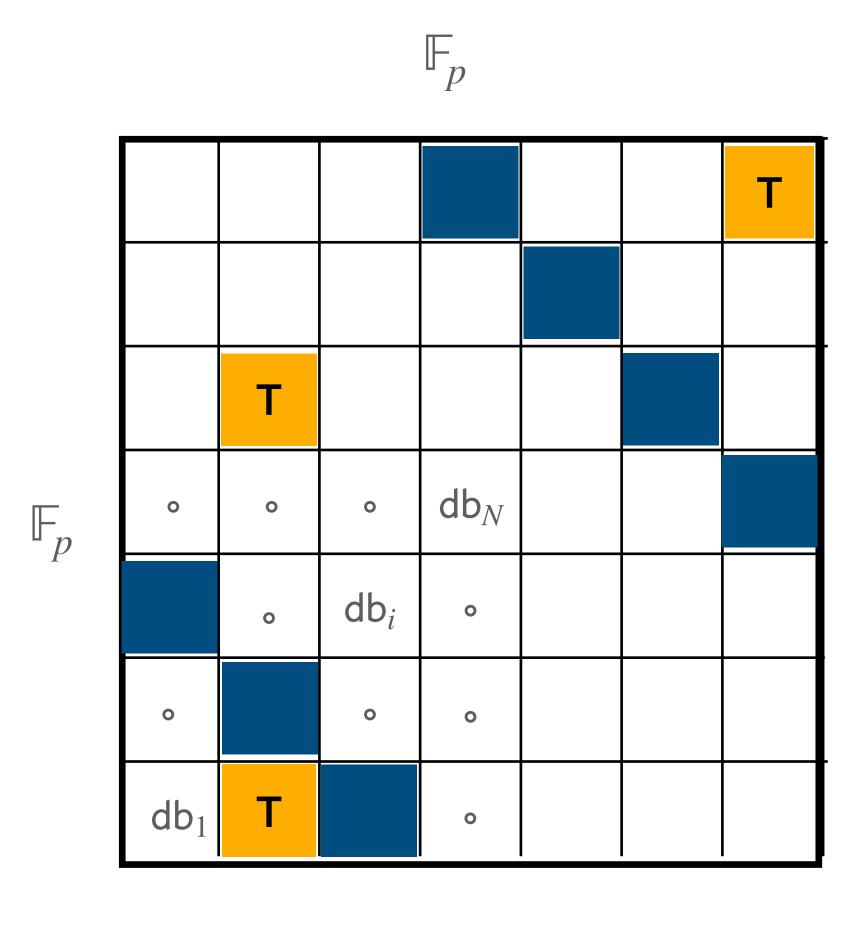
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L = L_1, ..., L_t$ be random lines through db_{i} .



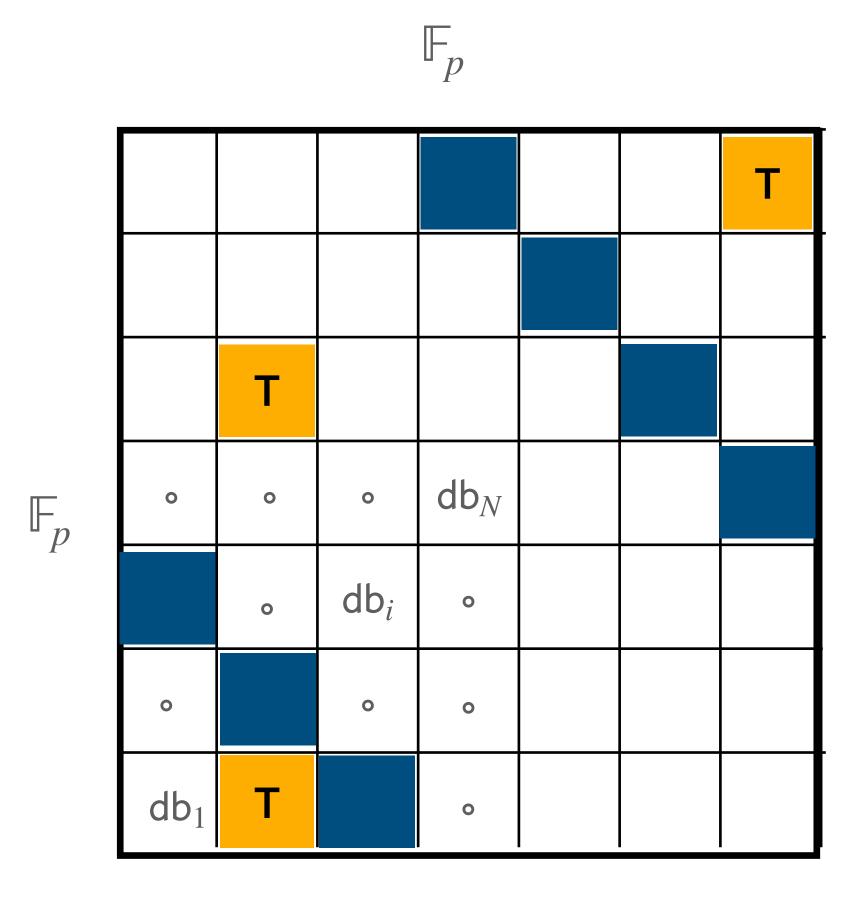
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L = L_1, ..., L_t$ be random lines through db_{i} .



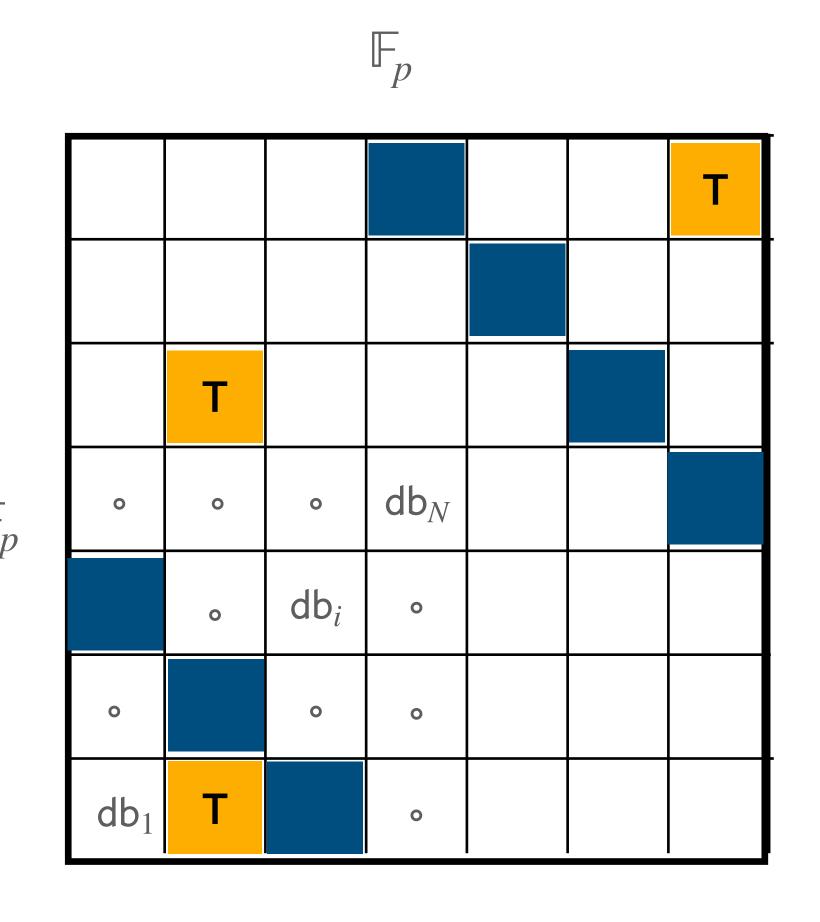
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L = L_1, ..., L_t$ be random lines through db_{i} .



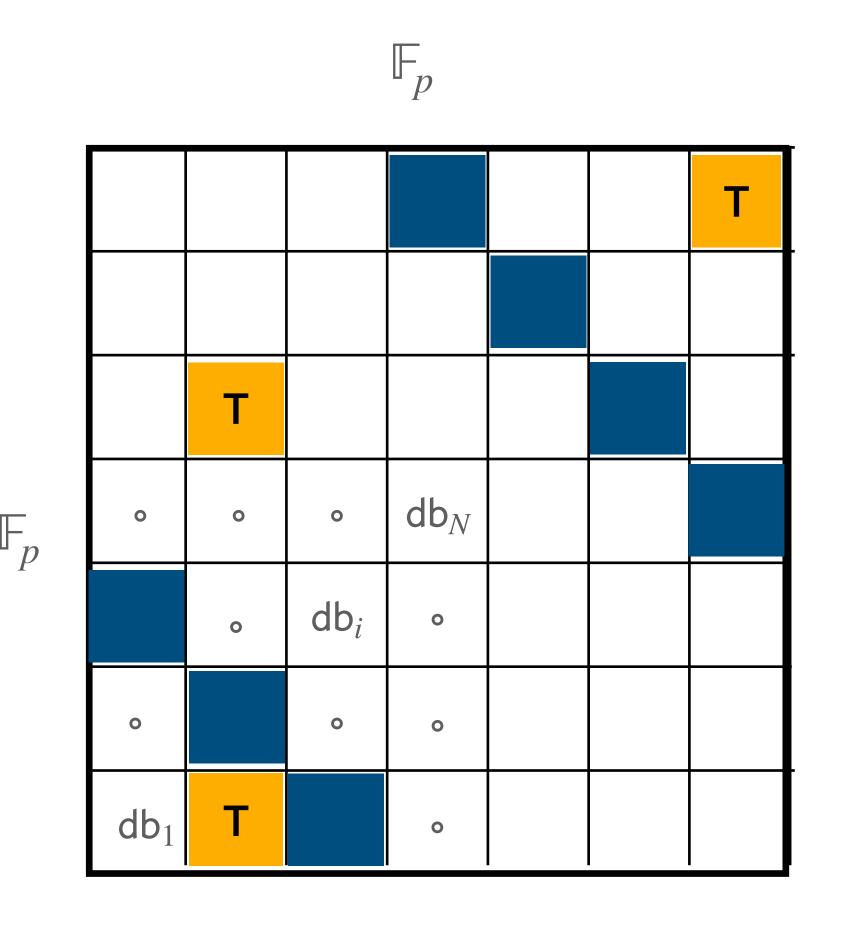
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L = L_1, ..., L_t$ be random lines through db_j .
 - 2. let T be a set of random points.



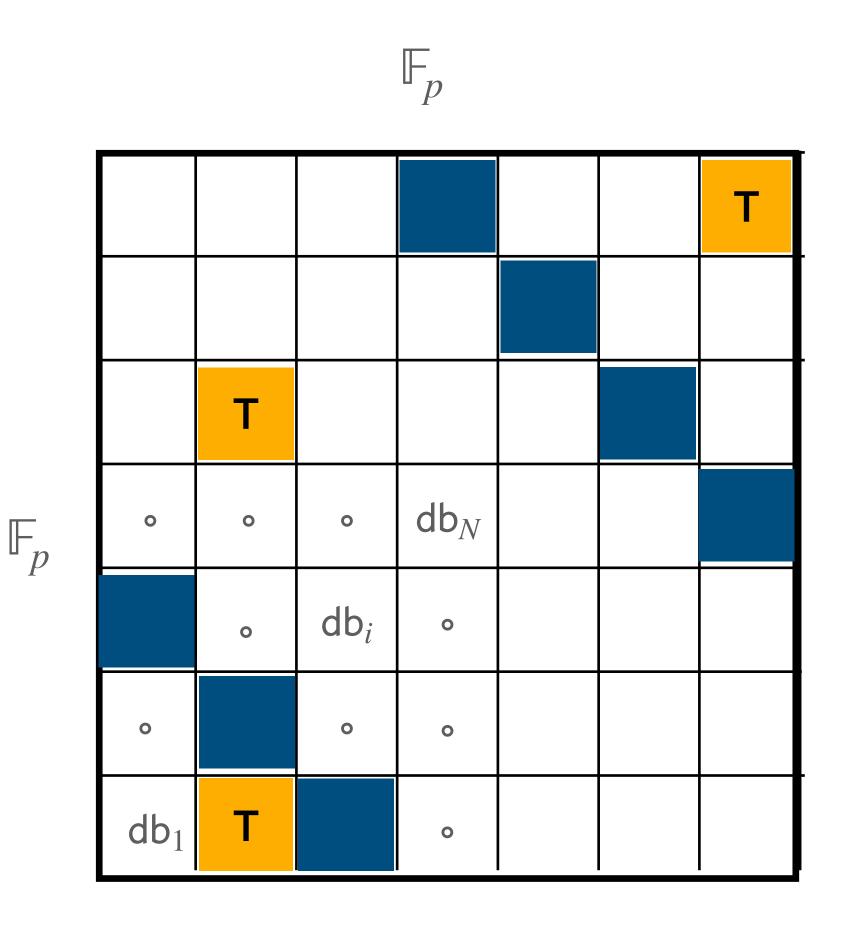
- 1. Want: db_j
- 2. RM. Que(j) $\rightarrow Q$:
 - 1. let $L = L_1, ..., L_t$ be random lines through db_i .
 - 2. let T be a set of random points.
 - 3. let $Q = L \cup T$.



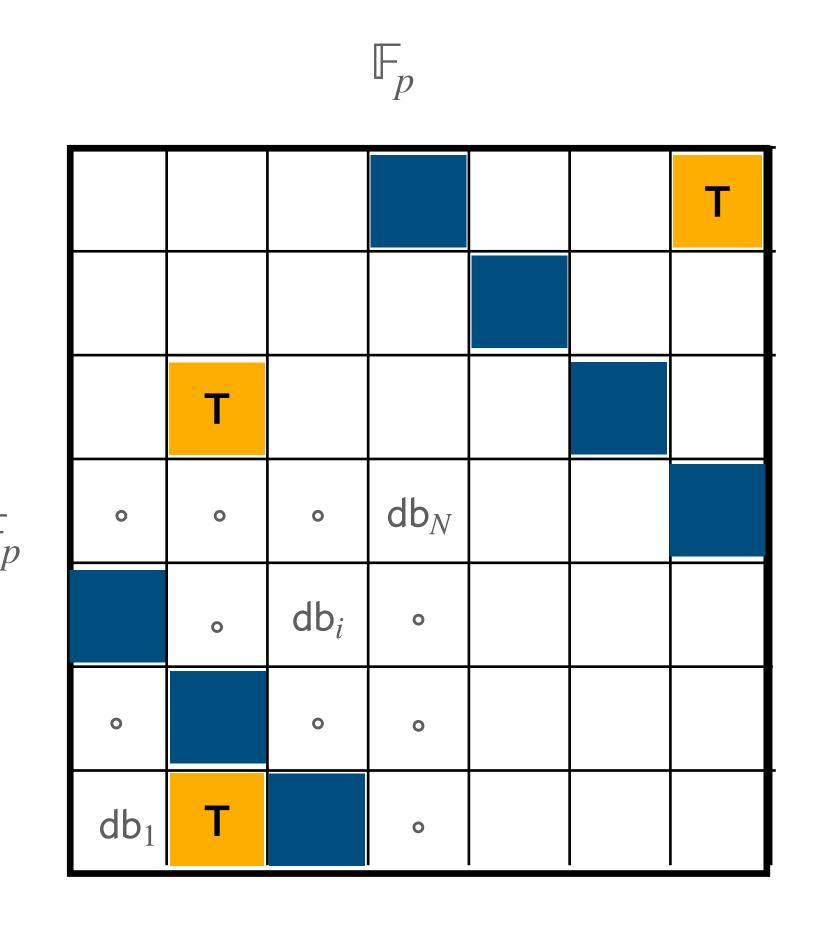
- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L = L_1, ..., L_t$ be random lines through db_{i} .
 - 2. let T be a set of random points.
 - 3. let $Q = L \cup T$.
- 3. RM. $Dec(E_O) \rightarrow db_j$:



- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L = L_1, ..., L_t$ be random lines through db_j .
 - 2. let T be a set of random points.
 - 3. let $Q = L \cup T$.
- 3. RM. $Dec(E_O) \rightarrow db_j$:
 - 1. If E_T is corrupt, output \bot

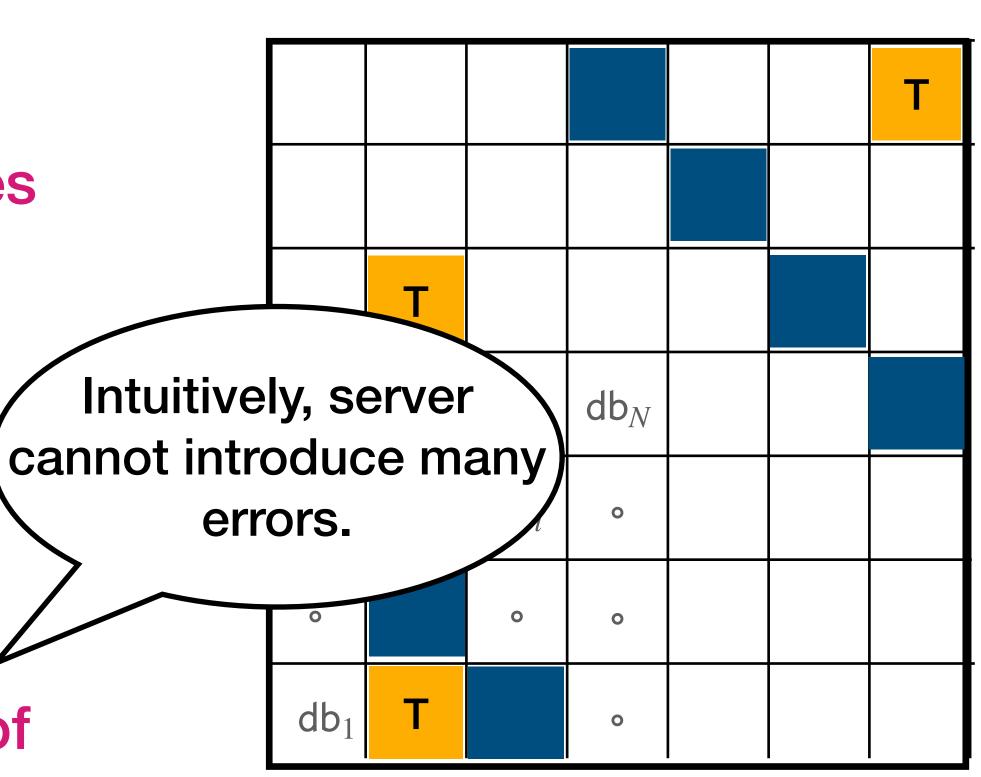


- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L = L_1, ..., L_t$ be random lines through db_{j} .
 - 2. let T be a set of random points.
 - 3. let $Q = L \cup T$.
- 3. RM. $Dec(E_O) \rightarrow db_j$:
 - 1. If E_T is corrupt, output \bot
 - 2. Else, output majority decoding of $E_{L_1}, ..., E_{L_t}$.



