Maliciously-secure PIR
(almost) for free

Brett Falk Pratyush Mishra Matan Shtepel

UPenn UPenn CMU

Private Information Retrieval (PIR) icksaos, kog7]

Server

db

Private Information Retrieval (PIR) icksaos, kog7]

Server

Query for
item 1

T
Y

db

Private Information Retrieval (PIR) icksaos, kog7]

Server

Query for
item 1

.

db

Private Information Retrieval (PIR) icksaos, kog7]

Server

Query for
item 1

Y

db;

(3]db,

db

Private Information Retrieval (PIR) icksaos, kog7]

Server

Properties: Query for

item 1
Clifnt

db;

(3]db,

db

Private Information Retrieval (PIR) icksaos, kog7]

Server

Properties: Query for

1. Correctness: client outputs db; item i
Clifnt

db;

(3]db,

db

Private Information Retrieval (PIR) icksaos, kog7]

Server

Properties: Query for

1. Correctness: client outputs db; item i
Clifnt

2. Privacy: server does not learn 1 from
db;

(3]db,

db

Private Information Retrieval (PIR) icksaos, kog7]

Server

Properties: Query for

1. Correctness: client outputs db; item i
Clifnt

2. Privacy: server does not learn 1 from
db;

Query for

ﬁ item i

(3]db,

db

Private Information Retrieval (PIR) icksaos, kog7]

Server

Properties: Query for

1. Correctness: client outputs db; item i
Clifnt

2. Privacy: server does not learn 1 from
db;

Query for

- . . . it]
3. Efficiency: communication &) tom
computation are “small”

(3]db,

db

Private Information Retrieval (PIR) icksaos, kog7]

Server
Properties: Query for
1. Correctness: client outputs db; item i
2. Privacy: server does not learn 1 from Client
iQt.Jery f.or ? ﬁ d bi
3. Efficiency: communication & tem!
computation are “small”
db;
db

* focus on single-server

What if the server is malicious?

Selective Failure Attack Server

Y

_
-
_
_
_
_
_
_
_
_

What if the server is malicious?

Selective Failure Attack Server

Y

_

0000
_
_
_
_
_
_
_

What if the server is malicious?

Selective Failure Attack Server

Query for
item 1

T
Y

_

0000
_
_
_
_
_
_
_

What if the server is malicious?

Selective Failure Attack Server

Query for
item 1

- ————————————————
Client —~
7

—

_

0000
_
_
_
_
_
_
_

What if the server is malicious?

Selective Failure Attack Server

Encpy (1) Query for
ﬁ item 1

- ————————————————
Client —~
7

—

_

0000
_
_
_
_
_
_
_

What if the server is malicious?

Selective Failure Attack

Server

What if the server is malicious?

Selective Failure Attack

Server

. o . (1m)
o |f the client queries i: it will get l

garbage and won’t be able to

preform the “next action.” Clifnt

= O
4 | 7
o

What if the server is malicious?

Selective Failure Attack

Server

=
_7V

. o . (1m)
o |f the client queries i: it will get l

garbage and won’t be able to

preform the “next action.” Client
e If client queries for j # i: then the Y

client will preform the “next action”

correctly, not knowing there are any

corruptions
problem: server can observe this

discrepancy to learn 1!

o
-
-
o

What if the server is malicious?

Selective Failure Attack

Server

=
_7V

. o . (1m)
o |f the client queries i: it will get l

garbage and won’t be able to

preform the “next action.” Client
e If client queries for j # i: then the Y

client will preform the “next action”

correctly, not knowing there are any

corruptions
problem: server can observe this

discrepancy to learn 1!

o
-
-
o

What if the server is malicious? [Ko97]

Selective Failure Attack

Server

=
_7V

. o . (1m)
o |f the client queries i: it will get l

garbage and won’t be able to

preform the “next action.” Client
e If client queries for j # i: then the Y

client will preform the “next action”

correctly, not knowing there are any

corruptions
problem: server can observe this

discrepancy to learn 1!

o
-
-
o

What if the server is malicious?

Incoherent views Server

Client 1
?
Client 2
?

_
_
_
_
_
_
_
_
_
_
_

What if the server is malicious?

Incoherent views Server

Client 1
?
Client 2
?

_
_
_
_
_
_
_
_
_
_
_

Q.
&

What if the server is malicious?

Incoherent views Server

Client 1
?
Client 2
?

Query for
item 1

_
_
_
_
_
_
_
_
_
_
_

Q.
&

What if the server is malicious?

Incoherent views Server

Query for
item 1

Client 2
?

_
_
_
_
_
_
_
_
_
_
_

Q. Q.
S o)

What if the server is malicious?

Incoherent views Server

Query for
item 1

Client 2
?

_
_
_
_
_
_
_
_
_
_
_

Q. Q.
S o)

What if the server is malicious?

Incoherent views Server

Query for
item 1

Query for
Client 2
?

item 1

(@ Q.
oN O
Q. Q.

What if the server is malicious?

Incoherent views Server
Query for
item 1
Client 1

(@ Q.
oN o
Q. Q.
O A

Ci 2 ﬁ
ient

What if the server is malicious?

Incoherent views Server
Query for
item 1
Client 1

(@ Q.
oN o
Q. Q.
O A

Ci 2 ﬁ
ient
dbi, ﬁdbl/

What if the server is malicious?

Incoherent views Server

Client 1
db;
Problem: clients do not agree ?
on database.
Clie?nt 2
db,’

Query for
item 1

(3]db,

Query for
item 1

Tldv/

Q. ok
o o
Q. Q.
©. o

Prior work

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Server

Q.
o

_
_
_
-
_
_
_
-
-
_

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Offline Server

Q.
o

_
_
_
-
_
_
_
-
-
_

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Offline Server

Dig(db)

Q.
o

_
_
_
-
_
_
_
-
-
_

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Offline Server

Online

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Offline Server

Online

Client

? Dig(db)

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Offline

Server

Client

? Dig(db)

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Offline

Server

Client

? Dig(db)

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Offline

Server

Client

? Dig(db)

dbi or |

6

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Properties: Offline Server

-

-

-

............................... -
Online -
-

-

-

Client e
?Dig(db) -

dbi or |

6

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Offline

Properties: Server

1. Correctness: if client and server are
honest, client outputs db.;.

O
=
=
o
Sy

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Offline

Properties: Server

1. Correctness: if client and server are
honest, client outputs db.;.

2. Privacy: server does not learn 1
even If it learns whether client’s

output is L.

