
Breaking Verifiable Delay Functions
in the Random Oracle Model

Ziyi Guan
Joint work with Artur Riazanov, Weiqiang Yuan

1

The random oracle model

2

The random oracle model

2

Random oracle 𝒪 := {𝒪ℓ}ℓ∈ℕ
: uniform distribution over 𝒪ℓ f : {0,1}* → {0,1}ℓ

The random oracle model

2

Random oracle 𝒪 := {𝒪ℓ}ℓ∈ℕ
: uniform distribution over 𝒪ℓ f : {0,1}* → {0,1}ℓ

fAlgorithm 𝖠

The random oracle model

2

Random oracle 𝒪 := {𝒪ℓ}ℓ∈ℕ
: uniform distribution over 𝒪ℓ f : {0,1}* → {0,1}ℓ

fAlgorithm 𝖠

Query q ∈ {0,1}*

The random oracle model

2

Random oracle 𝒪 := {𝒪ℓ}ℓ∈ℕ
: uniform distribution over 𝒪ℓ f : {0,1}* → {0,1}ℓ

fAlgorithm 𝖠

Query q ∈ {0,1}*

f(q)

Verifiable Delay Function (VDF)

3

Verifiable Delay Function (VDF)

3

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)

Verifiable Delay Function (VDF)

3

𝒳 𝒴

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)

Verifiable Delay Function (VDF)

3

𝒳 𝒴

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

Verifiable Delay Function (VDF)

3

𝒳 𝒴

VERIFIABLE correctness of output efficiently publicly verifiable→

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

Verifiable Delay Function (VDF)

3

𝒳 𝒴

VERIFIABLE correctness of output efficiently publicly verifiable→

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

 queries𝖳 queries𝗌

𝗌 ≪ 𝖳

Verifiable Delay Function (VDF)

3

𝒳 𝒴

VERIFIABLE correctness of output efficiently publicly verifiable→
DELAY

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

 queries𝖳 queries𝗌

𝗌 ≪ 𝖳

Verifiable Delay Function (VDF)

3

𝒳 𝒴

VERIFIABLE correctness of output efficiently publicly verifiable→
DELAY

 Can be evaluated in queries→ T
 Cannot be evaluated in rounds of queries → o(T)

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

 queries𝖳 queries𝗌

𝗌 ≪ 𝖳

Verifiable Delay Function (VDF)

3

𝒳 𝒴

VERIFIABLE correctness of output efficiently publicly verifiable→
DELAY

 Can be evaluated in queries→ T
 Cannot be evaluated in rounds of queries → o(T)

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

 queries𝖳 queries𝗌

𝗌 ≪ 𝖳

One can make multiple

non-adaptive queries in one round

Verifiable Delay Function (VDF)

3

𝒳 𝒴

VERIFIABLE correctness of output efficiently publicly verifiable→
DELAY

 Can be evaluated in queries→ T
 Cannot be evaluated in rounds of queries → o(T)

FUNCTION one unique output→

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

 queries𝖳 queries𝗌

𝗌 ≪ 𝖳

One can make multiple

non-adaptive queries in one round

Randomness beacon
Why study VDF?

4

Randomness beacon
Why study VDF?

4

- Publish randomness regularly

- Cannot predict/manipulate

Randomness beacon
Why study VDF?

4

- Publish randomness regularly

- Cannot predict/manipulate Stock Prices (public source of randomness)

Randomness beacon
Why study VDF?

4

- Publish randomness regularly

- Cannot predict/manipulate Stock Prices (public source of randomness)

Randomness Extractor

Random Seed

Randomness beacon
Why study VDF?

4

- Publish randomness regularly

- Cannot predict/manipulate Stock Prices (public source of randomness)

Randomness Extractor

Random Seed

Pseudorandom Generator

Randomness

Randomness beacon
Why study VDF?

4

- Publish randomness regularly

- Cannot predict/manipulate Stock Prices (public source of randomness)

Randomness Extractor

Random Seed

Pseudorandom Generator

Randomness

ISSUE: final randomness easy to compute & manipulate

(Stock prices can be biased/manipulated)

Randomness beacon
Why study VDF?

4

- Publish randomness regularly

- Cannot predict/manipulate Stock Prices (public source of randomness)

Randomness Extractor

Random Seed

Pseudorandom Generator

Randomness

ISSUE: final randomness easy to compute & manipulate

(Stock prices can be biased/manipulated)

VDF

Randomness beacon
Why study VDF?