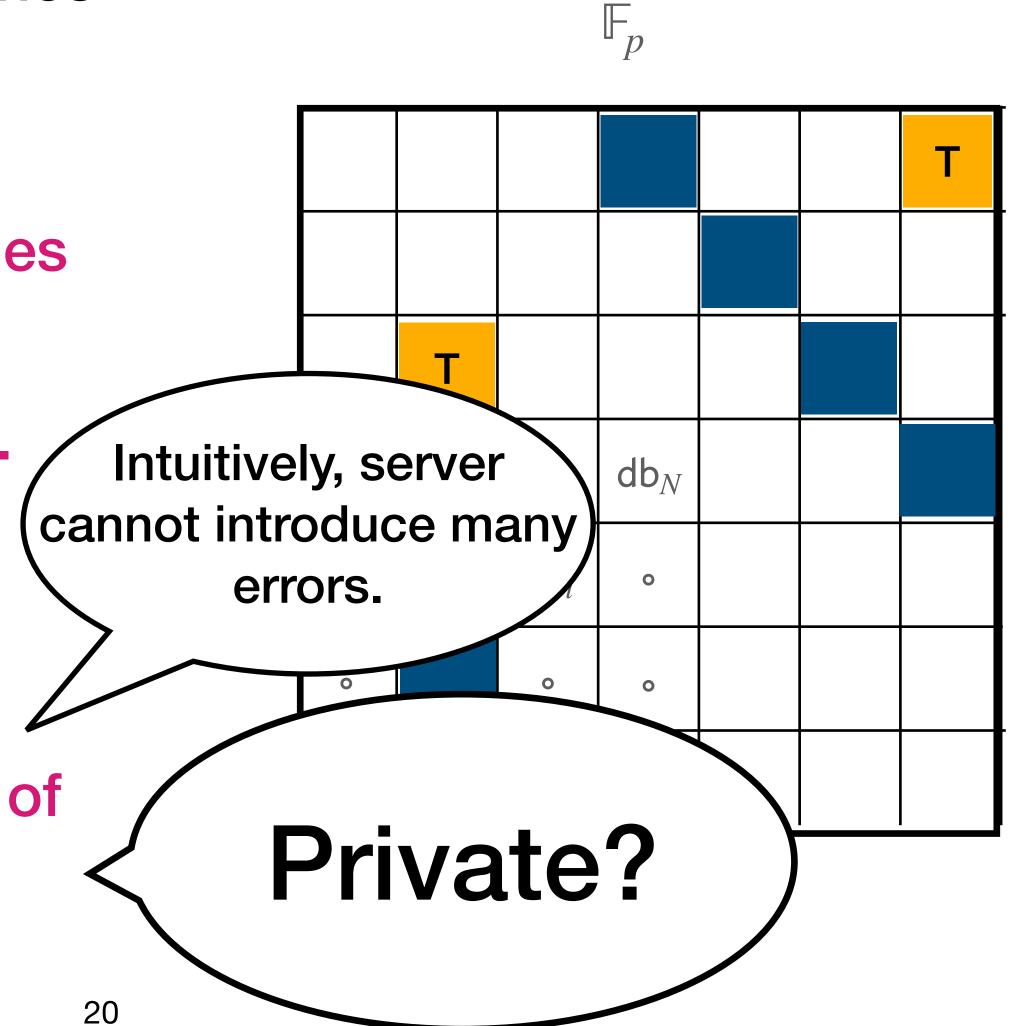
Modified local decoding with test queries

- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L = L_1, ..., L_t$ be random lines through db_i .
 - 2. let T be a set of random points.
 - 3. let $Q = L \cup T$.
- 3. RM. $Dec(E_O) \rightarrow db_j$:
 - 1. If E_T is corrupt, output \bot
 - 2. Else, output majority decoding of E_{L_1}, \ldots, E_{L_t} .



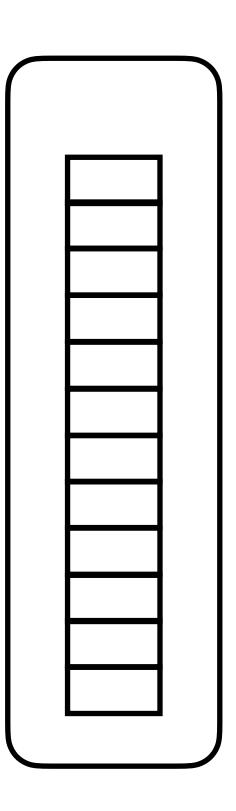
 \mathbb{F}_p

- 1. Want: db_j
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L = L_1, ..., L_t$ be random lines through db_i .
 - 2. let T be a set of random points.
 - 3. let $Q = L \cup T$.
- 3. RM. $Dec(E_O) \rightarrow db_j$:
 - 1. If E_T is corrupt, output \bot
 - 2. Else, output majority decoding of $E_{L_1}, ..., E_{L_t}$.

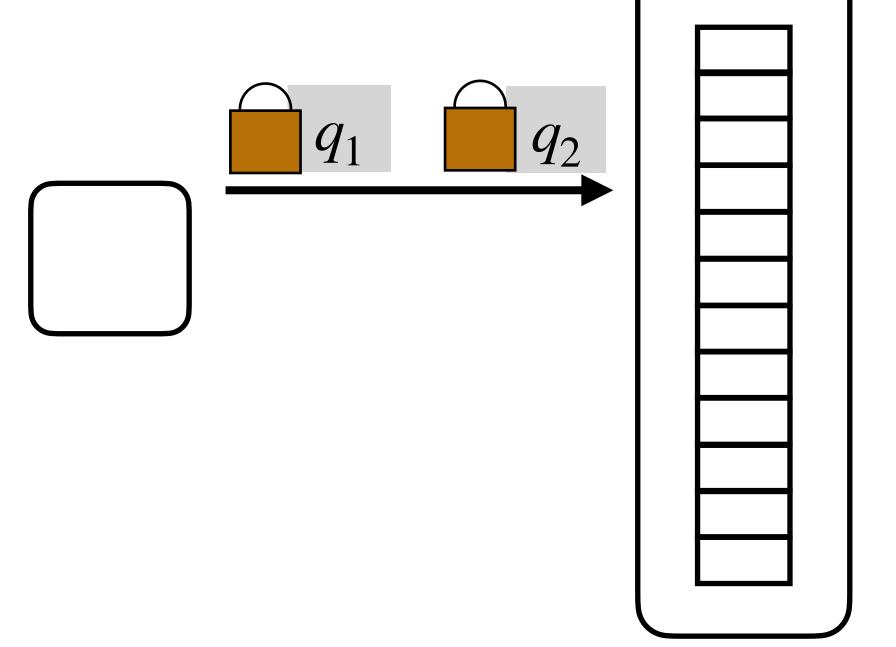


What guarantee does PIR privacy give us on multiple queries?

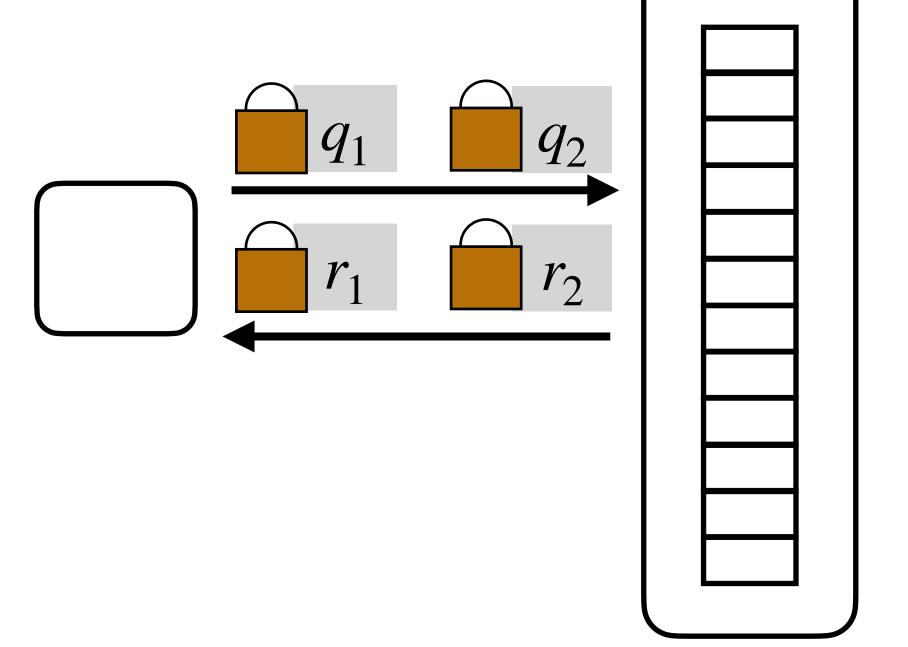
What guarantee does PIR privacy give us on multiple queries?



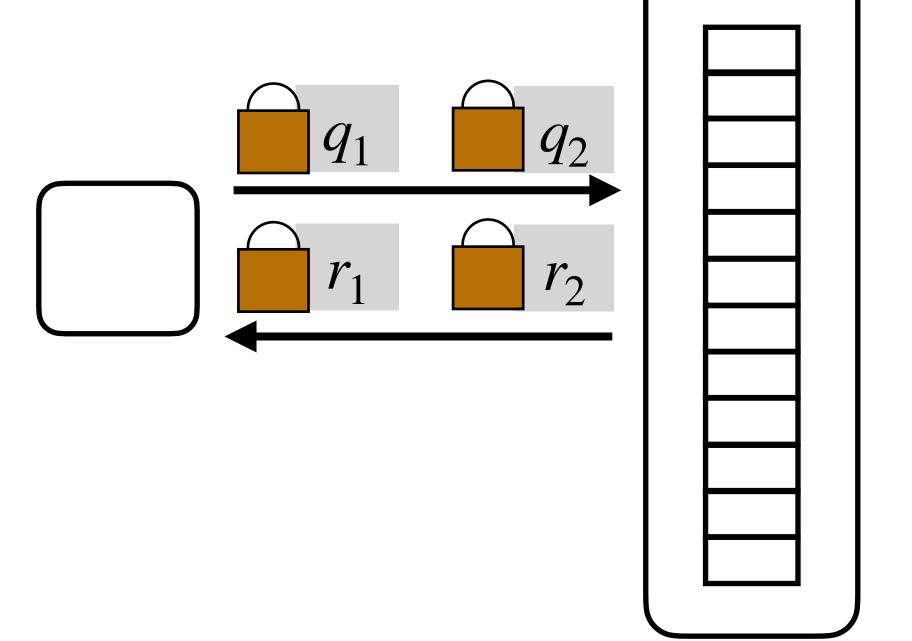
• What guarantee does PIR privacy give us on multiple queries?



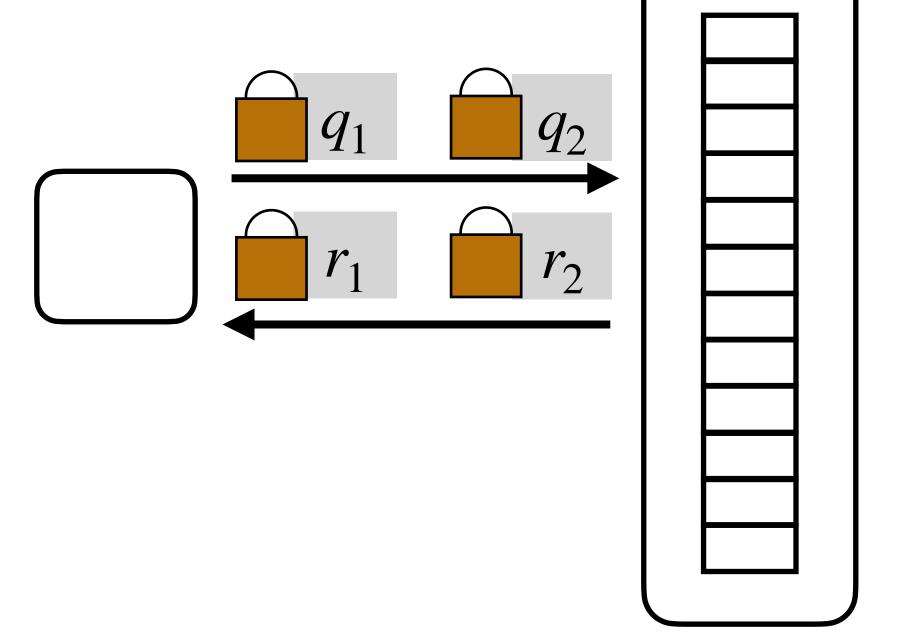
• What guarantee does PIR privacy give us on multiple queries?



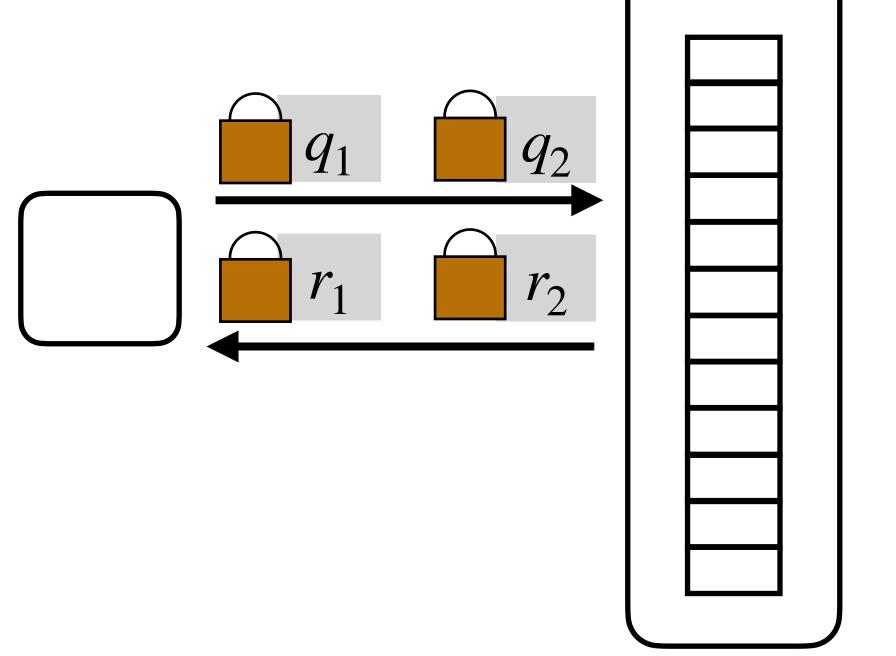
- What guarantee does PIR privacy give us on multiple queries?
 - Response i is independent of query j?



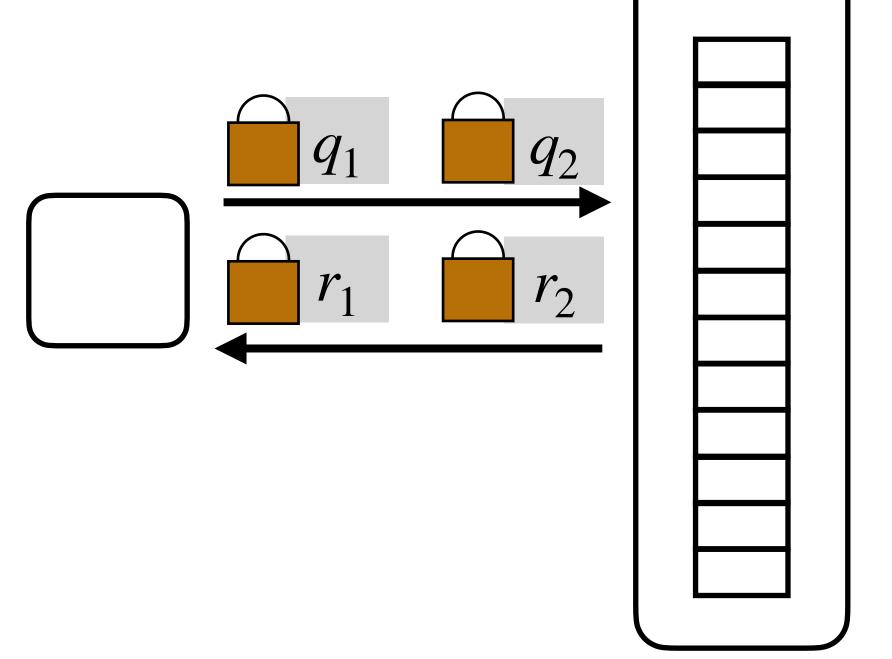
- What guarantee does PIR privacy give us on multiple queries?
 - Response i is independent of query j?
 - Don't know how to prove this strong guarantee.



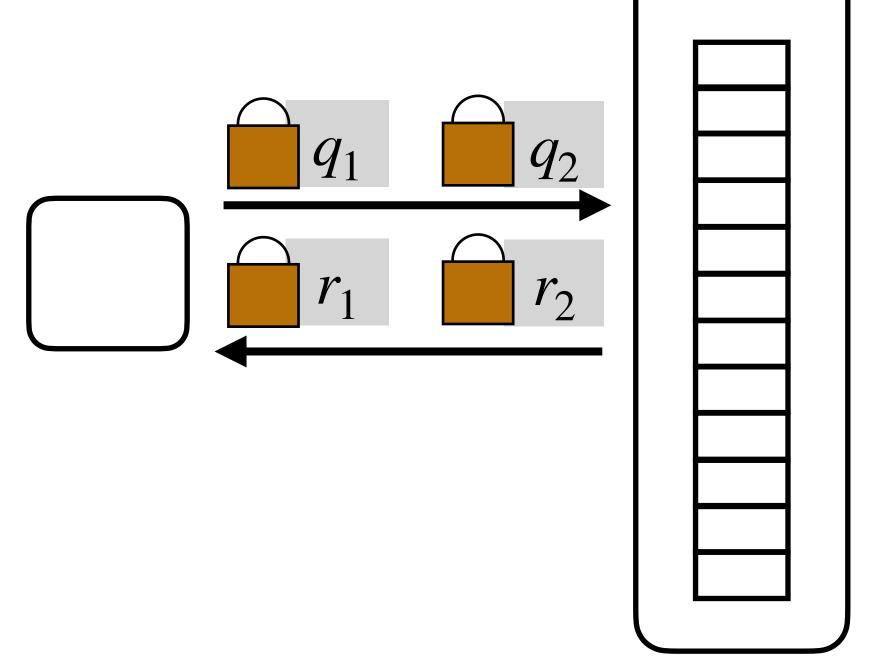
- What guarantee does PIR privacy give us on multiple queries?
 - Response i is independent of query j?
 - Don't know how to prove this strong guarantee.
- Problem: PIR guarantees that response for i does not "leak information" about query j, but may have "non-signaling" correlations with query j.