O
=
=
o
Sy

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Properties: Offline Server

1. Correctness: if client and server are | Resolves selective failure

honest, client outputs db.. attacks because aborts are
computationally

2. Privacy: server does not learn 1 _
iIndependent of

even If it learns whether client’s
output is L.

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Properties: Offline Server

1. Correctness: if client and server are | Resolves selective failure

honest, client outputs db.. attacks because aborts are
computationally

2. Privacy: server does not learn 1
even If it learns whether client’s

OUtpUt IS J_' lllllllllllllllllllllllllllllll
3. Coherence: a query to i returns Online
either db; or L.

iIndependent of

Client

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Properties: Offline Server

1. Correctness: if client and server are | Resolves selective failure

honest, client outputs db.. attacks because aborts are
computationally
iIndependent of

2. Privacy: server does not learn 1
even If it learns whether client’s

output is L.
3. Coherence: a query to 1 returns
either db; or L.

Resolves incoherent views
attacks because the client

cannot accept db;’

Client

db,
_
_
_
-
_
_
_
-
-
_

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Properties: Offline Server

1. Correctness: if client and server are | Resolves selective failure

honest, client outputs db.. attacks because aborts are
computationally
iIndependent of

2. Privacy: server does not learn 1
even If it learns whether client’s

output is L.
3. Coherence: a query to 1 returns

either db; or .
4. Efficiency: communication &
computation are “low.”

Resolves incoherent views
attacks because the client

cannot accept db;’

Client

db,
_
_
_
-
_
_
_
-
-
_

Maliciously-secure PIR (MPIR) ienewrzs wzwvzs; orzs; cLza

Properties: Offline Server
1. Correctness: if client and server are | Resolves selective failure
honest, client outputs db.. attacks because aborts are

computationally

2. Privacy: server does not learn 1 _
iIndependent of

even If it learns whether client’s
output is L.
3. Coherence: a query to 1 returns

either db; or .
4. Efficiency: communication &
computation are “low.”

Resolves incoherent views
attacks because the client

cannot accept db;’

-
_
_
-
_
-
-
-
-
-

* Throughout this talk we assume the digest is db;or L
produced honestly. In the paper we show how to
work around that. 6

Prior work: are we done?

Prior work: are we done?

T T
o0 o | ot
o | om [own |
o | ow ot |

vv

Prior work: are we done?

T T
o0 o | ot
o | om [own |
o | ow ot |

Gaps:

vv

Prior work: are we done?

T T
o0 o | ot

Gaps:
1. Methodology: direct constructions

vv

SHES
2|3
S | ©
2| %
A

Prior work: are we done?

T T
o0 o | ot

Gaps:
1. Methodology: direct constructions
2. Assumptions: limited

vv

SHES
2|3
S | ©
2| %
A

Prior work: are we done?

T T
o0 o | ot

Gaps:
1. Methodology: direct constructions
2. Assumptions: limited

3. PIR Overhead: Q (N'*)

vv

SHES
2|3
S | ©
2| %
A

Contributions

Contributions

Contributions

Theorem 1:

maliciousness compiler
for PIR

Contributions

Theorem 1:

maliciousness compiler
for PIR

Contributions

Ve Theorem 1:
maliciousness compiler
for PIR

Contributions

Theorem 1:
VC

maliciousness compiler
for PIR

LDC

Contributions

Ve Theorem 1:
maliciousness compiler
for PIR

LDC

Contributions

Ve Theorem 1:
ﬁ n n [
maliciousness compiler
for PIR

LDC

Contributions

e

Ve Theorem 1:
ﬁ n ™ u
maliciousness compiler
/ for PIR
LDC

Contributions

c Theorem 1: overhead
ﬁ n ™]
v maliciousness compiler | ———>

e /

for PIR

Contributions

\ O(N®) comm.

c Theorem 1: overhead
ﬁ n ™ u
v maliciousness compiler | ———>
for PIR

Contributions

\ O(N®) comm.

c Theorem 1: overhead
ﬁ n ™ u
v maliciousness compiler | ———>
for PIR

1. Methodology: generic compiler

Contributions

\ O(NG) -
Ve Theorem 1: overhead
maliciousness compiler | ———>
/ orn

Corollary 1: PIR < mPIR (PIR = CRH = Merkle tree (VC))

1. Methodology: generic compiler

Contributions

\ O(NG) -
Ve Theorem 1: overhead
maliciousness compiler | ———>
/ orn

Corollary 1: PIR < mPIR (PIR = CRH = Merkle tree (VC))

1. Methodology: generic compiler
2. Assumptions: from PIR

Contributions

\ O(NG) -
Ve Theorem 1: overhead
maliciousness compiler | ———>
/ orn

Corollary 1: PIR < mPIR (PIR = CRH = Merkle tree (VC))

1. Methodology: generic compiler
2. Assumptions: from PIR

Theorem 2: there exists doubly-efficient (polylog(/NV)) mPIR.

9

Contributions

1. Methodology: generic compiler
2. Assumptions: from PIR

~__ 3. Overhead: polylog(V)

O(N€) comm.

Ve Theorem 1: overhead
maliciousness compiler | ———>
/ orn

Corollary 1: PIR < mPIR (PIR = CRH = Merkle tree (VC))

Theorem 2: there exists doubly-efficient (polylog(/NV)) mPIR.