4

- Publish randomness regularly

- Cannot predict/manipulate Stock Prices (public source of randomness)

Randomness Extractor

Random Seed

Pseudorandom Generator

Randomness

ISSUE: final randomness easy to compute & manipulate

(Stock prices can be biased/manipulated)

VDF

DELAY: not computable before market closes
UNIQUENESS: no ambiguity on output

Blockchain: leader election
Why study VDF?

5

UNIQUENESS one unique leader

DELAY cannot predict the next leader

until shortly before the announcement

→
→

Verifiable Delay Functions
Do Not Exist

in the Random Oracle Model!!!!!!

But, VDFs exist in the standard model…？

7

But, VDFs exist in the standard model…？

7

Why do we care about ROM? It’s not real anyway

But, VDFs exist in the standard model…？

7

Why do we care about ROM? It’s not real anyway

What cryptography is needed for VDF constructions?

But, VDFs exist in the standard model…？

7

Why do we care about ROM? It’s not real anyway

Existing VDFs rely on algebraic assumptions — not post-quantum secure

What cryptography is needed for VDF constructions?

But, VDFs exist in the standard model…？

7

Why do we care about ROM? It’s not real anyway

Existing VDFs rely on algebraic assumptions — not post-quantum secure

What cryptography is needed for VDF constructions?

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

But, VDFs exist in the standard model…？

7

Why do we care about ROM? It’s not real anyway

Existing VDFs rely on algebraic assumptions — not post-quantum secure

What cryptography is needed for VDF constructions?

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

OWF, OWP, CRHF, …

But, VDFs exist in the standard model…？

7

Why do we care about ROM? It’s not real anyway

Existing VDFs rely on algebraic assumptions — not post-quantum secure

What cryptography is needed for VDF constructions?

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

OWF, OWP, CRHF, …

Complex assumptions (e.g. lattice) necessary for post-quantum VDF

But, VDFs exist in the standard model…？

8

Why do we care about ROM? It’s not real anyway

But, VDFs exist in the standard model…？

8

Why do we care about ROM? It’s not real anyway

What security do VDF constructions have?

But, VDFs exist in the standard model…？

8

Why do we care about ROM? It’s not real anyway

Standard model construction do not give concrete security analysis…

What security do VDF constructions have?

But, VDFs exist in the standard model…？

8

Why do we care about ROM? It’s not real anyway

Standard model construction do not give concrete security analysis…
How to set security parameters in practice?

What security do VDF constructions have?

But, VDFs exist in the standard model…？

8

Why do we care about ROM? It’s not real anyway

Standard model construction do not give concrete security analysis…
How to set security parameters in practice?

What security do VDF constructions have?

Incrementally Verifiable Computation
(Believed to not exist in the ROM)

But, VDFs exist in the standard model…？

8

Why do we care about ROM? It’s not real anyway

Standard model construction do not give concrete security analysis…
How to set security parameters in practice?

What security do VDF constructions have?

Incrementally Verifiable Computation
(Believed to not exist in the ROM)

Alternative idealized model (LDROM, AROM)

But, VDFs exist in the standard model…？

8

Why do we care about ROM? It’s not real anyway

Standard model construction do not give concrete security analysis…
How to set security parameters in practice?

What security do VDF constructions have?

Incrementally Verifiable Computation
(Believed to not exist in the ROM)

Alternative idealized model (LDROM, AROM)
Non-succinct IVC in the ROM

But, VDFs exist in the standard model…？

8

Why do we care about ROM? It’s not real anyway

Standard model construction do not give concrete security analysis…
How to set security parameters in practice?

What security do VDF constructions have?

Incrementally Verifiable Computation
(Believed to not exist in the ROM)

Alternative idealized model (LDROM, AROM)
Non-succinct IVC in the ROM
…

But, VDFs exist in the standard model…？

8

Why do we care about ROM? It’s not real anyway

Standard model construction do not give concrete security analysis…
How to set security parameters in practice?

What security do VDF constructions have?

Similar approach for VDFs?