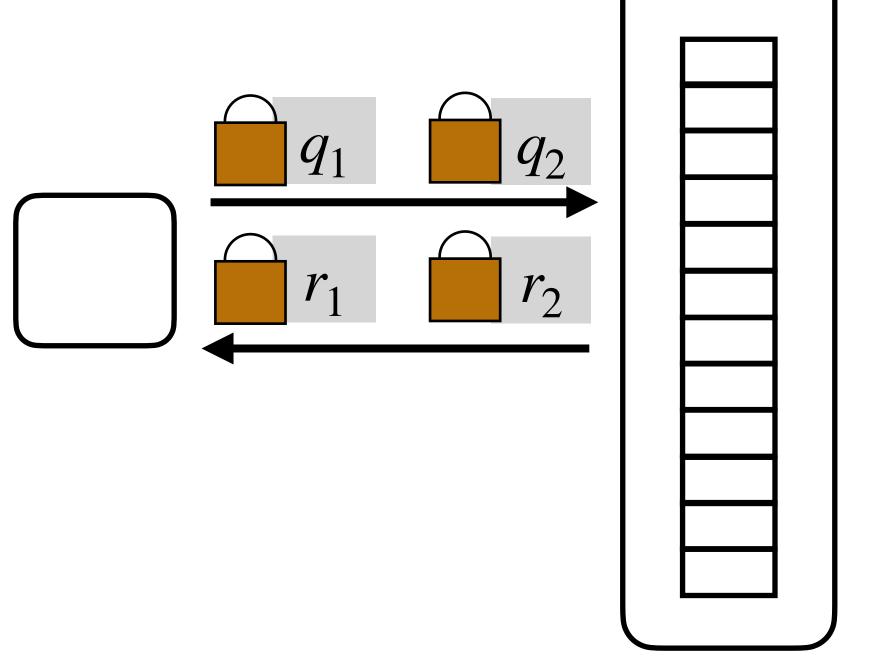
- What guarantee does PIR privacy give us on multiple queries?
 - Response i is independent of query j?
 - Don't know how to prove this strong guarantee.
- Problem: PIR guarantees that response for i does not "leak information" about query j, but may have "non-signaling" correlations with query j.
 - weaker than "independent responses!"



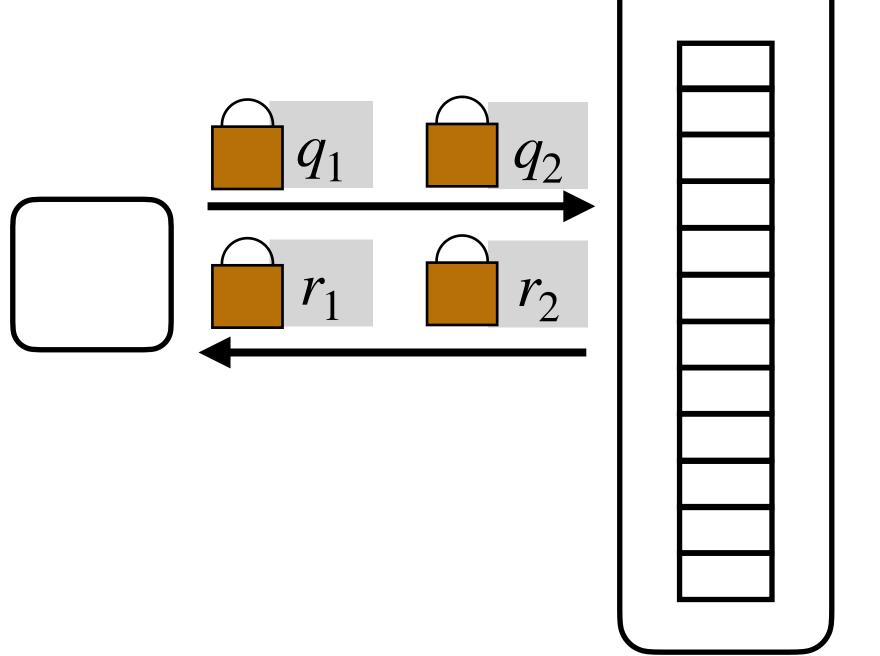
- What guarantee does PIR privacy give us on multiple queries?
 - Response i is independent of query j?
 - Don't know how to prove this strong guarantee.
- Problem: PIR guarantees that response for i does not "leak information" about query j, but may have "non-signaling" correlations with query j.
 - weaker than "independent responses!"
- Are non-signaling correlations actually a problem?



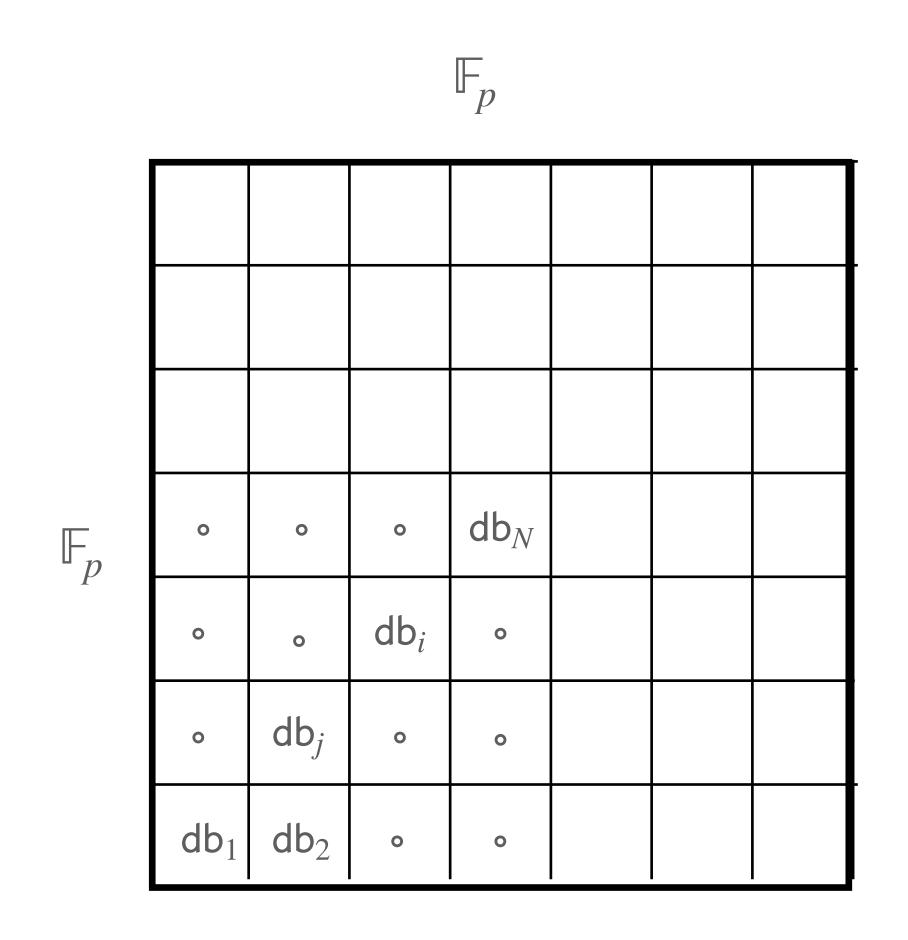
- What guarantee does PIR privacy give us on multiple queries?
 - Response i is independent of query j?
 - Don't know how to prove this strong guarantee.
- Problem: PIR guarantees that response for i does not "leak information" about query j, but may have "non-signaling" correlations with query j.
 - weaker than "independent responses!"
- Are non-signaling correlations actually a problem?
 - Can potentially allow adversary to differentiate between test and decoding queries — can't prove security.



- What guarantee does PIR privacy give us on multiple queries?
 - Response i is independent of query j?
 - Don't know how to prove this strong guarantee.
- Problem: PIR guarantees that response for i does not "leak information" about query j, but may have "non-signaling" correlations with query j.
 - weaker than "independent responses!"
- Are non-signaling correlations actually a problem?
 - Can potentially allow adversary to differentiate between test and decoding queries — can't prove security.
- We show how to overcome this barrier by constructing decoder against NS adversaries with only overhead λ



Our construction



Non-signaling local decoding

 \mathbb{F}_{p} db_N db_i db_j db_2

Non-signaling local decoding

1. Want: db_j .

 \mathbb{F}_p db_N db_i db_{j}

- 1. Want: db_j .
- 2. RM. Que $(j) \rightarrow Q$:

	\mathbb{F}_p						
\mathbb{F}_p							
	0	0	0	db_N			
	0	0	db_i	0			
	0	db_j	0	0			
	db_1	db_2	0	0			

Non-signaling local decoding

- 1. Want: db_j .
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L_1, ..., L_t$ be random lines through db_j .

 db_N db_i db_i

 \mathbb{F}_{p}

Non-signaling local decoding

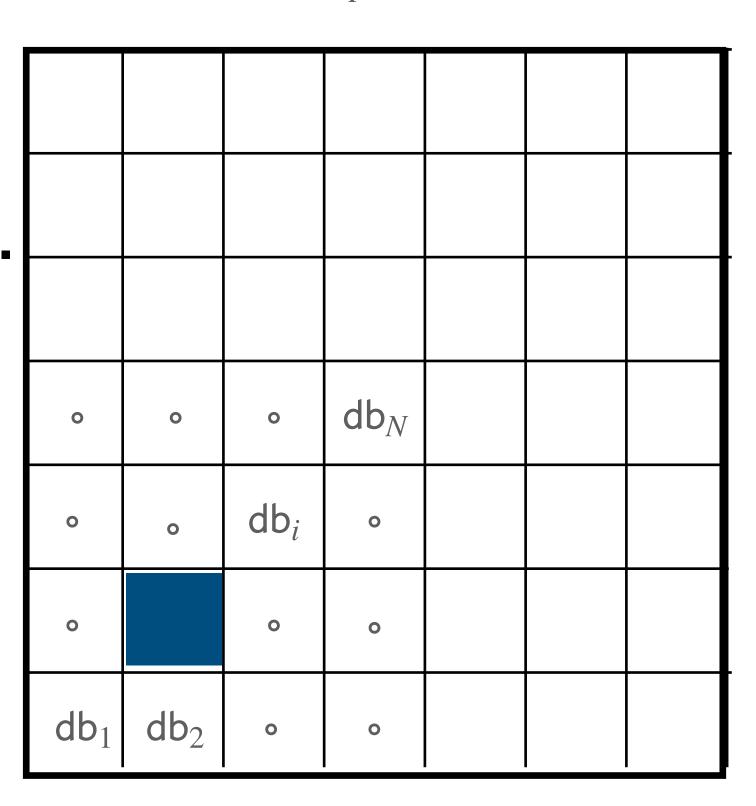
- 1. Want: db_j .
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L_1, ..., L_t$ be random lines through db_j .
 - 2. Pick a random point on each line; call this the test set T.

 db_N db_i db_i

 \mathbb{F}_p

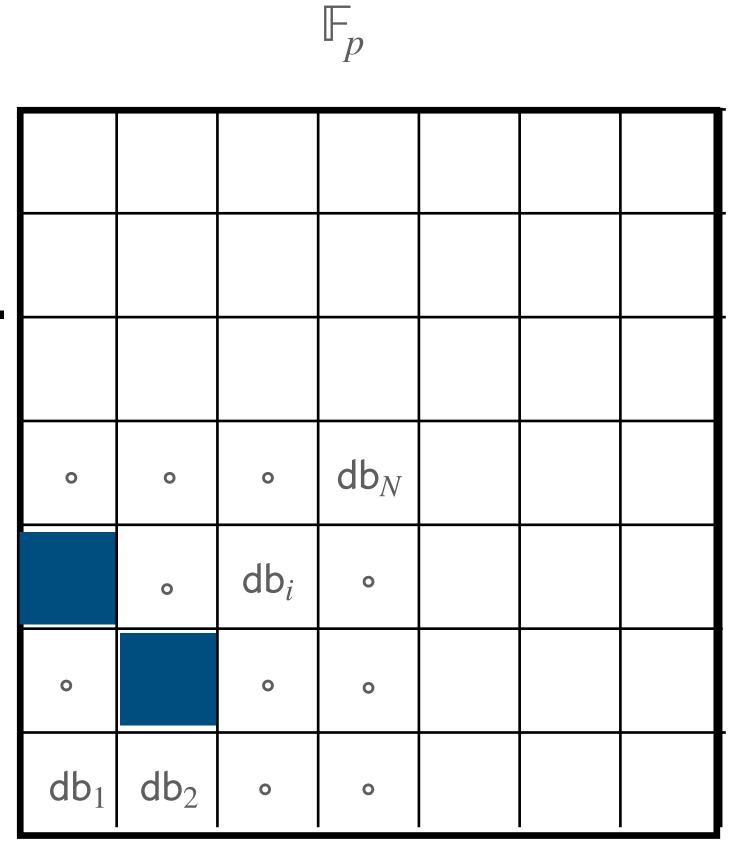
Non-signaling local decoding

- 1. Want: db_j .
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L_1, ..., L_t$ be random lines through db_j .
 - 2. Pick a random point on each line; call this the test set T.



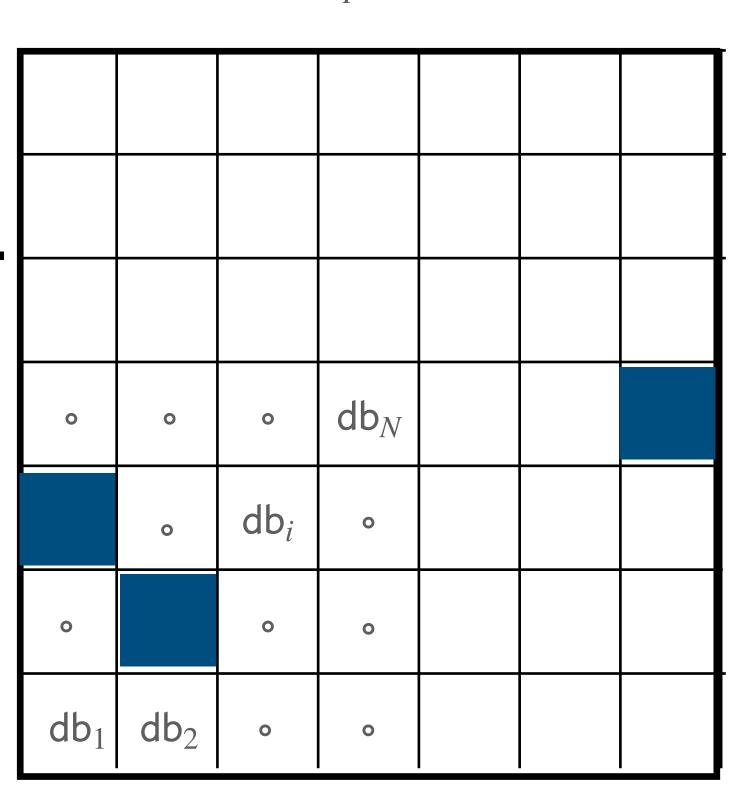
 \mathbb{F}_p

- 1. Want: db_j .
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L_1, ..., L_t$ be random lines through db_j .
 - 2. Pick a random point on each line; call this the test set T.



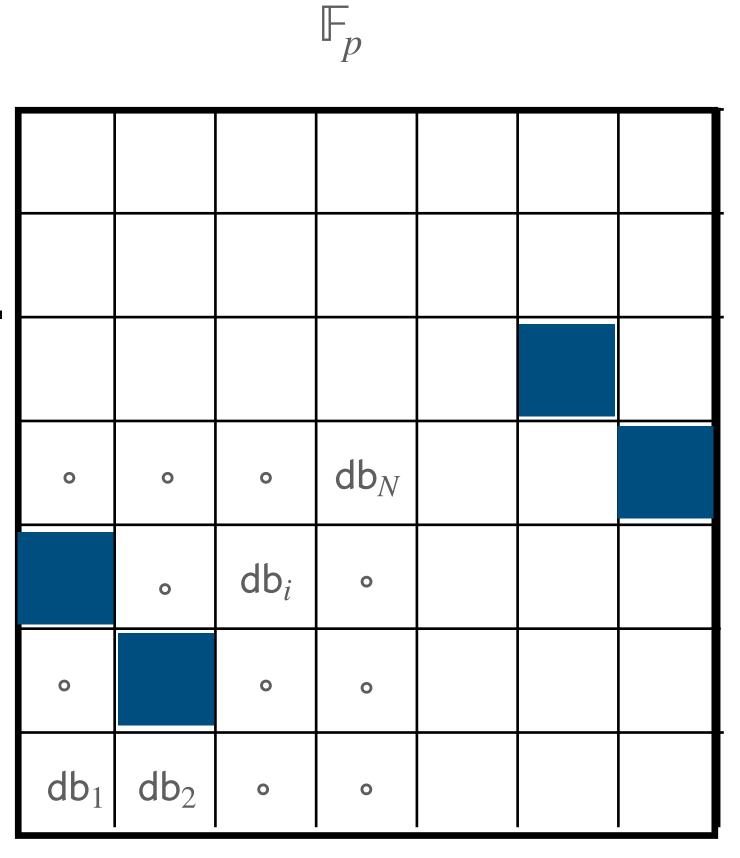
Non-signaling local decoding

- 1. Want: db_j .
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L_1, ..., L_t$ be random lines through db_j .
 - 2. Pick a random point on each line; call this the test set T.

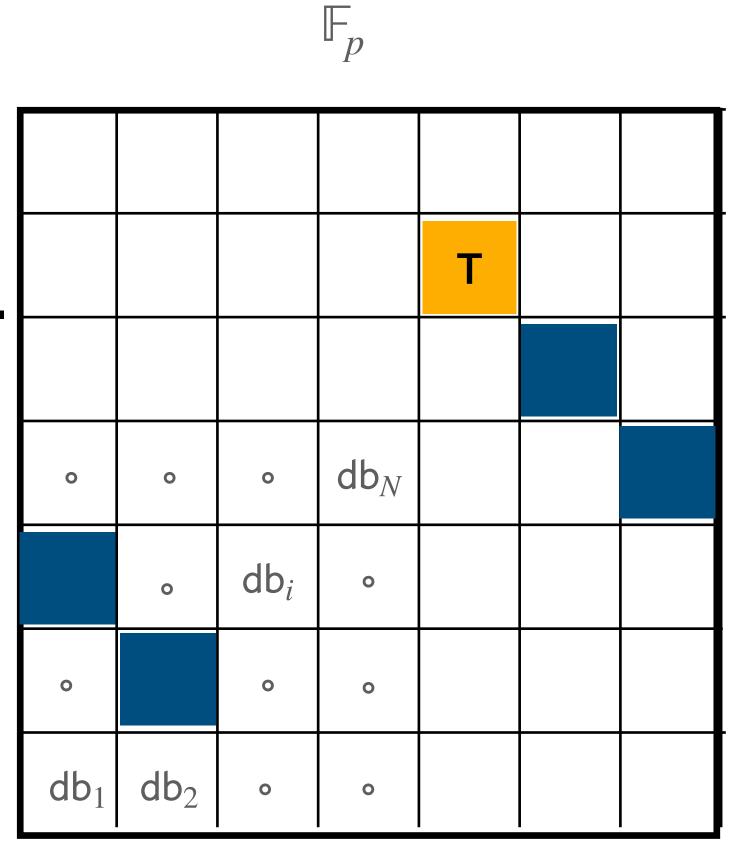


 \mathbb{F}_p

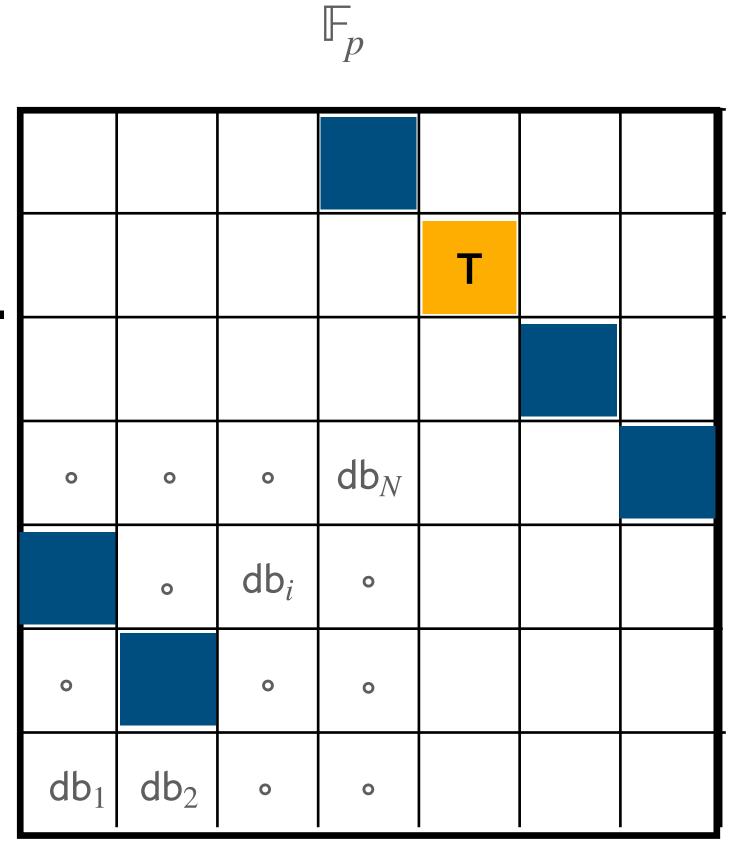
- 1. Want: db_j .
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L_1, ..., L_t$ be random lines through db_j .
 - 2. Pick a random point on each line; call this the test set T.