9

Contributions

T T
) 0w | o

v

O

v

O O
= | =
O O
z |z
S | O
==
N

10

Construction

Vector Commitments (VC)

Committer

Client

_
_
_
_
_
_
_
_
_
_
_

12

Vector Commitments (VC)

Committer

98P, [ciient

_
_
_
_
_
_
_
_
_
_
_

12

Vector Commitments (VC)

Committer

dig(db
— 8D [client
[
B

_
_
_
_
_
_
_
_
_
_
_

12

Vector Commitments (VC)

Committer

98P, [ciient

l
—

dbi,]Z-i
—————

_
_
_
_
_
_
_
_
_
_
_

12

Vector Commitments (VC)

Committer
Properties: I
-
dig(db
- g—()> Client
i
——
-
— dbs, 7
—_—)
e
e
-
-
I

12

Vector Commitments (VC)

Committer
Properties:
1. Completeness: honest committer |
convinces dig(db)

-_— Client
l
———

dbi,]Z-i
—_—

_
_
_
_
_
_
_
_
_
_
_

12

Vector Commitments (VC)

Committer
Properties:
1. Completeness: honest committer |
convinces dig(db)

. e .
2. Soundness: cannot provide Client

different openings for 1 l

—

dbi, JT

l

—>

I
-
-
-
db;
-
-
-
-
-
-
-

12

Vector Commitments (VC)

Committer
Properties:
1. Completeness: honest committer |
convinces dig(db)

. e .
2. Soundness: cannot provide Client

different openings for i
3. Efficiency: small dig(db), z;

l
—

dbi, JT

l

————————————————

I
-
-
-
db;
-
-
-
-
-
-
-

12

Attempt 1: VC + PIR

Q.
o

Q.
o

Attempt 1: VC + PIR

Offline

Q.
o

Q.
o

Attempt 1: VC + PIR

Offline

Q.
o

Dig(db)

Q.
o

13

Attempt 1: VC + PIR

Offline

Dig(db)

1f

Q.
o
%

l l

13

Attempt 1: VC + PIR

Offline

13

Attempt 1: VC + PIR

Offline

Online

13

Attempt 1: VC + PIR

Offline

Online
Client

? Dig(db)

13

Attempt 1: VC + PIR

Offline

Online
Client

? Dig(db)

1. Query 1 using PIR

13

Attempt 1: VC + PIR

Offline

Online
Client

? Dig(db)

1. Query 1 using PIR

13

Attempt 1: VC + PIR

Offline

Online
Client

? Dig(db)

1. Query 1 using PIR

13

Attempt 1: VC + PIR

Offline

Online
Client

? Dig(db)

1. Query 1 using PIR

2. Decode db;, 7,

13

Attempt 1: VC + PIR

Offline

Online
Client

? Dig(db)

1. Query 1 using PIR

2. Decode db;, 7,

13

Attempt 1: VC + PIR

Offline

Online
Client

? Dig(db)

1. Query I using PIR
2. Decode db;, 7

3. Output L if z; is not a

valid proof for db; w.r.t.

Dig(db)

13

Attempt 1: VC + PIR

Offline

Properties:

Online
Client

? Dig(db)

1. Query I using PIR
2. Decode db;, 7

3. Output L if z; is not a

valid proof for db; w.r.t.

Dig(db)

13

Attempt 1: VC + PIR

Offline

Properties:
1. Coherence: by soundness of VC

Online
Client

? Dig(db)

1. Query I using PIR
2. Decode db;, 7,

3. Output L if z; is not a

valid proof for db; w.r.t.

Dig(db)

13

Attempt 1: VC + PIR

Offline

Properties:

1. Coherence: by soundness of VC
2. Efficiency: by efficiency of PIR and VC.

Online
Client

? Dig(db)

1. Query I using PIR
2. Decode db;, 7,

3. Output L if z; is not a

valid proof for db; w.r.t.

Dig(db)

13

Attempt 1: VC + PIR

Offline
Dig(db)
. . 4—
Properties:
1. Coherence: by soundness of VC m
2. Efficiency: by efficiency of PIR and VC.
Privacy? EEEEEEEEEEEEEEEEEEEEEEEEEEEEEETHN
Online

Client
? Dig(db)

1. Query I using PIR
2. Decode db;, 7,

3. Output L if z; is not a

valid proof for db; w.r.t.

Dig(db)

13

Attempt 1: VC + PIR

Offline

Dig(db)
Properties: D

1. Coherence: by soundness of VC
2. Efficiency: by efficiency of PIR and VC.
3. Privacy? selective failure attack by

corrupting 7. Online

Q.
o
%

~.

Client
? Dig(db)

1. Query I using PIR
2. Decode db;, 7

3. Output L if z; is not a

valid proof for db; w.r.t.

Dig(db)

13

Attempt 1: VC + PIR

Offline

Dig(db)
Properties: D

1. Coherence: by soundness of VC
2. Efficiency: by efficiency of PIR and VC.
3. Privacy? selective failure attack by

corrupting 7. Online

Q.
o

Client
? Dig(db)

1. Query I using PIR
2. Decode db;, 7

Problem:
errors are too
“localized!”

3. Output L if z; is not a

valid proof for db; w.r.t.

Dig(db)

13

Locally decodable codes (LDC)

Locally decodable codes (LDC)

Encoding

Locally decodable codes (LDC)

Encoding

db

Locally decodable codes (LDC)

Encoding

Encode
s

O(1) overhead

db

14

Locally decodable codes (LDC)

Encoding
Encode
—_—)
O(1) overhead
db

14

Locally decodable codes (LDC)

Encoding Local Decoding

Encode
e

O(1) overhead

db

14

Locally decodable codes (LDC)

Encoding Local Decoding

If there are < 1/3 corruptions, for all i:

Encode
e

O(1) overhead

db

14

Locally decodable codes (LDC)

Encoding Local Decoding

If there are < 1/3 corruptions, for all i:
O «— LDC.Que(i)

Encode
e

O(1) overhead

db

14

Locally decodable codes (LDC)

Encoding Local Decoding

If there are < 1/3 corruptions, for all i:
O «— LDC.Que(i)

Encode
e

O(1) overhead

db

14

Locally decodable codes (LDC)

Encoding Local Decoding

If there are < 1/3 corruptions, for all i:

Pr [db,- = LDC.Dec(E,) : Q « LDC.Que(i) | > 2/3

Encode
e

O(1) overhead

db

14

Locally decodable codes (LDC)

Encoding Local Decoding

If there are < 1/3 corruptions, for all i:

Pr [db,- = LDC.Dec(E,) : Q « LDC.Que(i) | > 2/3

Encode
e

O(1) overhead

db

14

Encoding

db

Encode
s

O(1) overhead

Locally decodable codes (LDC)

Local Decoding

If there are < 1/3 corruptions, for all i:

Pr [db,- = LDC.Dec(E,) : Q « LDC.Que(i) |

(Which means Q is “pretty random”).

