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3. RM. DeC(EQ) — dbj: )
univariate polynomial. C

d over F, . Has O(N®) query
complexity, rate O(1).

More generally (g, m, d)-RM code is
m-variate polynomial of total degree

retrieve dbj from EQ.
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An Al Both indices decoded with good probability
Pr|decode i] > 2/3

_ Pr|decode j| > 2/3
To introc

adversal However, there could be a big gap between
Z throuco the decoding probabilities:
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® The approach so far: try to recover
from corruptions.

e Naive idea: make more queries to
shrink decoding probability gap
(recover from even more
corruptions).

® Requires too many queries!

® New approach: try to detect

corruptions and reject.

® Rejecting corruptions in the LDC
query introduces selective failure
attack because the locations
queried are correlated with i.

® |[nstead we detect corruptions on
a set of random test points.
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The non-signaling barrier

What guarantee does PIR privacy give us on multiple queries”?

« Response 1 is independent of query j?
 Don’t know how to prove this strong guarantee.

Problem: PIR guarantees that response for 1 does not “leak
information” about query j, but may have “non-signaling”

correlations with query j.
* weaker than “independent responses!”

Are non-signaling correlations actually a problem?
* Can potentially allow adversary to differentiate between test
and decoding queries — can’t prove security.

We show how to overcome this barrier by constructing decoder
against NS adversaries with only overhead 1
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1. Want: db; .

2. RM.Que(j) — O:
1. letL,,..., L, be random lines through db;.

2. Pick a random point on each line; call
this the test set 1. -

3. letQO=LUT.
3. RM.Dec(E,) — db;:

1. If Ehas corruptions, output L

2. Else, decode ELI, el ELt as before.
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Final Construction

Properties

1. Preserves co
coherence.

2. O(N°) overhe

3. Privacy:

1.

Pr[L oni] = Pr| L on/]|: by smoothness of code,
test queries are uniformly random and

independent of 7 . By non-signaling server must
output the same on these distributions.

Pr[not L and can't decode]| = negl(/): even

information theoretic adversary can’t guess all
test queries!

out

Offline

E. =

l

3. out = LDC. Dec(E))
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Conclusion

Theorem 1:
maliciousnhess
compiler for PIR

Corollary 1: PIR < mPIR

Theorem 2: there exists doubly-efficient mPIR.
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Open questions

1. Theory:

1. Can we reduce test-query overhead from O(AN®) to O(N¢ + A)
2. What are the properties of LDC with “consistent” decoding?
3. How well can we decode in the face of non-signaling adversaries?

2. Practice:
1. Can we implement these ideas in a practically efficient mPIR?
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Thank you!
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