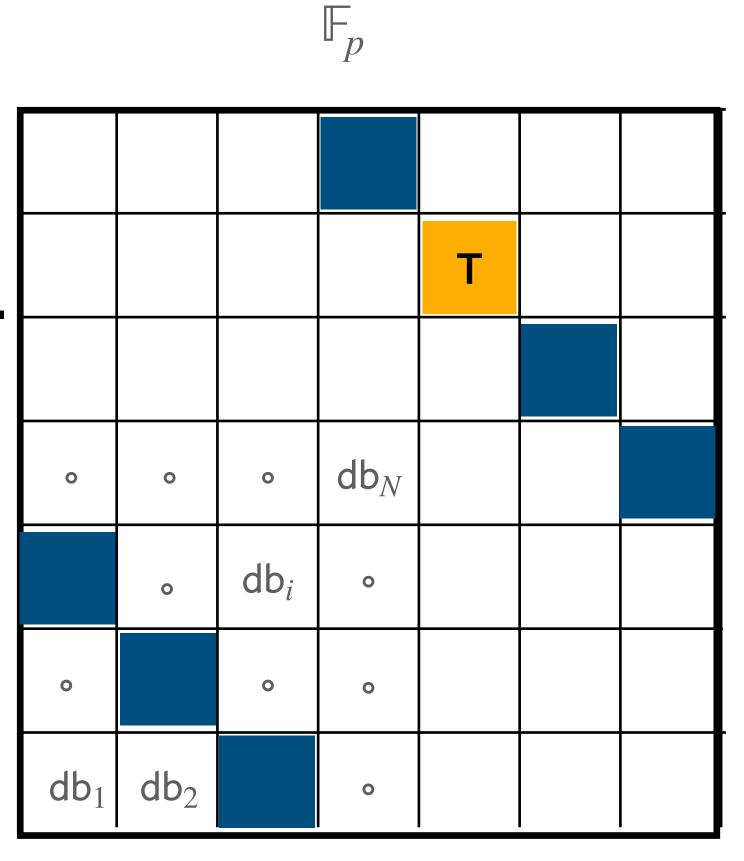
- 1. Want: db_j .
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L_1, ..., L_t$ be random lines through db_j .
 - 2. Pick a random point on each line; call this the test set T.



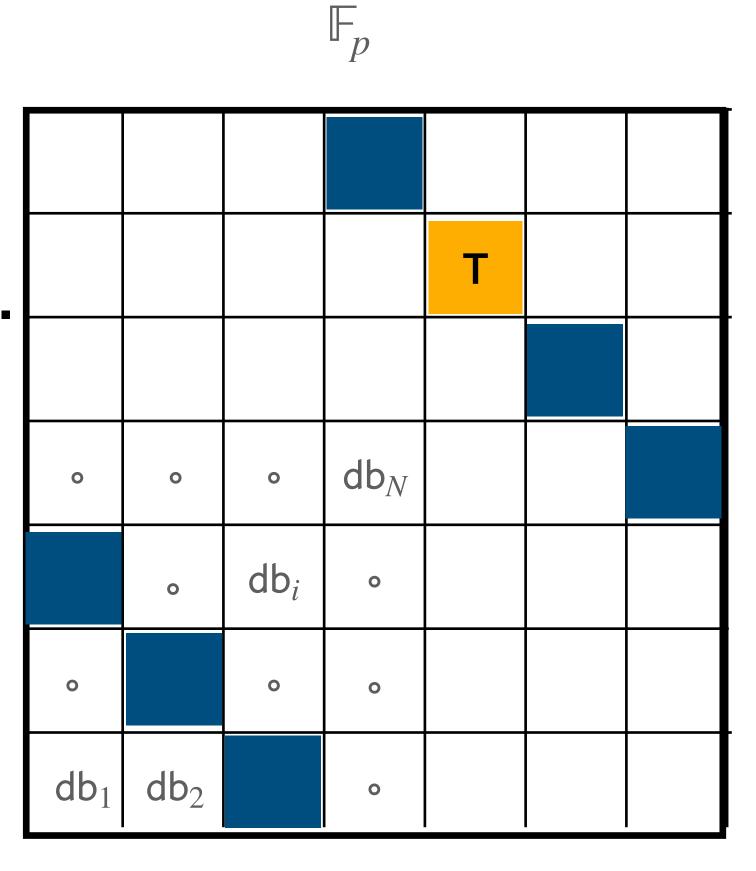
- 1. Want: db_j .
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L_1, ..., L_t$ be random lines through db_j .
 - 2. Pick a random point on each line; call this the test set T.



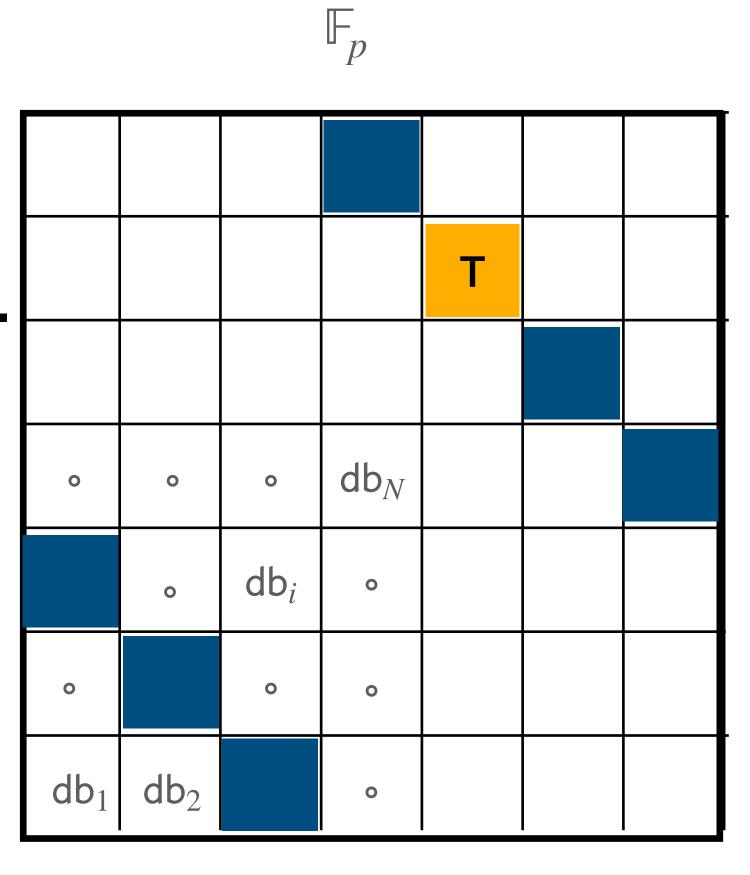
- 1. Want: db_j .
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L_1, ..., L_t$ be random lines through db_j .
 - 2. Pick a random point on each line; call this the test set T.



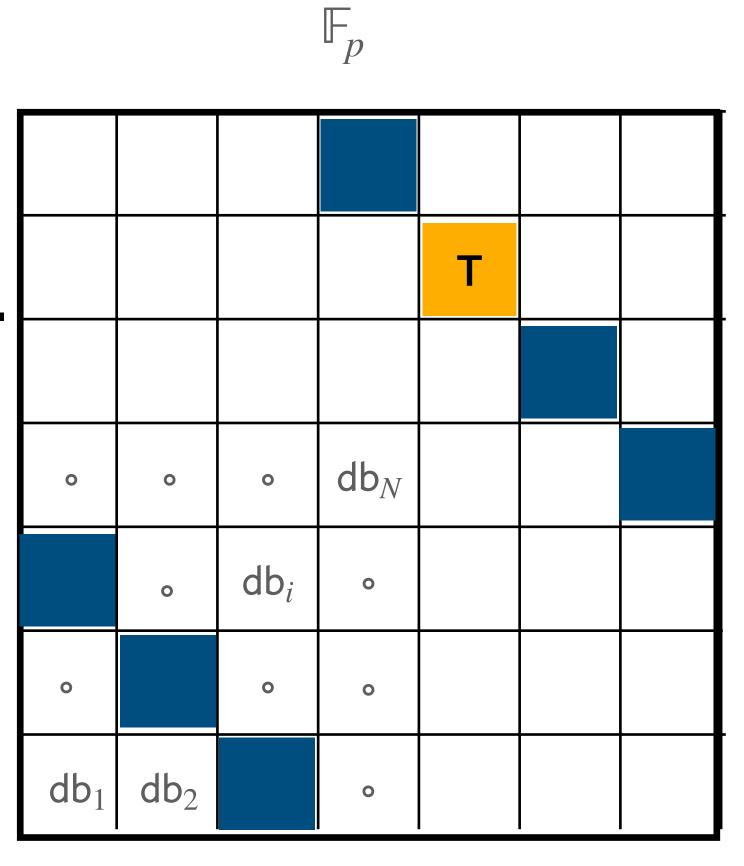
- 1. Want: db_j .
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L_1, ..., L_t$ be random lines through db_j .
 - 2. Pick a random point on each line; call this the test set T.
 - 3. let $Q = L \cup T$.



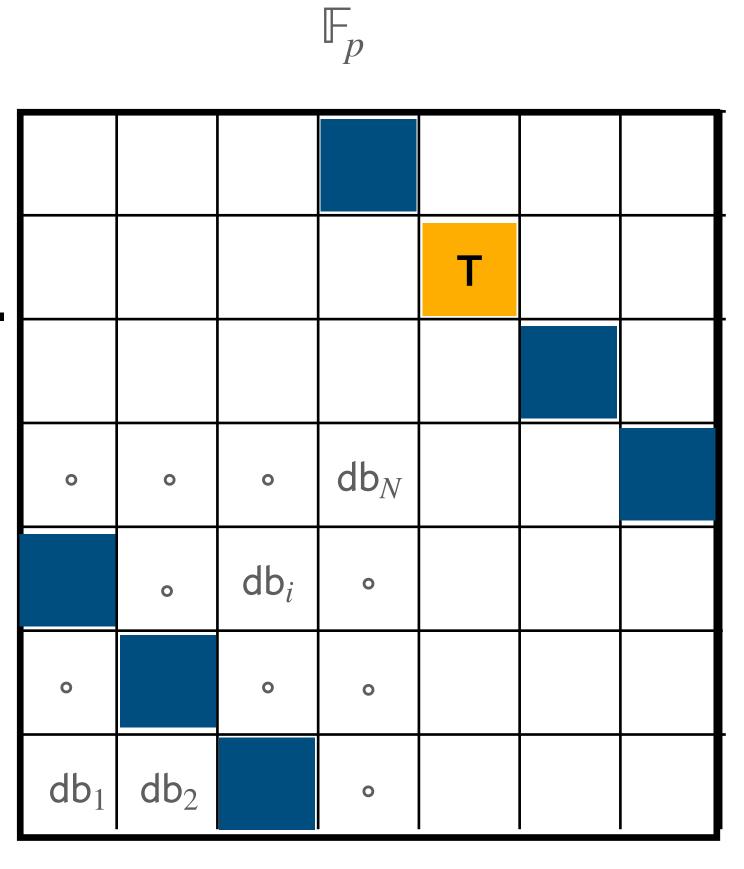
- 1. Want: db_j .
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L_1, ..., L_t$ be random lines through db_j .
 - 2. Pick a random point on each line; call this the test set T.
 - 3. let $Q = L \cup T$.
- 3. RM. $Dec(E_Q) \rightarrow db_j$:

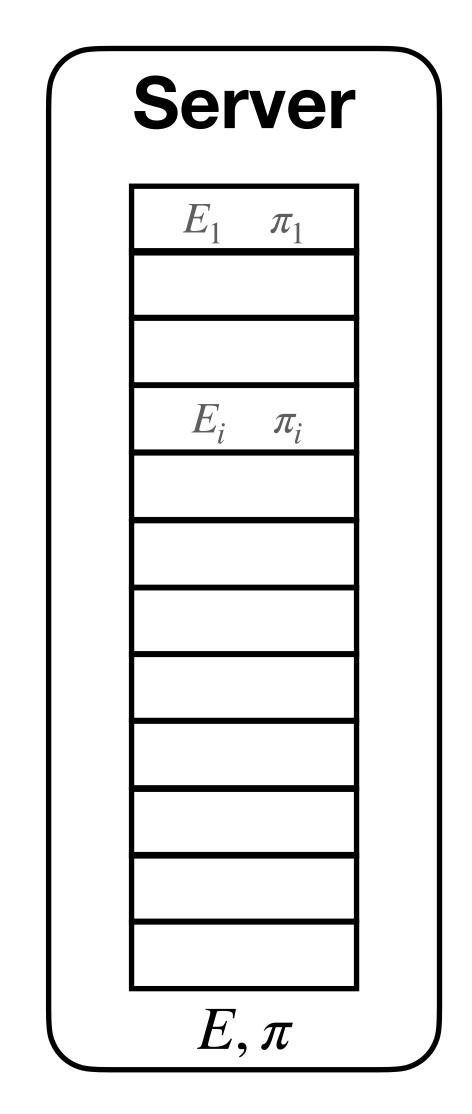


- 1. Want: db_j .
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L_1, ..., L_t$ be random lines through db_j .
 - 2. Pick a random point on each line; call this the test set T.
 - 3. let $Q = L \cup T$.
- 3. RM. $Dec(E_Q) \rightarrow db_j$:
 - 1. If E_T has corruptions, output \bot

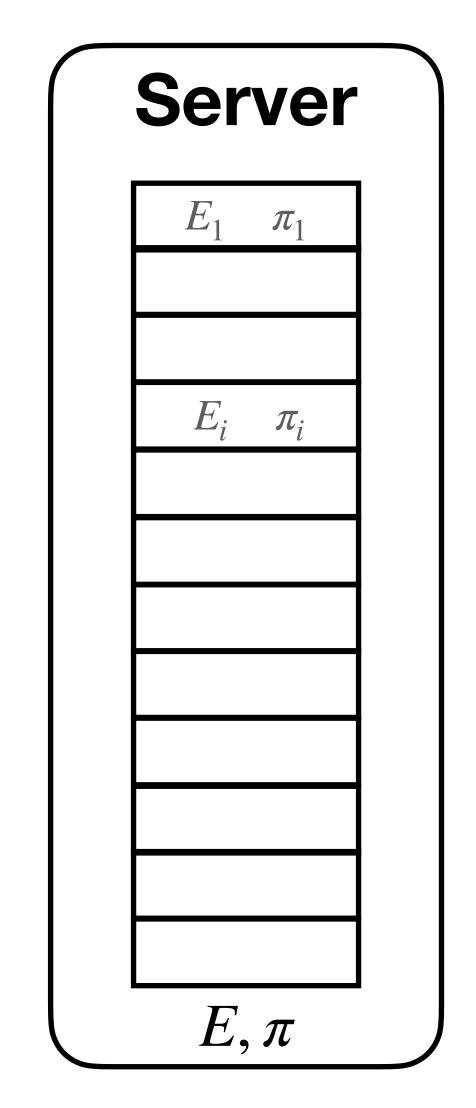


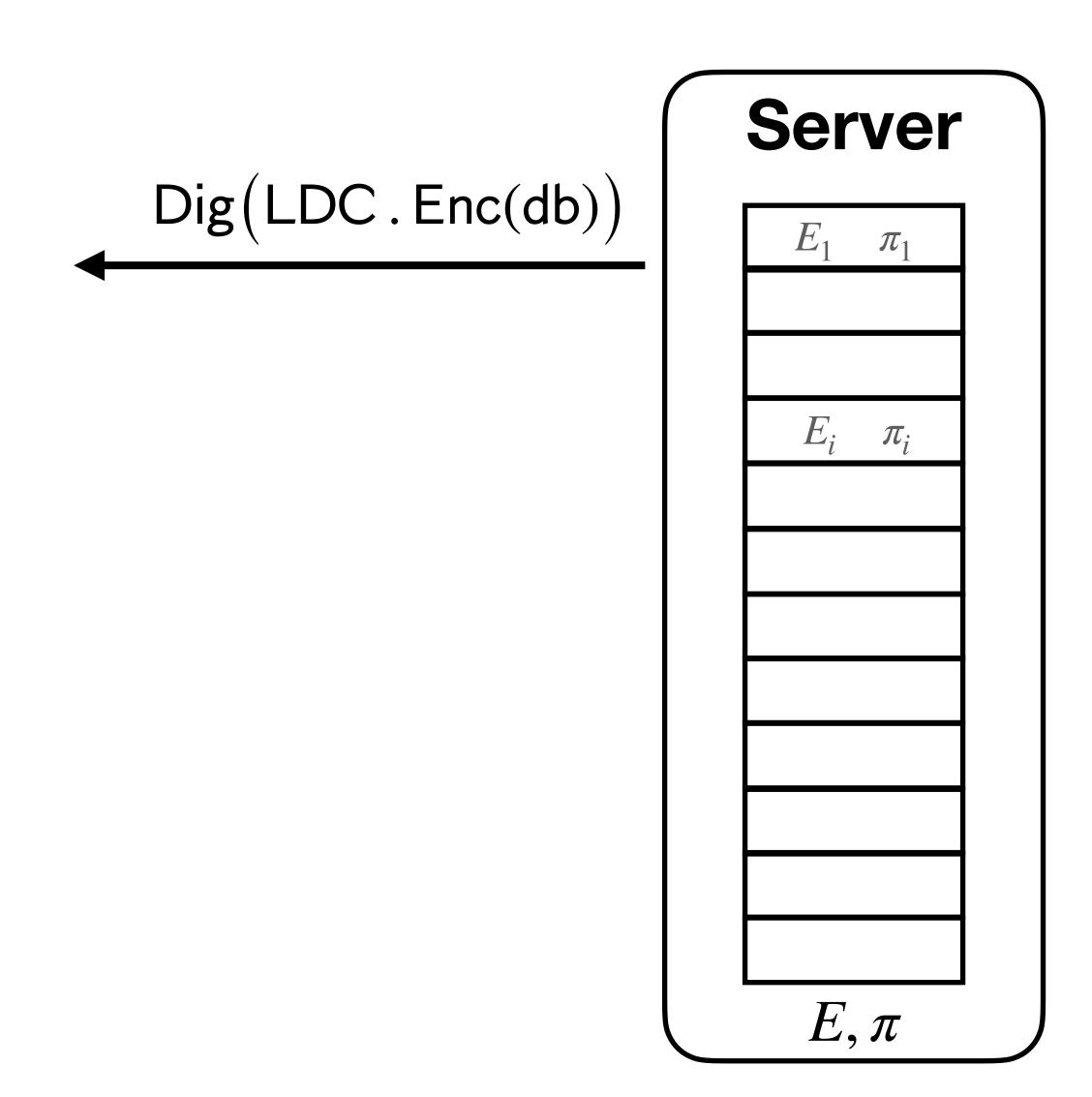
- 1. Want: db_j .
- 2. RM. Que $(j) \rightarrow Q$:
 - 1. let $L_1, ..., L_t$ be random lines through db_j .
 - 2. Pick a random point on each line; call this the test set T.
 - 3. let $Q = L \cup T$.
- 3. RM. $Dec(E_Q) \rightarrow db_j$:
 - 1. If E_T has corruptions, output \bot
 - 2. Else, decode $E_{L_1}, ..., E_{L_t}$ as before.