14

> 2/3

Encoding

db

Encode
s

O(1) overhead

Locally decodable codes (LDC)

Local Decoding

If there are < 1/3 corruptions, for all i:

Pr [db,- = LDC.Dec(E,) : Q « LDC.Que(i) |

(Which means Q is “pretty random”).

14

> 2/3

Locally decodable codes (LDC)

Encoding Local Decoding

If there are < 1/3 corruptions, for all i:

Pr [db,- = LDC.Dec(E,) : Q « LDC.Que(i) | > 2/3

Encode
—_— (Which means Q is “pretty random”).

O(1) overhead

Smoothness:

db

14

Locally decodable codes (LDC)

Encoding Local Decoding

If there are < 1/3 corruptions, for all i:

Pr [db,- = LDC.Dec(E,) : Q « LDC.Que(i) | > 2/3

Encode
—_— (Which means Q is “pretty random”).

O(1) overhead

Smoothness:

db

14

Locally decodable codes (LDC)

Encoding Local Decoding

If there are < 1/3 corruptions, for all i:

Pr [db,- = LDC.Dec(E,) : Q « LDC.Que(i) | > 2/3

Encode
—_— (Which means Q is “pretty random”).

O(1) overhead

Smoothness:

db Forall i x « {Q «— LDC.Que(i)}

is uniformly random in [| E|]

14

Attempt 2: LDC + VC + PIR

Server

9

Attempt 2: LDC + VC + PIR

Offline

Server

9

Attempt 2: LDC + VC + PIR

Offline

Dig(LDC . Enc(db))

Server

9

Attempt 2: LDC + VC + PIR

Offline

Dig(LDC . Enc(db))

Server

9

Attempt 2: LDC + VC + PIR

Offline
Server

Dig(LDC . Enc(db))

9

15

Attempt 2: LDC + VC + PIR

Offline

Dig(LDC . Enc(db))

? Dig(LDC . Enc(db))

15

Server

9

Attempt 2: LDC + VC + PIR

Offline

Dig(LDC . Enc(db))

? Dig(LDC . Enc(db))

1. O <« LDC. Que(i)

15

Server

9

Attempt 2: LDC + VC + PIR

Offline

? Dig(LDC . Enc(db))

1. O <« LDC. Que(i)

15

Dig(LDC . Enc(db))

Server

9

Attempt 2: LDC + VC + PIR

Offline

? Dig(LDC . Enc(db))

1. O <« LDC. Que(i)

15

Dig(LDC . Enc(db))

Server

9

Attempt 2: LDC + VC + PIR

Offline
Server

Dig(LDC . Enc(db))

? Dig(LDC . Enc(db))

1. O <« LDC. Que(i)

2. If T invalid, mark
EJ- =1

9

15

Attempt 2: LDC + VC + PIR

Offline

? Dig(LDC . Enc(db))

1. O <« LDC. Que(i)

2. If T invalid, mark

15

Dig(LDC . Enc(db))

Server

9

Attempt 2: LDC + VC + PIR

Offline

? Dig(LDC . Enc(db))

1. O <« LDC. Que(i)

2. If T invalid, mark

15

Dig(LDC . Enc(db))

Server

9

Attempt 2: LDC + VC + PIR

Offline

? Dig(LDC . Enc(db))

1. O <« LDC. Que(i)

2. If T invalid, mark
EJ- =1
3. out = LDC. Dec(£))

15

Dig(LDC . Enc(db))

Server

9

Attempt 2: LDC + VC + PIR

out

Offline

Dig(LDC . Enc(db))

? Dig(LDC . Enc(db))

1. O <« LDC. Que(i)

2. If T invalid, mark
EJ- =1
4| 3 out= LDC . Dec(Ey)

15

Server

9

Attempt 2: LDC + VC + PIR

Properties

out

Offline

Dig(LDC . Enc(db))

? Dig(LDC . Enc(db))

1. O <« LDC. Que(i)

2. If T invalid, mark
EJ- =1
4| 3 out= LDC . Dec(Ey)

15

Server

9

Attempt 2: LDC + VC + PIR

Offline

Properties Server

1. Preserves correctness. Dig(LDC . Enc(db))

? Dig(LDC . Enc(db))

1. O <« LDC. Que(i)

2. If T invalid, mark
EJ- =1
4| 3 out= LDC . Dec(Ey)

out

9

15

Attempt 2: LDC + VC + PIR

Offline
Properties |
1. Preserves correctness. Dig(LDC . Enc(db))
2. Preserves coherence
because LDC always SGOREERGELEELELLEEEELEEEEEEEEEEEREEELREE
Online

outputs | or db..

out

? Dig(LDC . Enc(db))

1. O « LDC.Que(i)

2. If T invalid, mark
EJ- =1
4| 3 out= LDC . Dec(Ey)

15

Server

Attempt 2: LDC + VC + PIR

Properties
Preserves correctness.
Preserves coherence

1.
2.

because LDC always

outputs | or db..
O(N°) overhead.

out

Offline

? Dig(LDC . Enc(db))

1. O <« LDC. Que(i)

2. If T invalid, mark
EJ- =1
4| 3 out= LDC . Dec(Ey)

15

Dig(LDC . Enc(db))

s (1] |]s

Server

Attempt 2: LDC + VC + PIR

Properties

1.
2.

~ W

Preserves correctness.

Offline

Dig(LDC . Enc(db))

Preserves coherence
because LDC aIWayS IOII l. lllllllllllllllllllllllllllllllllllll

outputs | or db..
O(N°) overhead.

Privacy?

out

? Dig(LDC . Enc(db))

1. O <« LDC. Que(i)

2. If T invalid, mark
EJ- =1
4| 3 out= LDC . Dec(Ey)

15

Server

The Reed-Muller (RM) LDC

16

The Reed-Muller (RM) LDC

Encoding

16

The Reed-Muller (RM) LDC

Encoding
1. Interpolate a bivariate !

polynomial (X, Y') of total
degreed < p = O(\/N) that
agrees with db.

16

The Reed-Muller (RM) LDC

Encoding
1. Interpolate a bivariate

polynomial (X, Y') of total

degree d < p = O(\/N) that

agrees with db.

2. The codeword E is the -

evaluations of f(x,y) for all

x,y €, X,

16

The Reed-Muller (RM) LDC

17

The Reed-Muller (RM) LDC

Local decoding c

17

The Reed-Muller (RM) LDC

Local decoding c
1. Want: db;

17

The Reed-Muller (RM) LDC

Local decoding [F
1. Want: db;

2. RM.Que(j) = QO:let O be a
random line through db;.

17

The Reed-Muller (RM) LDC

Local decoding [F
1. Want: db;

2. RM.Que(j) = QO:let O be a
random line through db;.

17

The Reed-Muller (RM) LDC

Local decoding [F
1. Want: db;

2. RM.Que(j) = QO:let O be a
random line through db;.

17

The Reed-Muller (RM) LDC

Local decoding F
1. Want: db;

2. RM.Que(j) = QO:let O be a
random line through db;.

17

The Reed-Muller (RM) LDC

Local decoding F
1. Want: db;

2. RM.Que(j) = QO:let O be a
random line through db;.

17

The Reed-Muller (RM) LDC

Local decoding F
1. Want: db;

2. RM.Que(j) = QO:let O be a
random line through db;.

17

The Reed-Muller (RM) LDC

Local decoding F
1. Want: db;

2. RM.Que(j) = QO:let O be a
random line through db;.

17

The Reed-Muller (RM) LDC

Local decoding F
1. Want: db;

2. RM.Que(j) = QO:let O be a
random line through db;.

17

The Reed-Muller (RM) LDC

Local decoding

1.
2.

Want: db]

RM . Que(j) = QO:let O bea
random line through db;.
RM. Dec(E,) — dbj: Eis a
univariate polynomial. Can
retrieve db; from E

Decoder reads only
p = O(N'"?) elements!

17

The Reed-Muller (RM) LDC

Local decoding
1. Want: db;

2. RM. Que(j) — O: let
random line through db;
3. RM. DeC(EQ) — dbj:)
univariate polynomial. C

d over F, . Has O(N®) query
complexity, rate O(1).

More generally (g, m, d)-RM code is
m-variate polynomial of total degree

retrieve dbj from EQ.

Decoder reads only
p = O(N'"?) elements!

17

Analyzing privacy: “variance attack”

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the
adversary corrupts (opening proofs on) line

£ through db;:

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the
adversary corrupts (opening proofs on) line

£ through db;:

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the
adversary corrupts (opening proofs on) line

£ through db;:

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the
adversary corrupts (opening proofs on) line

£ through db;:

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the
adversary corrupts (opening proofs on) line

£ through db;:

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the
adversary corrupts (opening proofs on) line

£ through db;:

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the
adversary corrupts (opening proofs on) line

£ through db;:

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the
adversary corrupts (opening proofs on) line

£ through db;:

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the

adversary corrupts (opening proofs on) line
£ through db;:

e Client queries for i: query line £ w/ prob.

1/poly(NN) (there are poly-many lines) and
aborts.

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the

adversary corrupts (opening proofs on) line
£ through db;:

e Client queries for i: query line £ w/ prob.
1/poly(NN) (there are poly-many lines) and
aborts.

e If client queries for j # i: only one point on Fp
the line is corrupt. Client never aborts.

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the

adversary corrupts (opening proofs on) line
£ through db;:

e Client queries for i: query line £ w/ prob.
1/poly(NN) (there are poly-many lines) and
aborts.

e If client queries for j # i: only one point on Fp
the line is corrupt. Client never aborts.

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the

adversary corrupts (opening proofs on) line
£ through db;:

e Client queries for i: query line £ w/ prob.
1/poly(NN) (there are poly-many lines) and
aborts.

e If client queries for j # i: only one point on Fp
the line is corrupt. Client never aborts.

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the

adversary corrupts (opening proofs on) line
£ through db;:

e Client queries for i: query line £ w/ prob.
1/poly(NN) (there are poly-many lines) and
aborts.

e If client queries for j # i: only one point on Fp
the line is corrupt. Client never aborts.

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the

adversary corrupts (opening proofs on) line
£ through db;:

e Client queries for i: query line £ w/ prob.
1/poly(NN) (there are poly-many lines) and
aborts.

e If client queries for j # i: only one point on Fp
the line is corrupt. Client never aborts.

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the

adversary corrupts (opening proofs on) line
£ through db;:

e Client queries for i: query line £ w/ prob.
1/poly(NN) (there are poly-many lines) and
aborts.

e If client queries for j # i: only one point on Fp
the line is corrupt. Client never aborts.

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the

adversary corrupts (opening proofs on) line
£ through db;:

e Client queries for i: query line £ w/ prob.
1/poly(NN) (there are poly-many lines) and
aborts.

e If client queries for j # i: only one point on Fp
the line is corrupt. Client never aborts.

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the

adversary corrupts (opening proofs on) line
£ through db;:

e Client queries for i: query line £ w/ prob.
1/poly(NN) (there are poly-many lines) and
aborts.

e If client queries for j # i: only one point on Fp
the line is corrupt. Client never aborts.

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the

adversary corrupts (opening proofs on) line
£ through db;:

e Client queries for i: query line £ w/ prob.
1/poly(NN) (there are poly-many lines) and
aborts.

e If client queries for j # i: only one point on Fp
the line is corrupt. Client never aborts.

18

Analyzing privacy: “variance attack”

To introduce selective failure on index i, the

adversary corrupts (opening proofs on) line
£ through db;:

e Client queries for i: query line £ w/ prob.
1/poly(NN) (there are poly-many lines) and
aborts.

e If client queries for j # i: only one point on Fp
the line is corrupt. Client never aborts.

Selective Failure

attack!