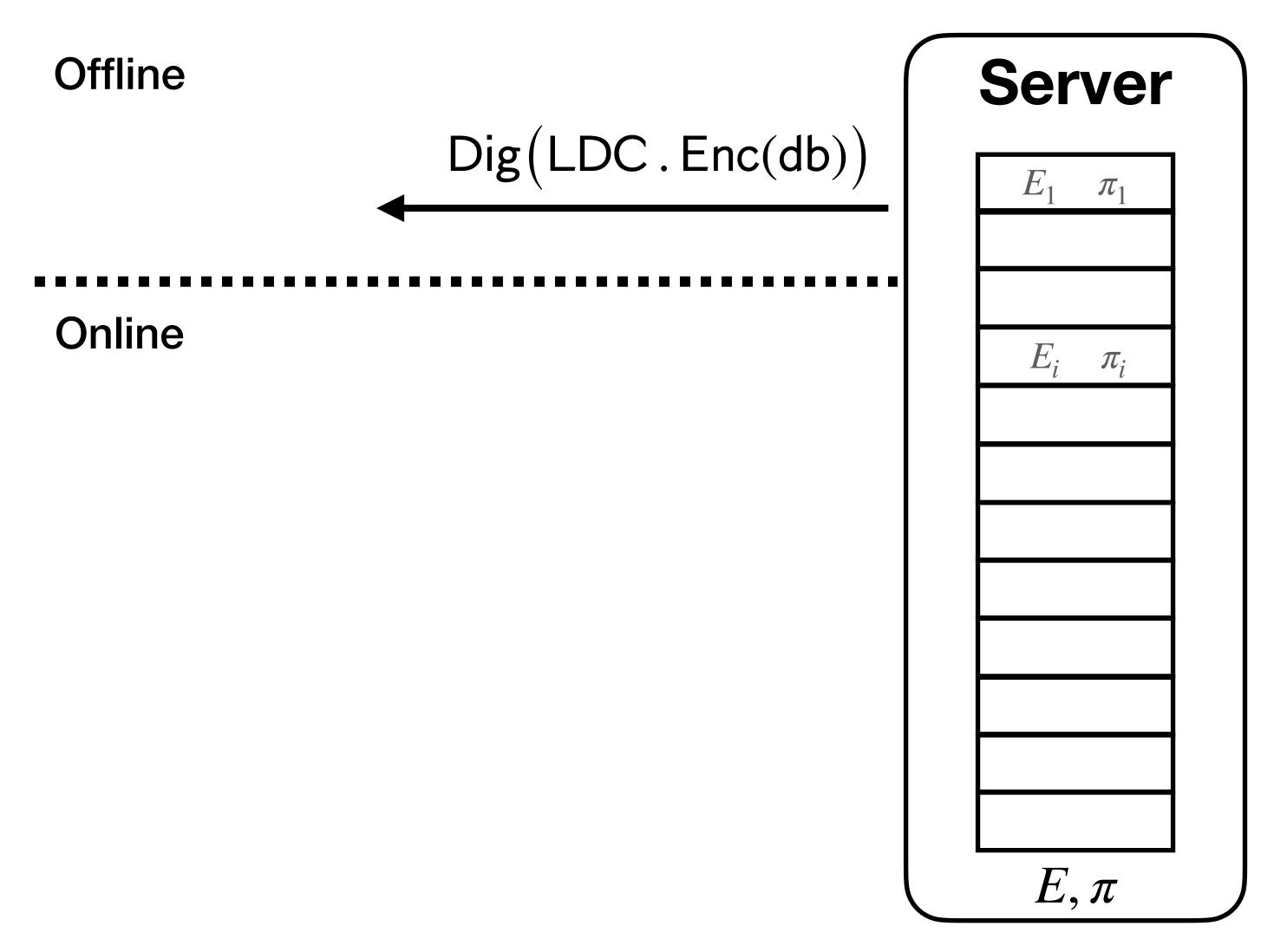


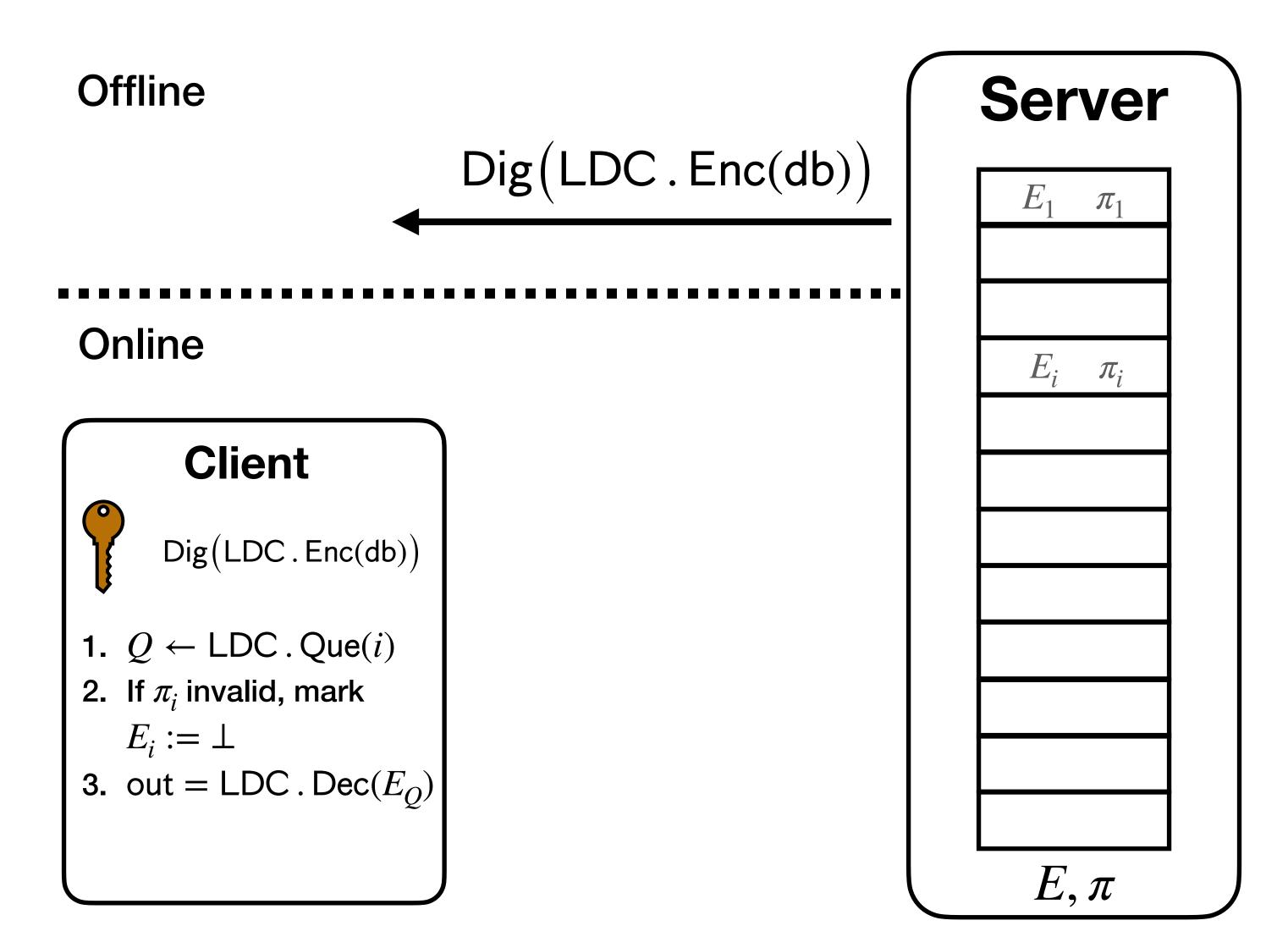
Offline

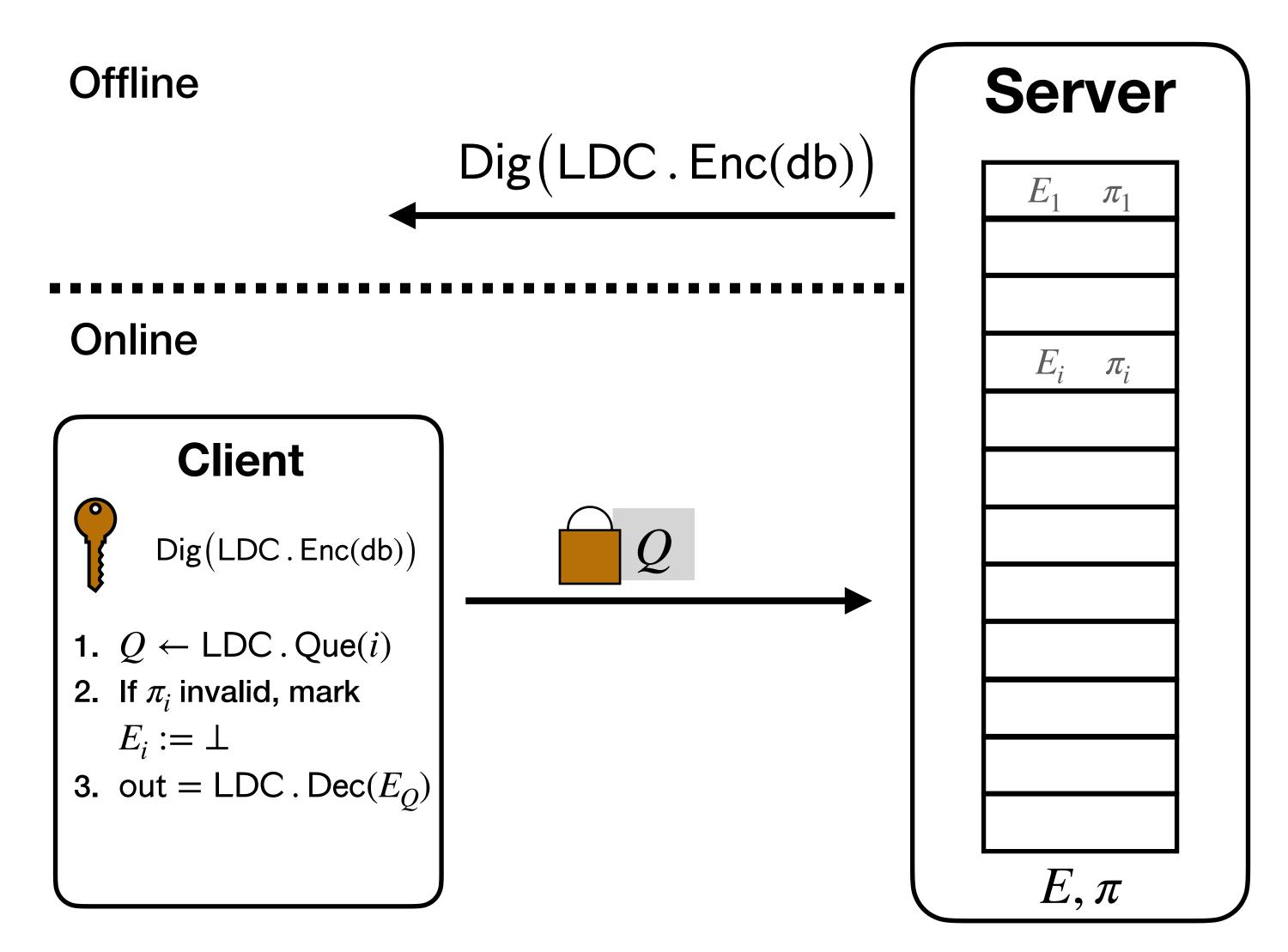


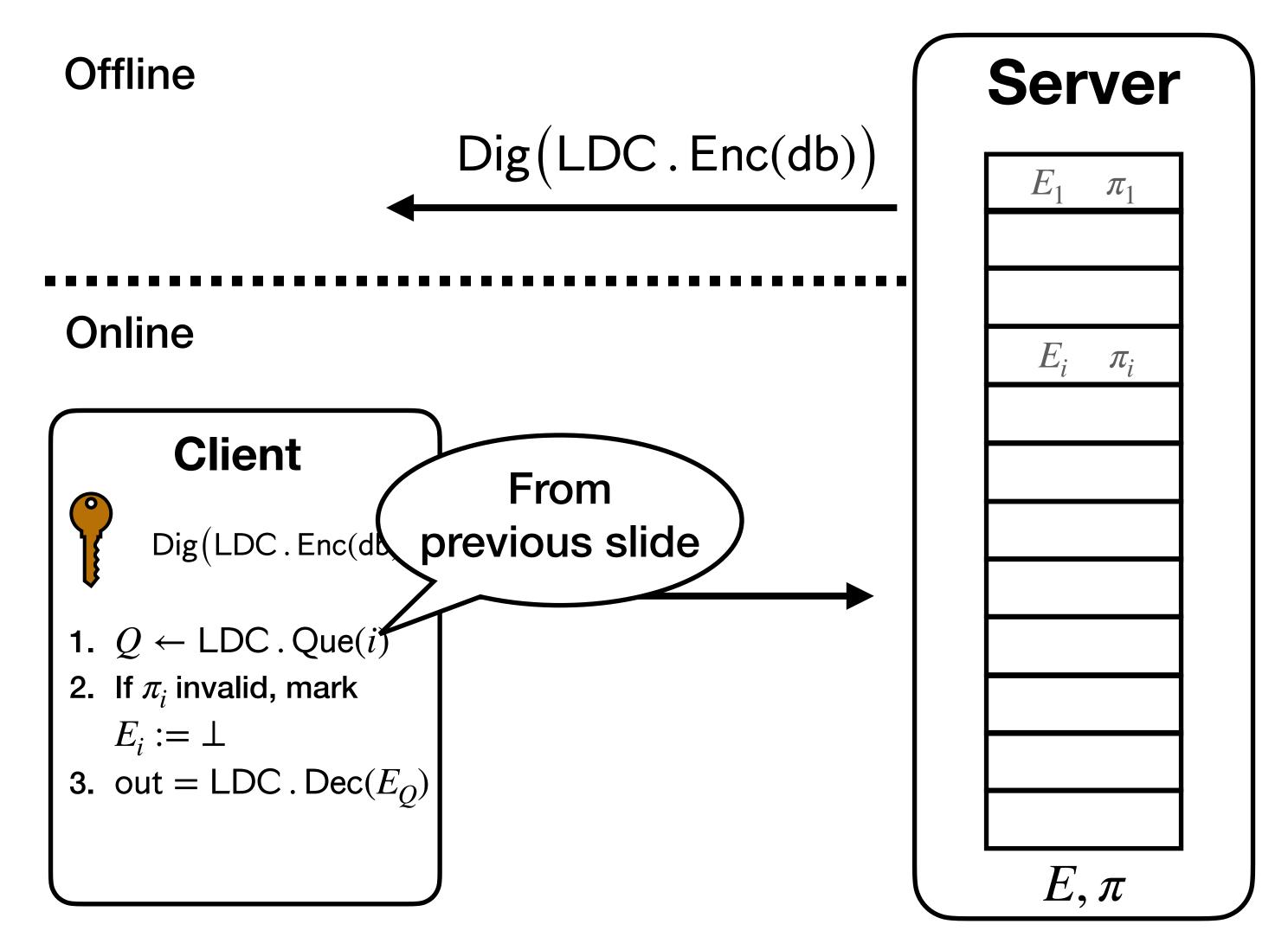


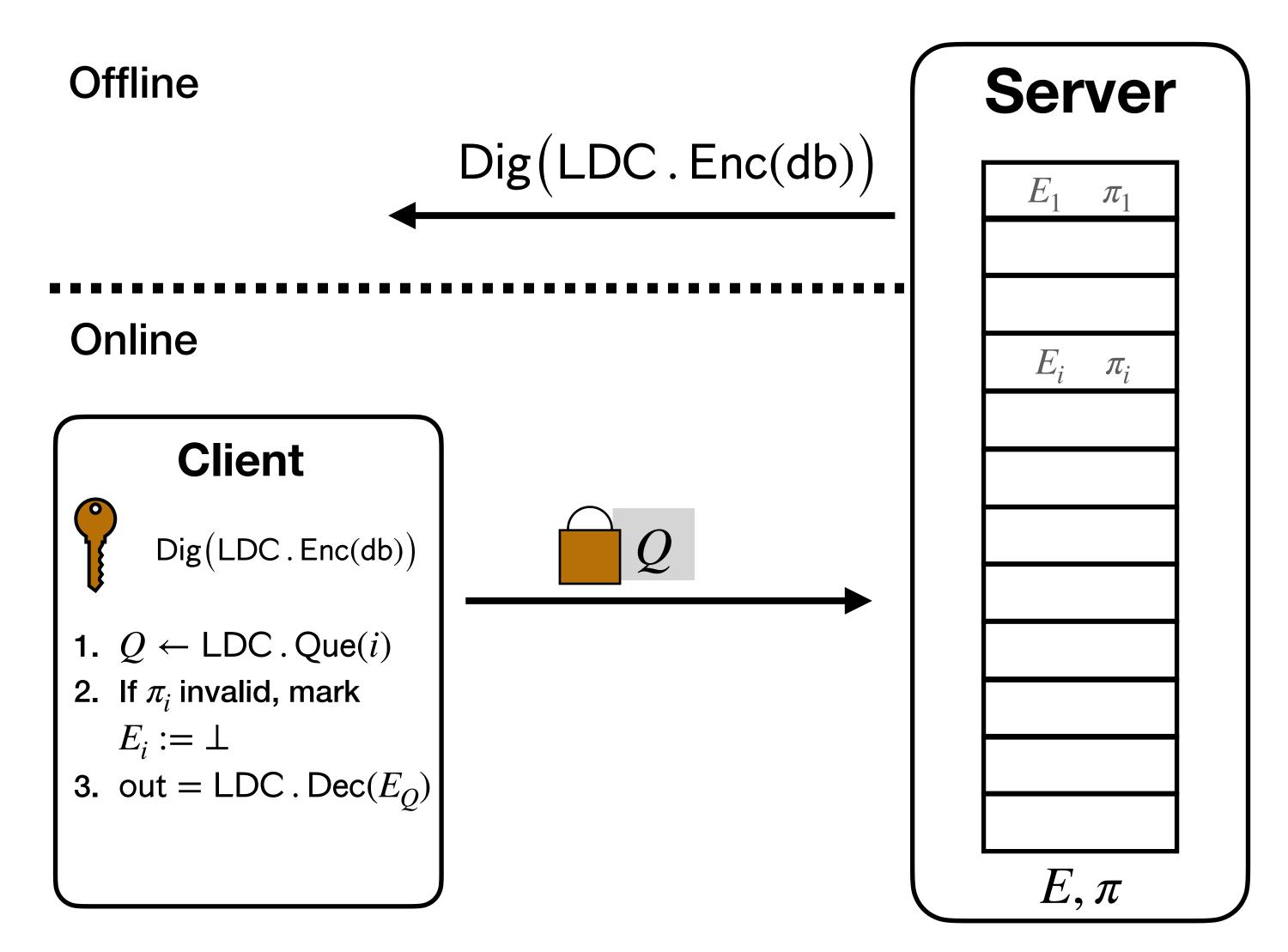
Offline

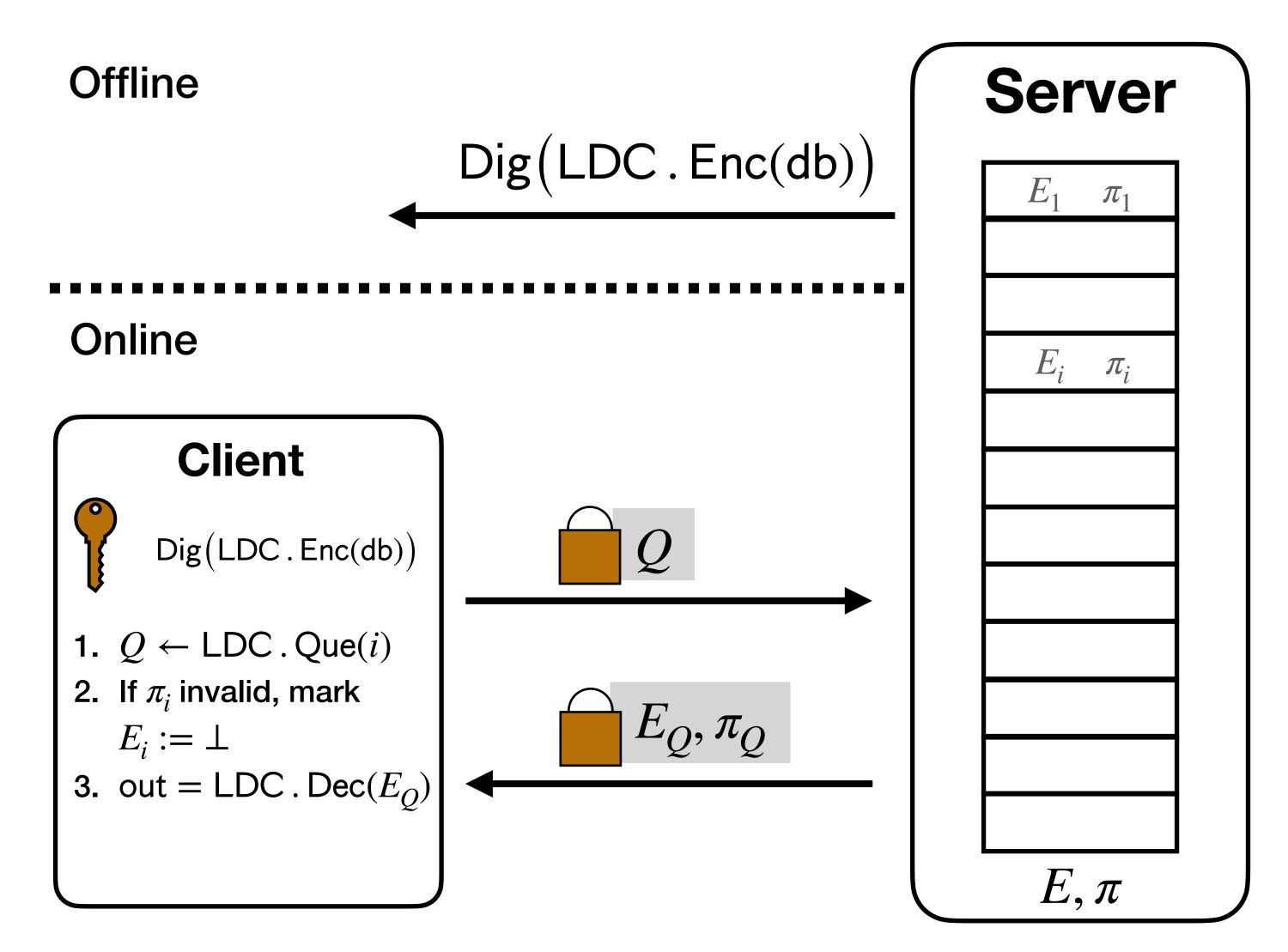


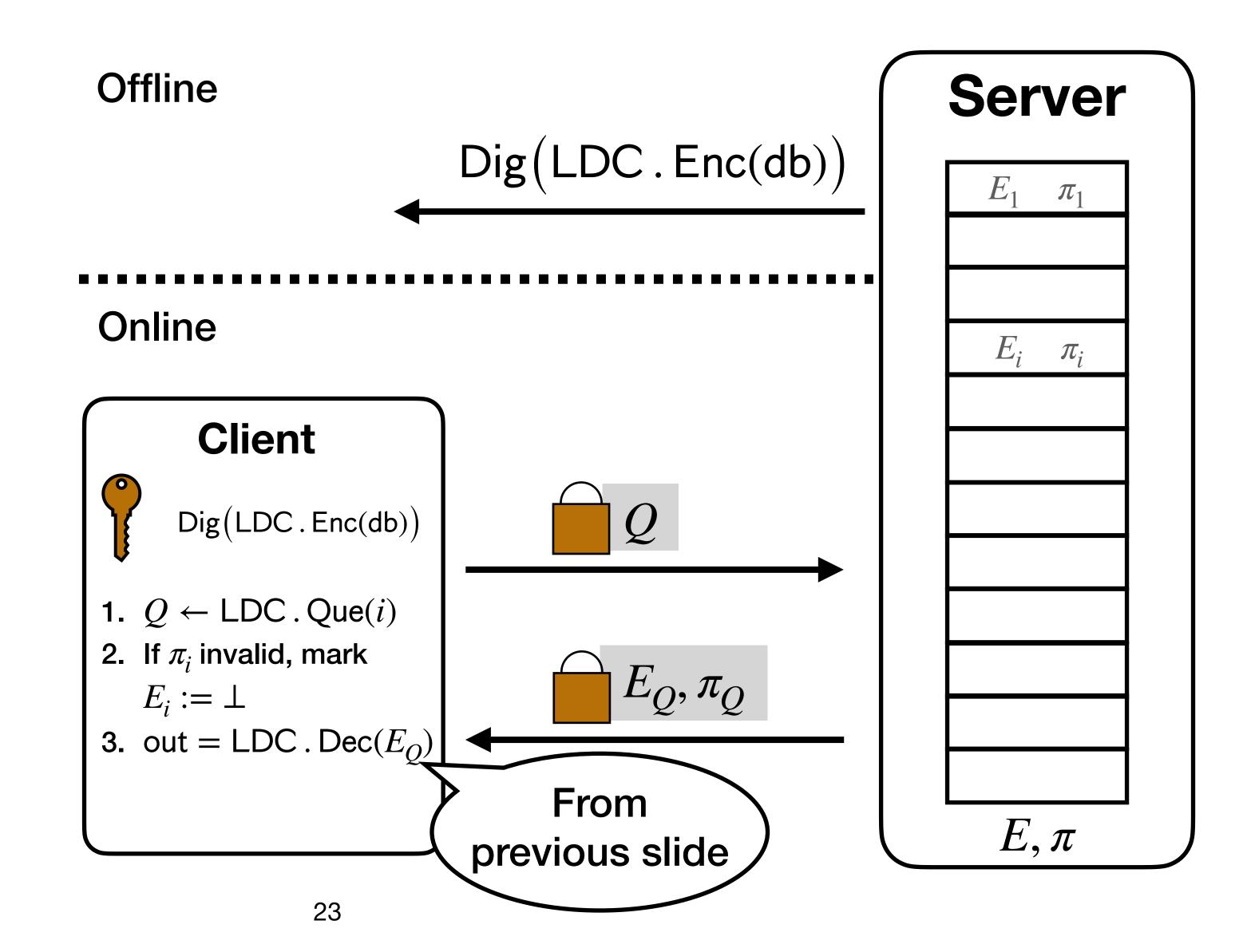


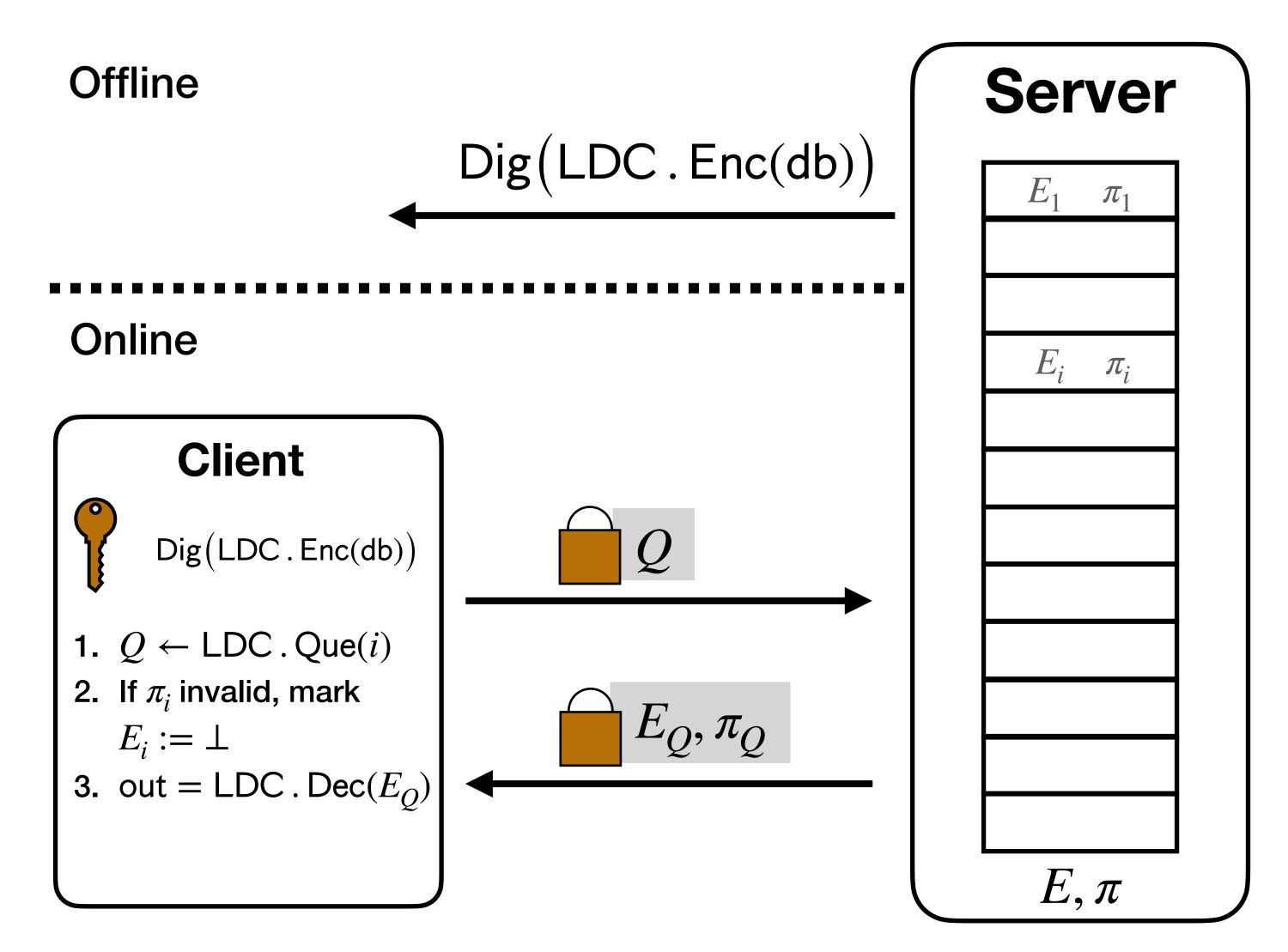


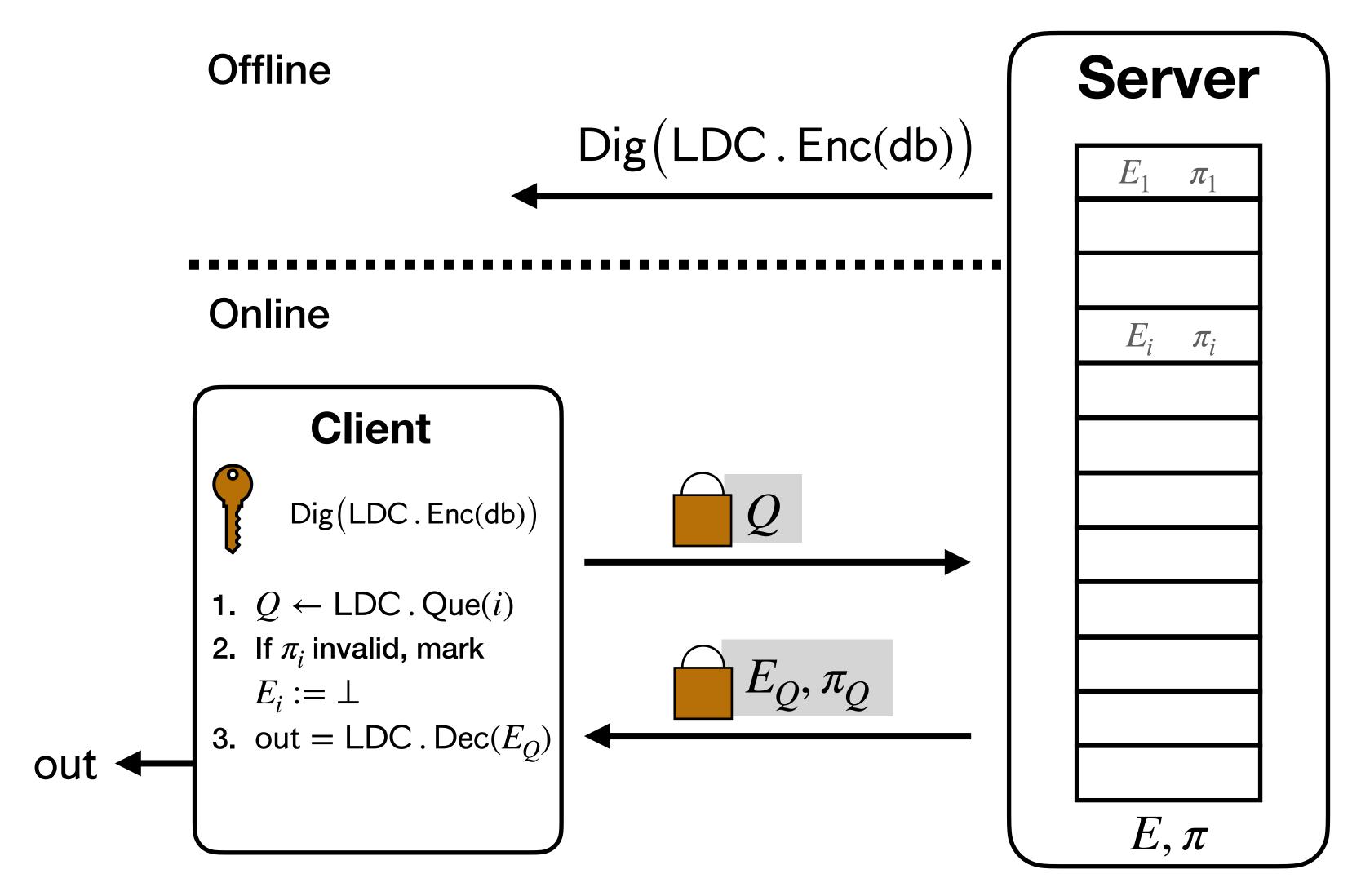


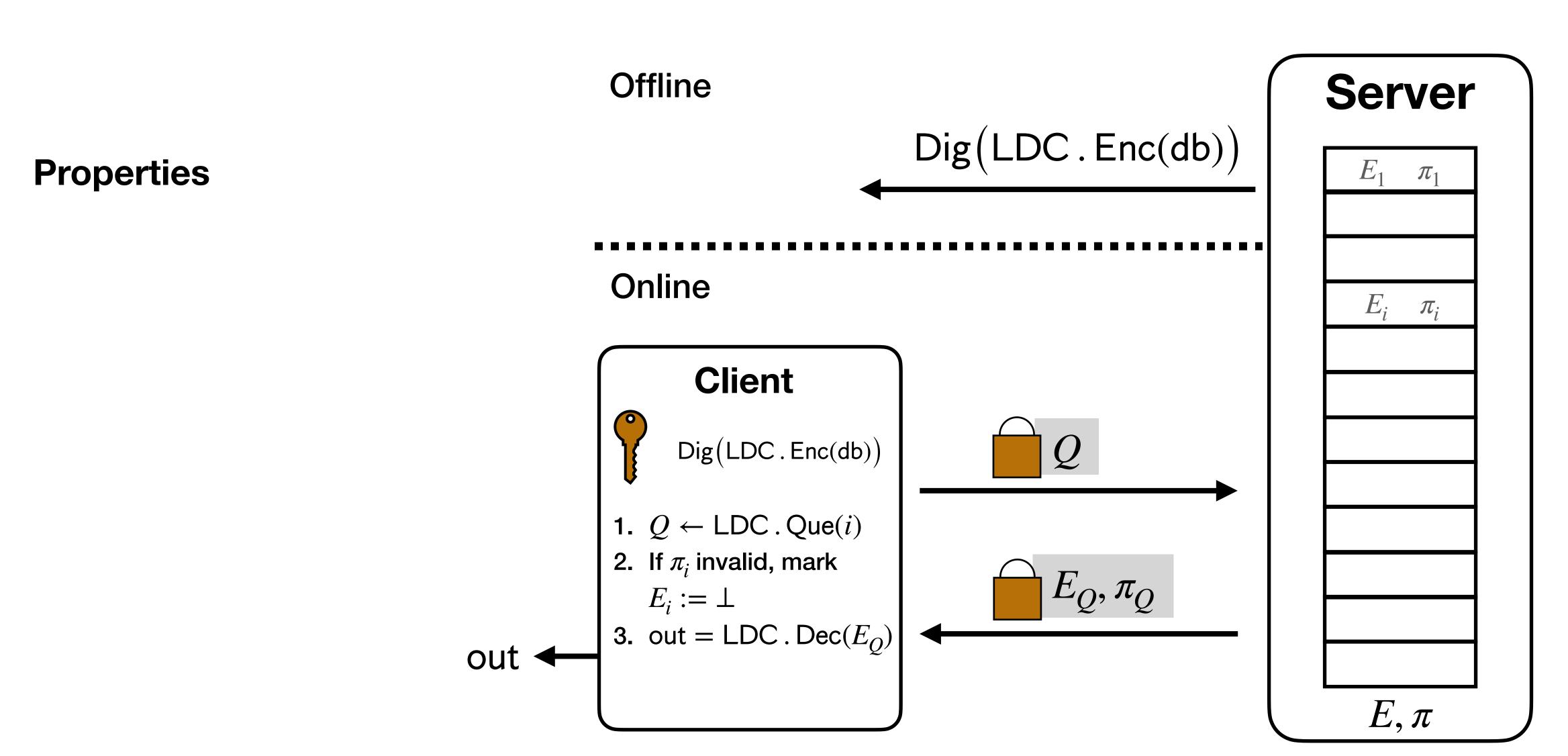


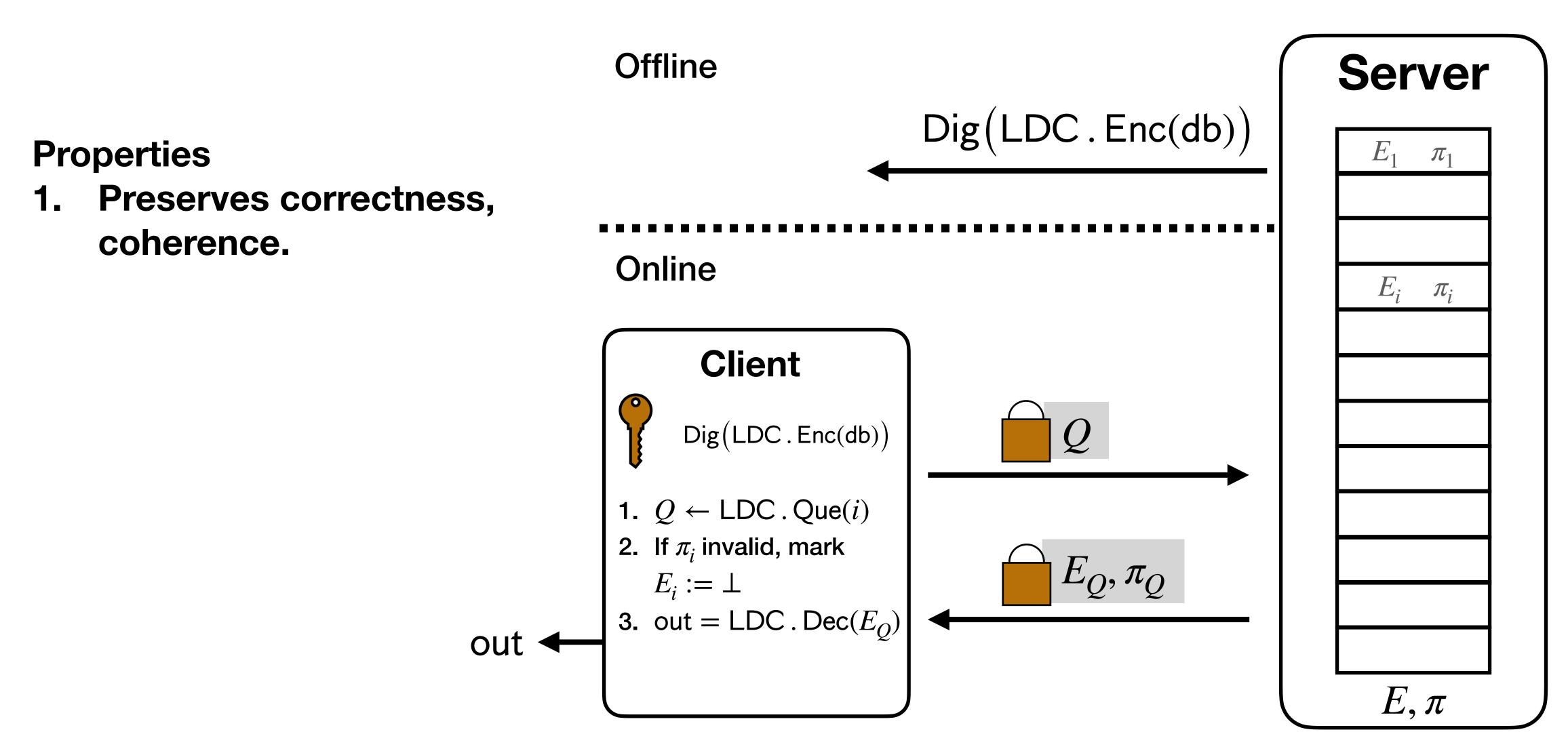