18

ce attack”

An Al Both indices decoded with good probability

To Introc
adversa

£ throuc

e Client
1/poly(
aborts.

e If client queries for j # i: only one point on Fp
the line is corrupt. Client never aborts.

Selective Failure

attack!

18

ce attack”

An Al Both indices decoded with good probability
Pr|decode i] > 2/3

To Introc
adversa

£ throuc

e Client
1/poly(
aborts.

e If client queries for j # i: only one point on Fp
the line is corrupt. Client never aborts.

Selective Failure

attack!

18

ce attack”

An Al Both indices decoded with good probability
Pr|decode i] > 2/3

_ Pr|decode j| > 2/3
To introc

adversa
Z throuo

e Client
1/poly(
aborts.

e If client queries for j # i: only one point on Fp
the line is corrupt. Client never aborts.

Selective Failure

attack!

18

ce attack”

An Al Both indices decoded with good probability
Pr|decode i] > 2/3

_ Pr|decode j| > 2/3
To introc

adversal However, there could be a big gap between
Z throuco the decoding probabilities:
e Client| | Pr[decode i] — Pr[decode j]| > notice(n)
1/poly(
aborts.

e If client queries for j # i: only one point on Fp
the line is corrupt. Client never aborts.

Selective Failure

attack!

18

Decrease decoder’s success probability: test points

19

Decrease decoder’s success probability: test points

® The approach so far: try to recover
from corruptions.

19

Decrease decoder’s success probability: test points

® The approach so far: try to recover
from corruptions.

e Naive idea: make more queries to
shrink decoding probability gap
(recover from even more
corruptions).

19

Decrease decoder’s success probability: test points

® The approach so far: try to recover
from corruptions.

e Naive idea: make more queries to
shrink decoding probability gap
(recover from even more
corruptions).

® Requires too many queries!

19

® The approach so far: try to recover
from corruptions.

e Naive idea: make more queries to
shrink decoding probability gap
(recover from even more
corruptions).

® Requires too many queries!

® New approach: try to detect
corruptions and reject.

Decrease decoder’s success probability: test points

19

® The approach so far: try to recover
from corruptions.

e Naive idea: make more queries to
shrink decoding probability gap
(recover from even more
corruptions).

® Requires too many queries!

® New approach: try to detect
corruptions and reject.
® Rejecting corruptions in the LDC
query introduces selective failure
attack because the locations
queried are correlated with i.

Decrease decoder’s success probability: test points

19

® The approach so far: try to recover
from corruptions.

e Naive idea: make more queries to
shrink decoding probability gap
(recover from even more
corruptions).

® Requires too many queries!

® New approach: try to detect

corruptions and reject.

® Rejecting corruptions in the LDC
query introduces selective failure
attack because the locations
queried are correlated with i.

® |[nstead we detect corruptions on
a set of random test points.

Decrease decoder’s success probability: test points

19

Decrease decoder’s success probability: test points

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM. Que(j) = O:

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM. Que(j) = O:

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM. Que(j) — O:

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM. Que(j) — O:

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM. Que(j) — O:

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM. Que(j) — O:

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM. Que(j) — O:

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM. Que(j) — O:

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM.Que(j) — O:
1. letL=0L,,...,L, berandom lines
through db;.

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM.Que(j) — O:
1. letL=0L,,...,L, berandom lines
through db;.

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM.Que(j) — O:
1. letL=0L,,...,L, berandom lines
through db;.

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM.Que(j) — O:
1. letL=0L,,...,L, berandom lines
through db;.

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM.Que(j) — O:
1. letL=0L,,...,L, berandom lines
through db;.

2. let I be a set of random points.

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM.Que(j) — O:
1. letL=0L,,...,L, berandom lines
through db;.

2. let I be a set of random points.
3. letQO=LUT. P

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM.Que(j) — O:
1. letL=0L,,...,L, berandom lines
through db;.
2. let 1 be a set of random points.

3. letQO=LUT. P
3. RM.Dec(E,) — db;:

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM.Que(y) — O:
1. letL=1L,,...,L berandom lines
through db;.

2. let I be a set of random points.
3. letQO=LUT. P
3. RM.Dec(E,) — db;:

1. If E;is corrupt, output 1

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM.Que(j) — O:
1. letL=0L,,...,L, berandom lines
through db;.

2. let I be a set of random points.
3. letQO=LUT. P
3. RM.Dec(E,) — db;:

1. If E;is corrupt, output 1
2. Else, output majority decoding of

E.,...E.

[

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM.Que(y) — O:
1. letL=1L,,...,L berandom lines
through db;.

2. let I be a set of random points.
3. letQO=LUT.
3. RM.Dec(E,) — db;:

1. If E;is corrupt, output 1
2. Else, output majority decoding of

E.,...E.

[

Intuitively, server
cannot introduce many
errors.

20

Decrease decoder’s success probability: test points

Modified local decoding with test queries
1. Want: db; g

2. RM.Que(j) — O:
1. letL=0L,,...,L, berandom lines
through db;.

2. let I be a set of random points.
3. letQO=LUT.
3. RM.Dec(E,) — db;:

1. If E;is corrupt, output 1
2. Else, output majority decoding of

E.,...E.

[

Intuitively, server
cannot introduce many
errors.

The non-signaling barrier

21

The non-signaling barrier

 What guarantee does PIR privacy give us on multiple queries?

21

The non-signaling barrier

 What guarantee does PIR privacy give us on multiple queries?

|

21

The non-signaling barrier
ﬁ% ﬁ%

 What guarantee does PIR privacy give us on multiple queries?

|

21

The non-signaling barrier

 What guarantee does PIR privacy give us on multiple queries?

21

The non-signaling barrier

 What guarantee does PIR privacy give us on multiple queries?
« Response 1 is independent of query j?

21

The non-signaling barrier

 What guarantee does PIR privacy give us on multiple queries?

« Response 1 is independent of query j?
 Don’t know how to prove this strong guarantee.

21

The non-signaling barrier

 What guarantee does PIR privacy give us on multiple queries?

« Response 1 is independent of query j?
 Don’t know how to prove this strong guarantee.