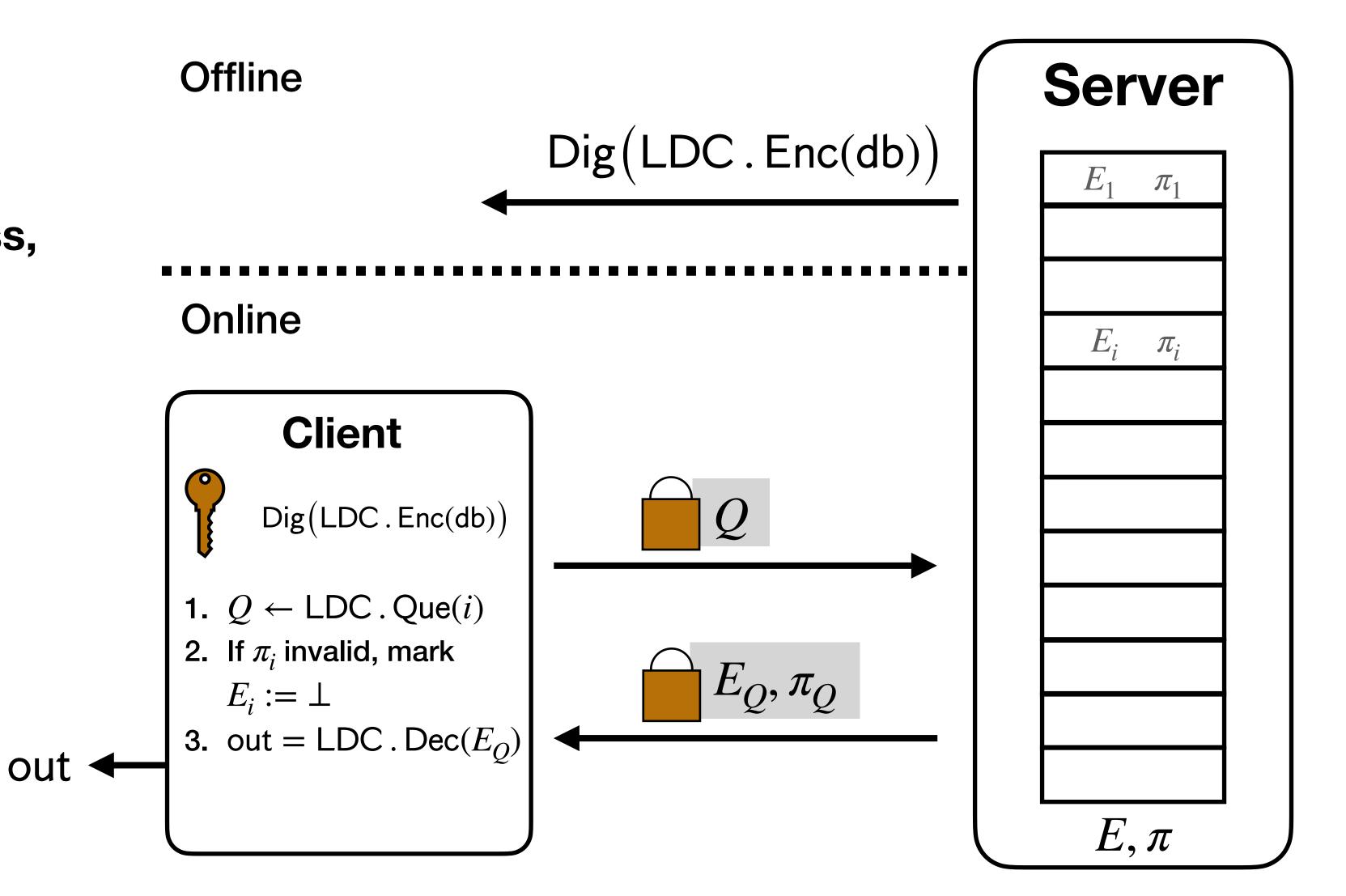


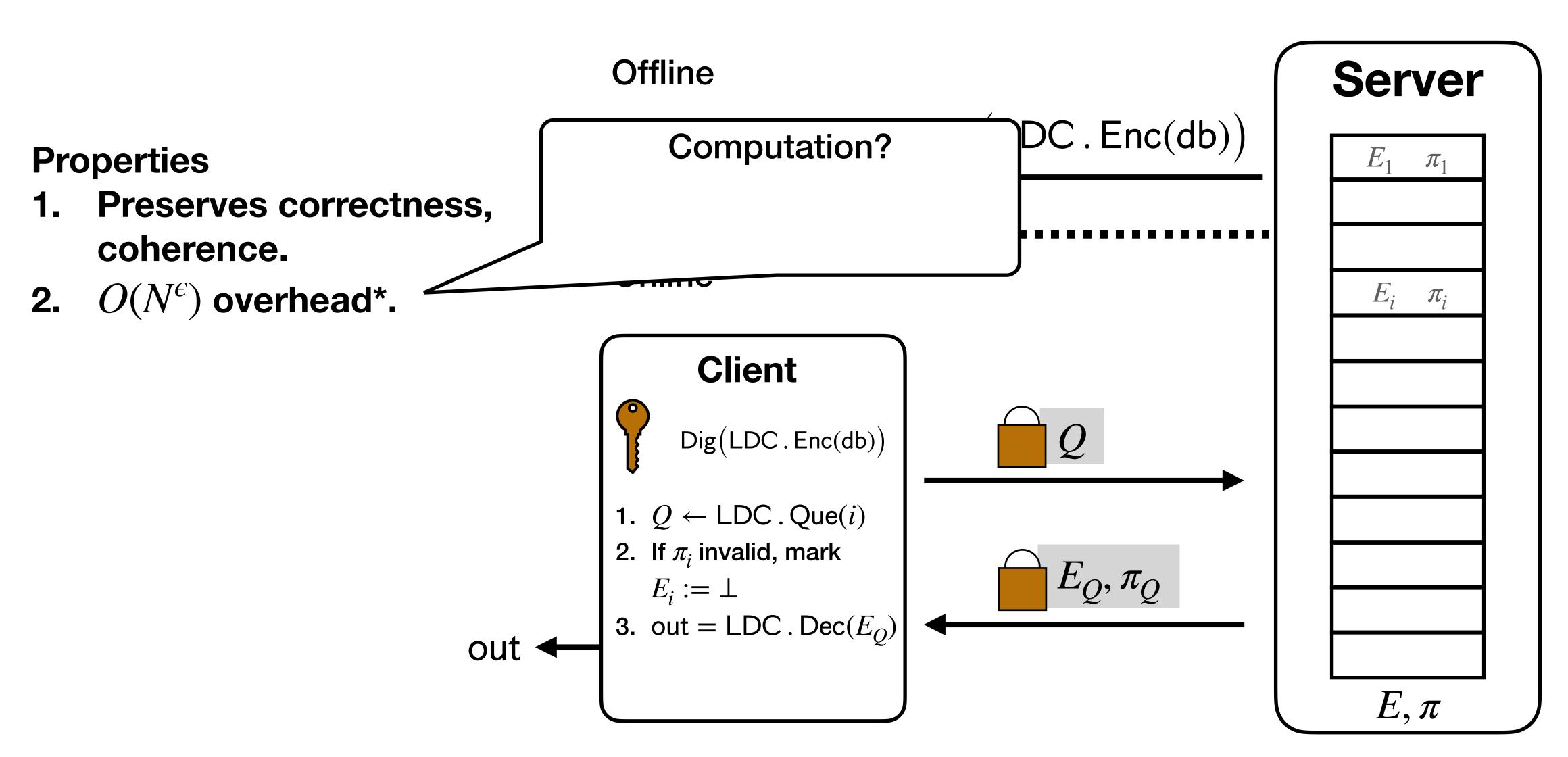


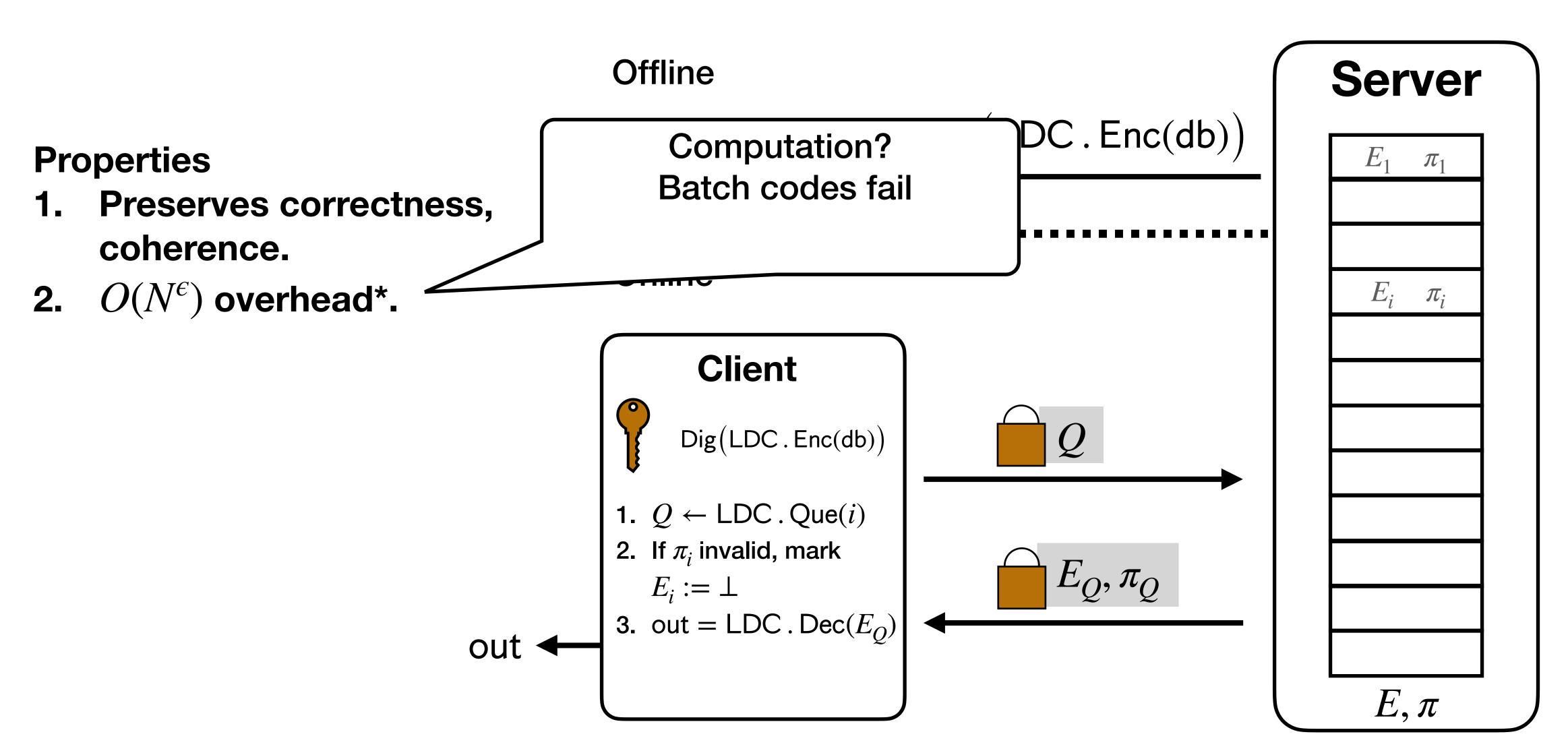


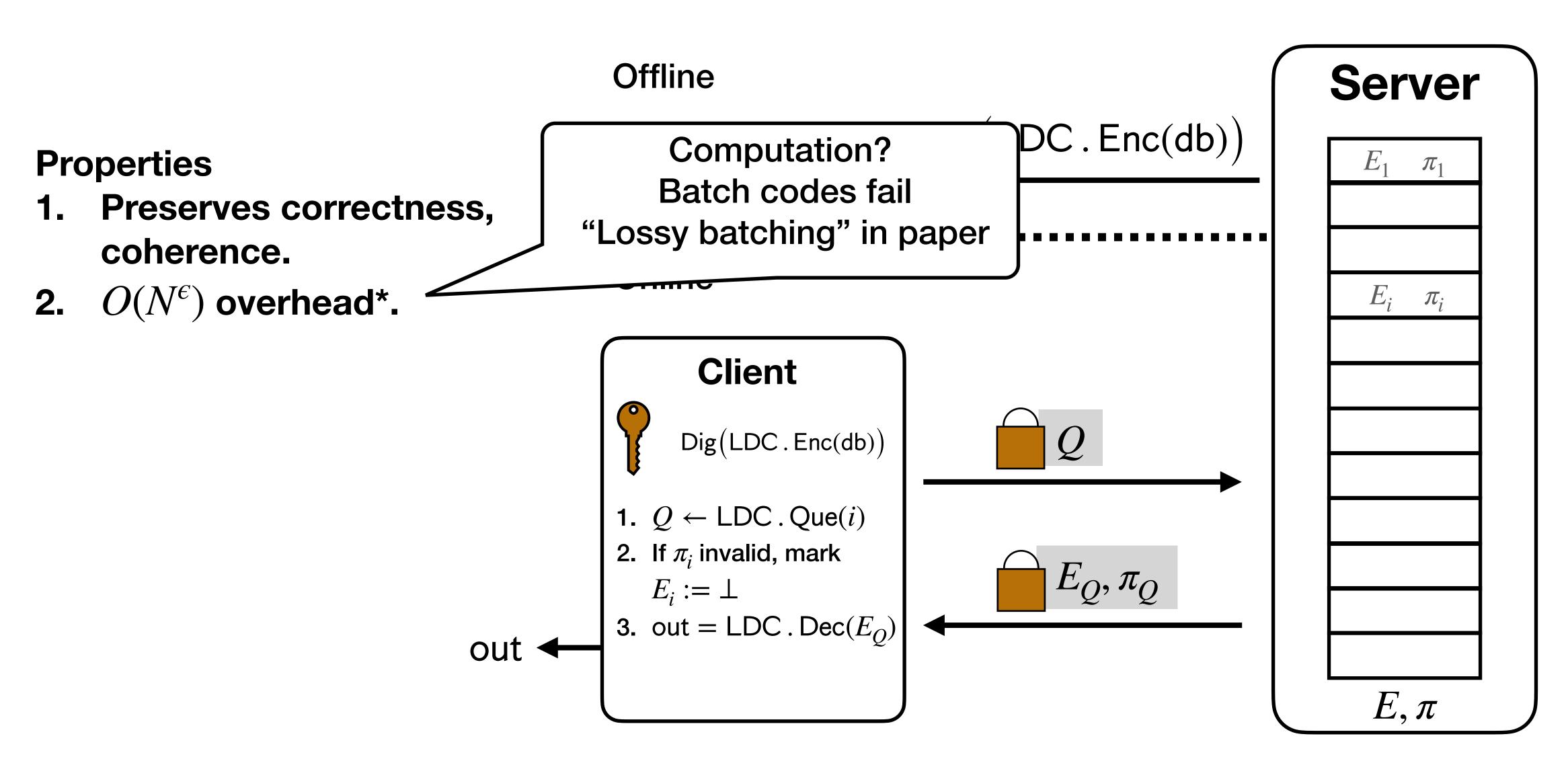
Properties 1. Preserves correctness, coherence.