* Problem: PIR guarantees that response for i does not “leak
information” about query j, but may have “non-signaling”
correlations with query j.

21

The non-signaling barrier

 What guarantee does PIR privacy give us on multiple queries?

« Response 1 is independent of query j?
 Don’t know how to prove this strong guarantee.

* Problem: PIR guarantees that response for i does not “leak
information” about query j, but may have “non-signaling”

correlations with query j.
* weaker than “independent responses!”

21

The non-signaling barrier

 What guarantee does PIR privacy give us on multiple queries?

« Response 1 is independent of query j?
 Don’t know how to prove this strong guarantee.

* Problem: PIR guarantees that response for i does not “leak
information” about query j, but may have “non-signaling”

correlations with query j.
* weaker than “independent responses!”

* Are non-signaling correlations actually a problem?

21

The non-signaling barrier

 What guarantee does PIR privacy give us on multiple queries?

« Response 1 is independent of query j?
 Don’t know how to prove this strong guarantee.

* Problem: PIR guarantees that response for i does not “leak
information” about query j, but may have “non-signaling”

correlations with query j.
* weaker than “independent responses!”

* Are non-signaling correlations actually a problem?
* Can potentially allow adversary to differentiate between test

and decoding queries — can’t prove security.

21

The non-signaling barrier

What guarantee does PIR privacy give us on multiple queries”?

« Response 1 is independent of query j?
 Don’t know how to prove this strong guarantee.

Problem: PIR guarantees that response for 1 does not “leak
information” about query j, but may have “non-signaling”

correlations with query j.
* weaker than “independent responses!”

Are non-signaling correlations actually a problem?
* Can potentially allow adversary to differentiate between test
and decoding queries — can’t prove security.

We show how to overcome this barrier by constructing decoder
against NS adversaries with only overhead 1

21

Our construction

22

Our construction

Non-signaling local decoding F,

22

Our construction

Non-signaling local decoding F,
1. Want: db; .

22

Our construction

Non-signaling local decoding F,
1. Want: db; .

2. RM.Que(j) — O:

22

Our construction

Non-signaling local decoding F,
1. Want: db; .

2. RM.Que(j) — O:
1. letL,,..., L, be random lines through db;.

22

Our construction

Non-signaling local decoding F,
1. Want: db; .

2. RM.Que(j) — O:
1. letL,,..., L, be random lines through db;.

2. Pick a random point on each line; call
this the test set 1 .

22

Our construction

Non-signaling local decoding F,
1. Want: db; .

2. RM.Que(j) — O:
1. letL,,..., L, be random lines through db;.

2. Pick a random point on each line; call
this the test set 1 .

22

Our construction

Non-signaling local decoding F,
1. Want: db; .

2. RM.Que(j) — O:
1. letL,,..., L, be random lines through db;.

2. Pick a random point on each line; call
this the test set 1. -

22

Our construction

Non-signaling local decoding F,
1. Want: db; .

2. RM.Que(j) — O:
1. letL,,..., L, be random lines through db;.

2. Pick a random point on each line; call
this the test set 1. -

22

Our construction

Non-signaling local decoding F,
1. Want: db; .

2. RM.Que(j) — O:
1. letL,,..., L, be random lines through db;.

2. Pick a random point on each line; call
this the test set 1. -

22

Our construction

Non-signaling local decoding F,
1. Want: db; .

2. RM.Que(j) — O:
1. letL,,..., L, be random lines through db;.

2. Pick a random point on each line; call
this the test set 1. -

22

Our construction

Non-signaling local decoding F,
1. Want: db; .

2. RM.Que(j) — O:
1. letL,,..., L, be random lines through db;.

2. Pick a random point on each line; call
this the test set 1. -

22

Our construction

Non-signaling local decoding F,
1. Want: db; .

2. RM.Que(j) — O:
1. letL,,..., L, be random lines through db;.

2. Pick a random point on each line; call
this the test set 1. -

22

Our construction

Non-signaling local decoding F,
1. Want: db; .

2. RM.Que(j) — O:
1. letL,,..., L, be random lines through db;.

2. Pick a random point on each line; call
this the test set 1. -

3. letQO=LUT.

22

Our construction

Non-signaling local decoding F,
1. Want: db; .

2. RM.Que(j) — O:
1. letL,,..., L, be random lines through db;.

2. Pick a random point on each line; call
this the test set 1. -

3. letQO=LUT.
3. RM.Dec(E,) — db;:

22

Our construction

Non-signaling local decoding F,
1. Want: db; .

2. RM.Que(j) — O:
1. letL,,..., L, be random lines through db;.

2. Pick a random point on each line; call
this the test set 1. -

3. letQO=LUT.
3. RM.Dec(E,) — db;:

1. If Ehas corruptions, output L

22

Our construction

Non-signaling local decoding F,
1. Want: db; .

2. RM.Que(j) — O:
1. letL,,..., L, be random lines through db;.

2. Pick a random point on each line; call
this the test set 1. -

3. letQO=LUT.
3. RM.Dec(E,) — db;:

1. If Ehas corruptions, output L

2. Else, decode ELI, el ELt as before.

22

Final Construction

23

Server

9

Final Construction

Offline

23

Server

9

Final Construction

Offline Server

Dig(LDC . Enc(db))
—————————

9

23

Final Construction

Offline Server
Dig(LDC . Enc(db))

Online

9

23

Final Construction

Offline
Dig(LDC . Enc(db))

Online

Client

? Dig(LDC . Enc(db))

1. O « LDC.Que(i)
2. If z; invalid, mark
E =1
3. out = LDC. Dec(E))

23

Server

Final Construction

Offline Server
Dig(LDC . Enc(db))

Online

Client

? Dig(LDC . Enc(db)) i 0,

1. O « LDC.Que(i)

2. If z; invalid, mark
E =1
3. out = LDC. Dec(E))

23

Final Construction

Offline
Dig(LDC . Enc(db))

Online

Client

? Dig(LDC . Enc(db

1. O « LDC . Que(i

2. If z; invalid, mark
E =1

3. out = LDC. Dec(E))

From
previous slide

23

Server

Final Construction

Offline Server
Dig(LDC . Enc(db))