2. $O(N^{\epsilon})$ overhead*.



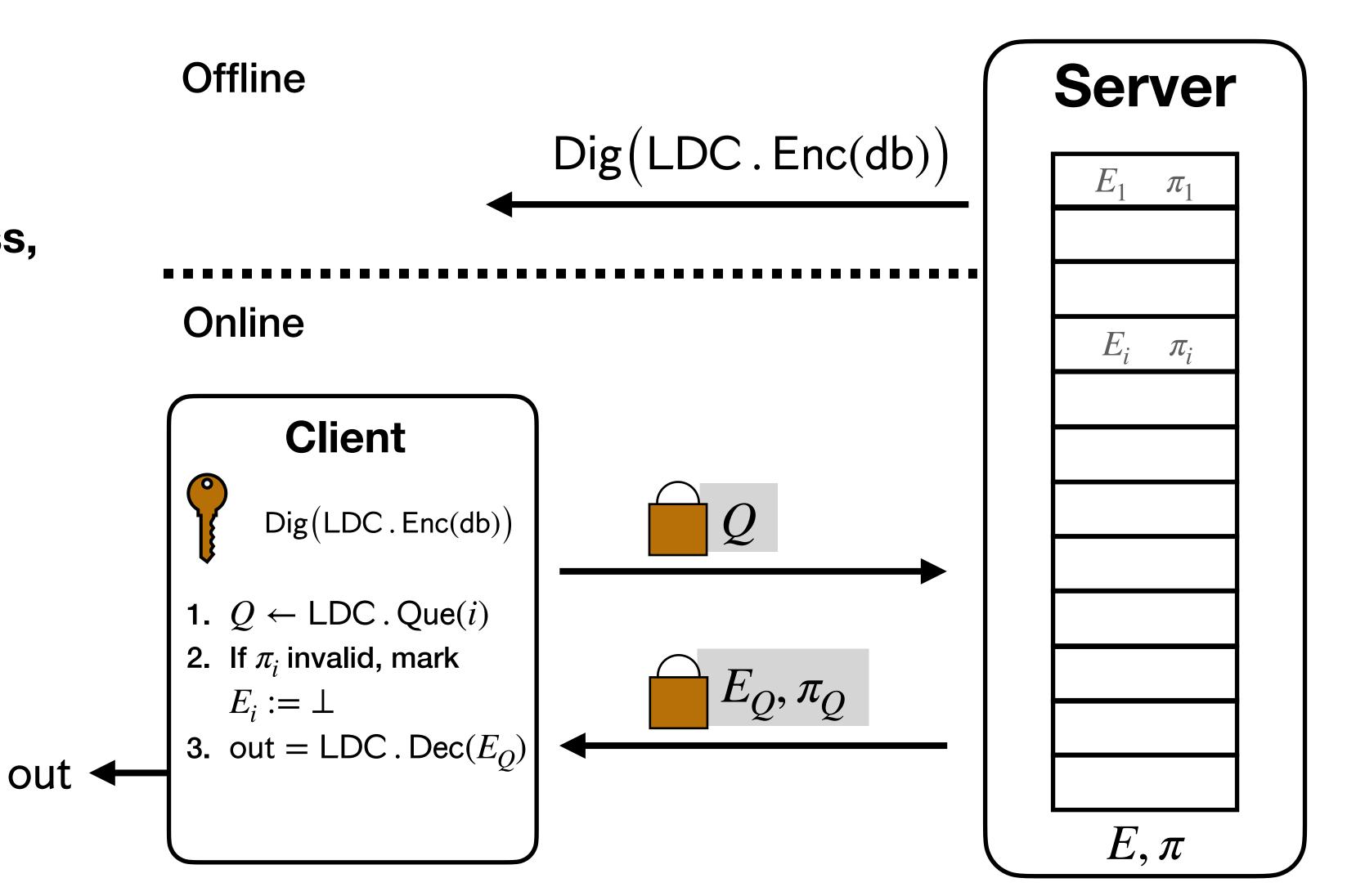






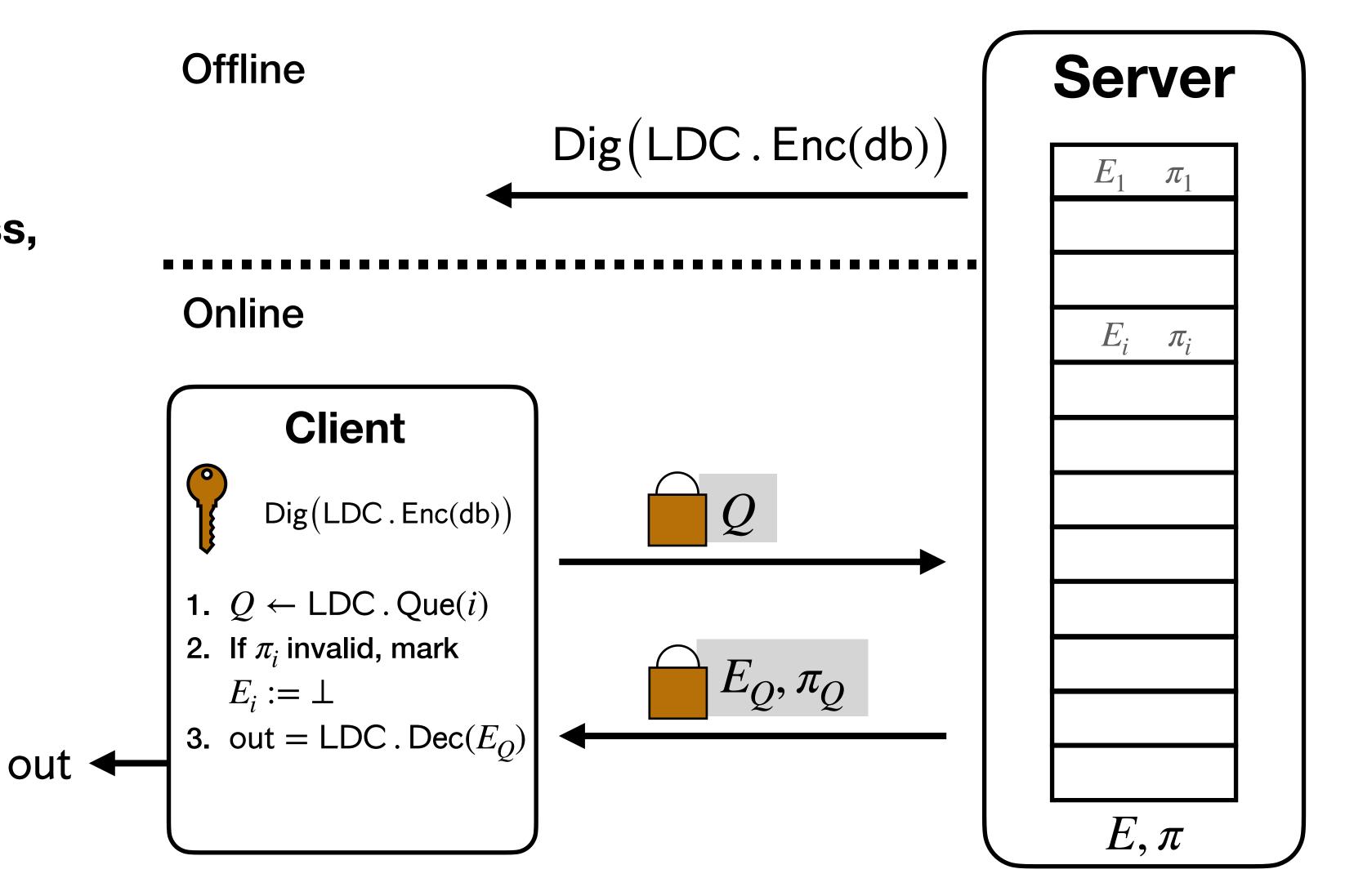
Properties 1. Preserv

- 1. Preserves correctness, coherence.
- 2. $O(N^{\epsilon})$ overhead*.



Properties

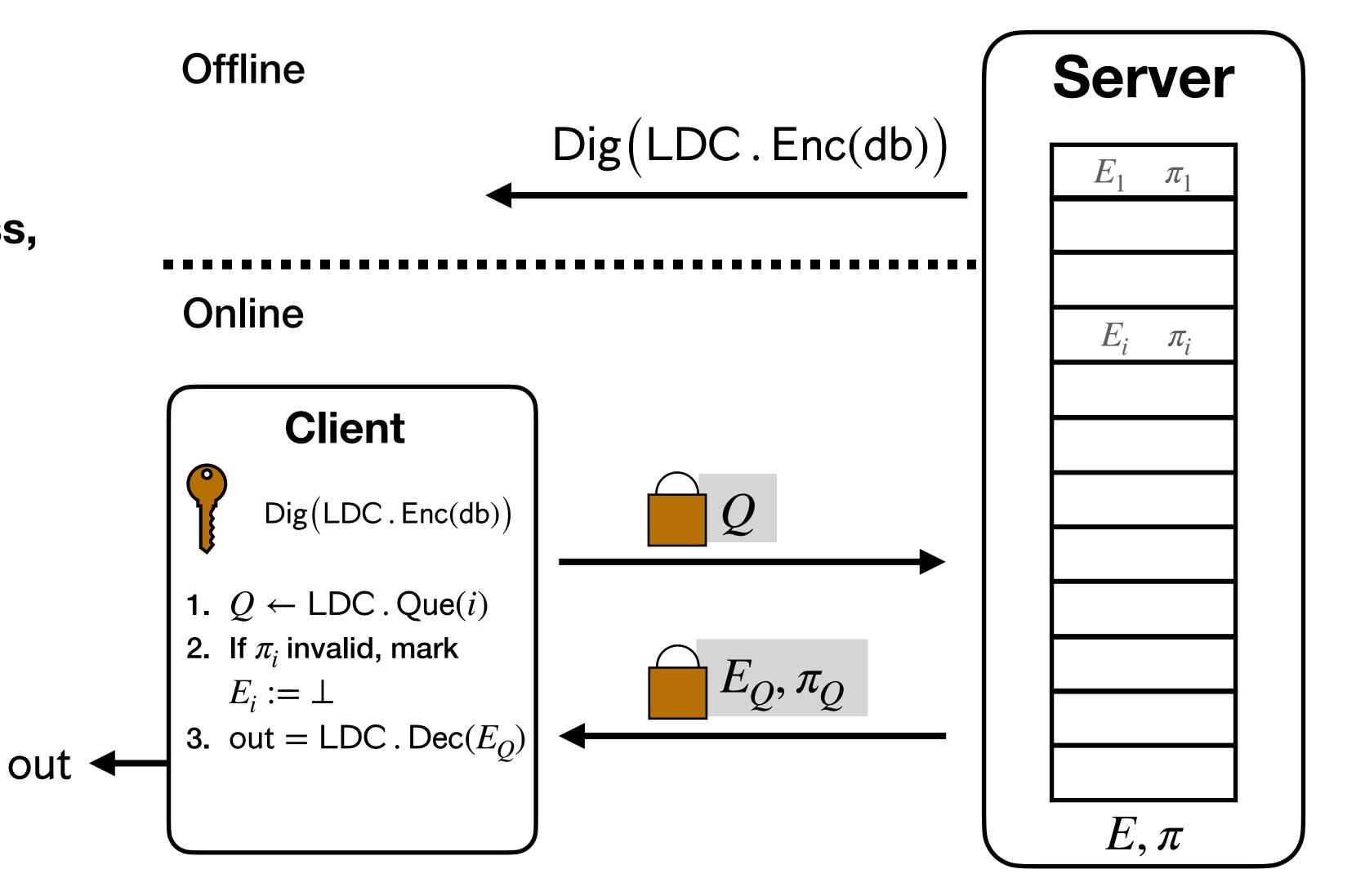
- 1. Preserves correctness, coherence.
- 2. $O(N^{\epsilon})$ overhead*.
- 3. Privacy:



Final Construction

Properties

- 1. Preserves correctness, coherence.
- 2. $O(N^{\epsilon})$ overhead*.
- 3. Privacy:



Final Construction

Properties

- 1. Preserves cor coherence.
- 2. $O(N^{\epsilon})$ overhe
- 3. Privacy:

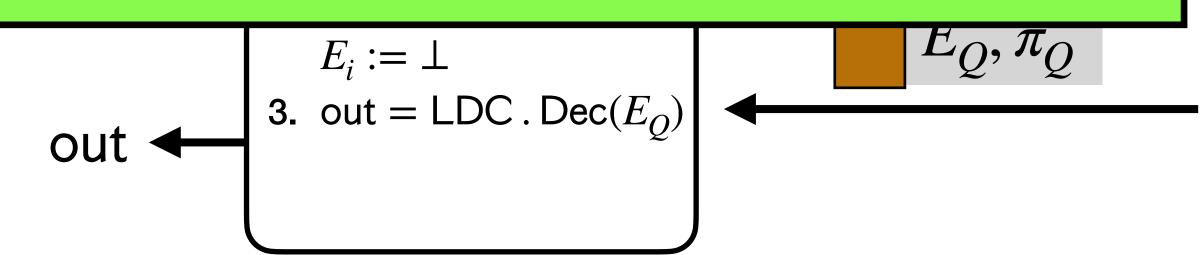
1. $\Pr[\bot \text{ on } i] = \Pr[\bot \text{ on } j]$: by smoothness of code, test queries are uniformly random and independent of i. By non-signaling server must

Dig(LDC.Enc(db))

Offline

2. $Pr[not \perp and can't decode] = negl(\lambda)$: even information theoretic adversary can't guess all test queries!

output the same on these distributions.



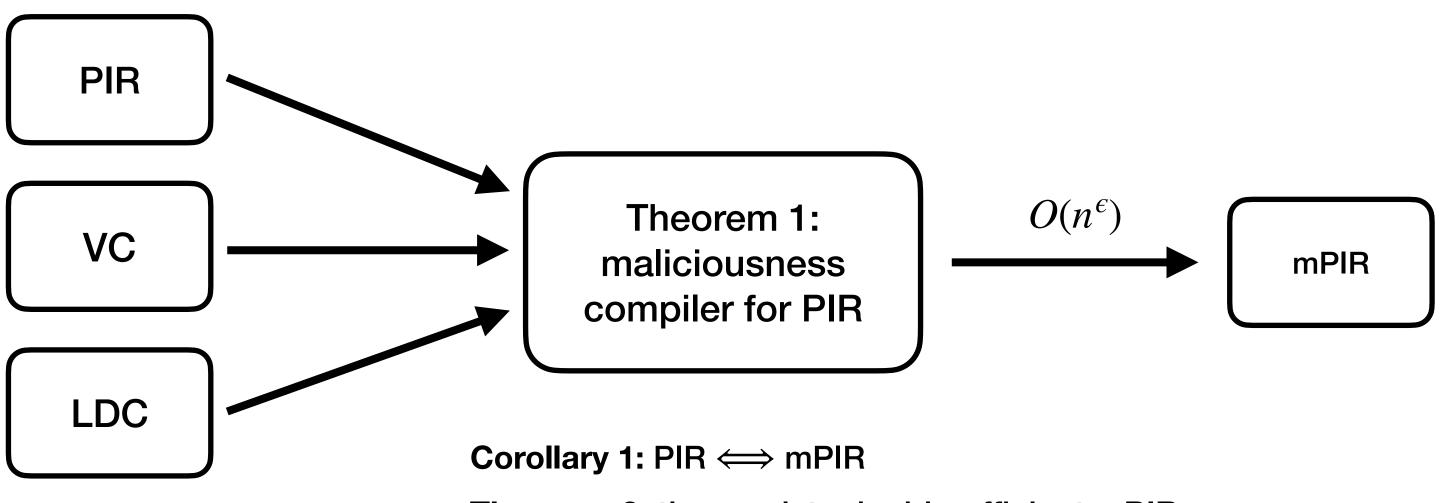
 $E_1 \quad \pi_1$

 $E_i \quad \pi_i$

 E,π

Conclusion

Conclusion



Theorem 2: there exists doubly-efficient mPIR.

Scheme	Communication	Computation	Digest	Assumptions	Methodology
CNCWF23	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	LWE, DDH	Ad-hoc
WZLY23	$O\left(N^{1/2}\right)$	$O\left(N^{1/2}\right)$	$O\left(N^{1/2}\right)$	OWF*	Ad-hoc
DT23	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	DDH	Ad-hoc
CL24	$O\left(N^{1/2}\right)$	O(N)	$O\left(N^{1/2}\right)$	LWE	Ad-hoc
Ours (any PIR)	$\times O(N^{\epsilon})$	$\times O(1)$	$\omega(\log N)$	PIR	Compiler
Ours (DePIR)	O(polylog N)	O(polylog N)	$\omega(\log N)$	RingLWE	Compiler

1. Theory:

1. Theory:

1. Can we reduce test-query overhead from $O(\lambda N^{\epsilon})$ to $O(N^{\epsilon} + \lambda)$

1. Theory:

- 1. Can we reduce test-query overhead from $O(\lambda N^{\epsilon})$ to $O(N^{\epsilon} + \lambda)$
- 2. What are the properties of LDC with "consistent" decoding?

1. Theory:

- 1. Can we reduce test-query overhead from $O(\lambda N^{\epsilon})$ to $O(N^{\epsilon} + \lambda)$
- 2. What are the properties of LDC with "consistent" decoding?
- 3. How well can we decode in the face of non-signaling adversaries?

1. Theory:

- 1. Can we reduce test-query overhead from $O(\lambda N^{\epsilon})$ to $O(N^{\epsilon} + \lambda)$
- 2. What are the properties of LDC with "consistent" decoding?
- 3. How well can we decode in the face of non-signaling adversaries?

2. Practice:

1. Theory:

- 1. Can we reduce test-query overhead from $O(\lambda N^{\epsilon})$ to $O(N^{\epsilon} + \lambda)$
- 2. What are the properties of LDC with "consistent" decoding?
- 3. How well can we decode in the face of non-signaling adversaries?

2. Practice:

1. Can we implement these ideas in a practically efficient mPIR?

Thank you!

eprint.iacr.org/2024/964