Online

Client

? Dig(LDC . Enc(db)) i 0,

1. O « LDC.Que(i)

2. If z; invalid, mark
E =1
3. out = LDC. Dec(E))

23

Final Construction

Offline
Dig(LDC . Enc(db))

Online

Client

? Dig(LDC . Enc(db))

1. O « LDC.Que(i)
2. If z; invalid, mark
E =1
3. out = LDC. Dec(E))

23

Server

Final Construction

Offline Server
Dig(LDC . Enc(db))

Online

Client
? Dig(LDC . Enc(db))

1. O « LDC.Que(i)
2. If z; invalid, mark

E =1
3. out = LDC.Dec(E

previous slide
23

Final Construction

Offline
Dig(LDC . Enc(db))

Online

Client

? Dig(LDC . Enc(db))

1. O « LDC.Que(i)
2. If z; invalid, mark
E =1
3. out = LDC. Dec(E))

23

Server

Final Construction

out

Offline
Dig(LDC . Enc(db))

Online

Client

? Dig(LDC . Enc(db))

1. O « LDC.Que(i)
2. If z; invalid, mark
E =1
3. out = LDC. Dec(E))

23

Server

Final Construction

Properties

out

Offline
Dig(LDC . Enc(db))

Online

Client

? Dig(LDC . Enc(db))

1. O « LDC.Que(i)
2. If z; invalid, mark
E =1
3. out = LDC. Dec(E))

23

Server

Final Construction

Properties
Preserves correctness,

1.

coherence.

out

Offline
Dig(LDC . Enc(db))

Online

Client

? Dig(LDC . Enc(db))

1. O « LDC.Que(i)
2. If z; invalid, mark
E =1
3. out = LDC. Dec(E))

23

Server

Final Construction

Properties

1. Preserves correctness,

coherence.
2. O(N°) overhead*.

out

Offline
Dig(LDC . Enc(db))

Online

Client

? Dig(LDC . Enc(db))

1. O « LDC.Que(i)
2. If z; invalid, mark
E =1
3. out = LDC. Dec(E))

23

Server

Final Construction

Offline Server
Properties Computation?
1. Preserves correctness,
coherence.

2. O(N°) overhead*.
Client

? Dig(LDC . Enc(db))

1. O « LDC.Que(i)

2. If z; invalid, mark
E =1
3. out = LDC. Dec(E))

xS S
N &S

23

Final Construction

Offline Server
Properties Computation? | E,
1. Preserves correctness, Batch codes fall
coherence.

2. O(N°) overhead*.
Client

? Dig(LDC . Enc(db))

1. O « LDC.Que(i)

2. If z; invalid, mark
E =1
3. out = LDC. Dec(E))

I
S <

23

Final Construction

Offline Server

Computation?

Properties | 3
1. Preserves correctness, " Ba:)CI: Ch(')def fail
coherence. ossy batching” in paper

2. O(N°) overhead*.
Client

? Dig(LDC . Enc(db))

1. O « LDC.Que(i)
2. If z; invalid, mark
E =1
3. out = LDC. Dec(E))

I
S <

23

Final Construction

Properties

1. Preserves correctness,

coherence.
2. O(N°) overhead*.

out

Offline
Dig(LDC . Enc(db))

Online

Client

? Dig(LDC . Enc(db))

1. O « LDC.Que(i)
2. If z; invalid, mark
E =1
3. out = LDC. Dec(E))

23

Server

Final Construction

Properties

1. Preserves correctness,
coherence.

2. O(N°) overhead*.

3. Privacy:

out

Offline
Dig(LDC . Enc(db))

Online

Client

? Dig(LDC . Enc(db))

1. O « LDC.Que(i)
2. If z; invalid, mark
E =1
3. out = LDC. Dec(E))

23

Server

Final Construction

Properties

1. Preserves correctness,
coherence.

2. O(N°) overhead*.

3. Privacy:

out

Offline
Dig(LDC . Enc(db))

Online

Client

? Dig(LDC . Enc(db))

1. O « LDC.Que(i)
2. If z; invalid, mark
E =1
3. out = LDC. Dec(E))

23

Server

Final Construction

Properties

1. Preserves co
coherence.

2. O(N°) overhe

3. Privacy:

1.

Pr[L oni] = Pr| L on/]|: by smoothness of code,
test queries are uniformly random and

independent of 7 . By non-signaling server must
output the same on these distributions.

Pr[not L and can't decode]| = negl(/): even

information theoretic adversary can’t guess all
test queries!

out

Offline

E. =

l

3. out = LDC. Dec(E))

23

Dig(LDC . Enc(db))

—

Server

IS
=

Conclusion

Conclusion

Theorem 1:
maliciousnhess
compiler for PIR

Corollary 1: PIR < mPIR

Theorem 2: there exists doubly-efficient mPIR.

I R O T N

oz | owy | o | o | we | rem

oo | ow) | xon | wwan | en | oo
29

Open questions

Open questions

1. Theory:

26

Open questions

1. Theory:
1. Can we reduce test-query overhead from O(AN®) to O(N¢ + A)

26

Open questions

1. Theory:

1. Can we reduce test-query overhead from O(AN®) to O(N¢ + A)
2. What are the properties of LDC with “consistent” decoding?

26

Open questions

1. Theory:

1. Can we reduce test-query overhead from O(AN®) to O(N¢ + A)
2. What are the properties of LDC with “consistent” decoding?
3. How well can we decode in the face of non-signaling adversaries?

26

Open questions

1. Theory:

1. Can we reduce test-query overhead from O(AN®) to O(N¢ + A)
2. What are the properties of LDC with “consistent” decoding?
3. How well can we decode in the face of non-signaling adversaries?

2. Practice:

26

Open questions

1. Theory:

1. Can we reduce test-query overhead from O(AN®) to O(N¢ + A)
2. What are the properties of LDC with “consistent” decoding?
3. How well can we decode in the face of non-signaling adversaries?

2. Practice:
1. Can we implement these ideas in a practically efficient mPIR?

26

Thank you!

eprint.iacr.org/2024/964

https://eprint.iacr.org/2024/964.pdf