Incrementally Verifiable Computation
(Believed to not exist in the ROM)

Alternative idealized model (LDROM, AROM)
Non-succinct IVC in the ROM
…

Let’s get a little bit technical…

9

Query complexity vs. certificate complexity

10

Query complexity vs. certificate complexity

10

Query complexity vs. certificate complexity

10

G : a ∈ {0,1}n ↦ b ∈ {0,1}

Query complexity vs. certificate complexity

10

G : a ∈ {0,1}n ↦ b ∈ {0,1}

e.g. iff 𝟥𝖶𝖳(a) = 1 𝗐𝗍(a) ≥ 3

Query complexity vs. certificate complexity

10

G : a ∈ {0,1}n ↦ b ∈ {0,1}

Query complexity : min # bits in needed to compute D(G) a G

e.g. iff 𝟥𝖶𝖳(a) = 1 𝗐𝗍(a) ≥ 3

Query complexity vs. certificate complexity

10

G : a ∈ {0,1}n ↦ b ∈ {0,1}

Query complexity : min # bits in needed to compute D(G) a G

e.g. iff 𝟥𝖶𝖳(a) = 1 𝗐𝗍(a) ≥ 3
- D(𝟥𝖶𝖳) = n

Query complexity vs. certificate complexity

10

G : a ∈ {0,1}n ↦ b ∈ {0,1}

Query complexity : min # bits in needed to compute D(G) a G

Certificate complexity
: min # bits in needed to prove

: min # bits in needed to prove

C(G) = max{C1(G), C0(G)}
C1(G) a G(a) = 1
C0(G) a G(a) = 0

e.g. iff 𝟥𝖶𝖳(a) = 1 𝗐𝗍(a) ≥ 3
- D(𝟥𝖶𝖳) = n

Query complexity vs. certificate complexity

10

G : a ∈ {0,1}n ↦ b ∈ {0,1}

Query complexity : min # bits in needed to compute D(G) a G

Certificate complexity
: min # bits in needed to prove

: min # bits in needed to prove

C(G) = max{C1(G), C0(G)}
C1(G) a G(a) = 1
C0(G) a G(a) = 0

e.g. iff 𝟥𝖶𝖳(a) = 1 𝗐𝗍(a) ≥ 3
- D(𝟥𝖶𝖳) = n
- C1(𝟥𝖶𝖳) = 3
- C0(𝟥𝖶𝖳) = n − 3

Query complexity vs. certificate complexity

10

G : a ∈ {0,1}n ↦ b ∈ {0,1}

Query complexity : min # bits in needed to compute D(G) a G

Certificate complexity
: min # bits in needed to prove

: min # bits in needed to prove

C(G) = max{C1(G), C0(G)}
C1(G) a G(a) = 1
C0(G) a G(a) = 0

e.g. iff 𝟥𝖶𝖳(a) = 1 𝗐𝗍(a) ≥ 3
- D(𝟥𝖶𝖳) = n
- C1(𝟥𝖶𝖳) = 3
- C0(𝟥𝖶𝖳) = n − 3

Trivial: C(G) ≤ D(G)

Query complexity vs. certificate complexity

10

G : a ∈ {0,1}n ↦ b ∈ {0,1}

Query complexity : min # bits in needed to compute D(G) a G

Certificate complexity
: min # bits in needed to prove

: min # bits in needed to prove

C(G) = max{C1(G), C0(G)}
C1(G) a G(a) = 1
C0(G) a G(a) = 0

D(G) ≤ C(G)2

e.g. iff 𝟥𝖶𝖳(a) = 1 𝗐𝗍(a) ≥ 3
- D(𝟥𝖶𝖳) = n
- C1(𝟥𝖶𝖳) = 3
- C0(𝟥𝖶𝖳) = n − 3

Trivial: C(G) ≤ D(G)

Verifiable Delay Function

11

G : a ∈ {0,1}n ↦ b ∈ {0,1}

Query complexity : min # bits in needed to compute D(G) a G

Certificate complexity
: min # bits in needed to prove

: min # bits in needed to prove

C(G) = max{C1(G), C0(G)}
C1(G) a G(a) = 1
C0(G) a G(a) = 0

Verifiable Delay Function

11

G : a ∈ {0,1}n ↦ b ∈ {0,1}

Query complexity : min # bits in needed to compute D(G) a G

Certificate complexity
: min # bits in needed to prove

: min # bits in needed to prove

C(G) = max{C1(G), C0(G)}
C1(G) a G(a) = 1
C0(G) a G(a) = 0

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y)
y

Verifiable Delay Function

11

G : a ∈ {0,1}n ↦ b ∈ {0,1}

Query complexity : min # bits in needed to compute D(G) a G

Certificate complexity
: min # bits in needed to prove

: min # bits in needed to prove

C(G) = max{C1(G), C0(G)}
C1(G) a G(a) = 1
C0(G) a G(a) = 0

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y)
y

𝖤𝗏𝖺𝗅x(f) := 𝖤𝗏𝖺𝗅 f(x)

Verifiable Delay Function

11

G : a ∈ {0,1}n ↦ b ∈ {0,1}

Query complexity : min # bits in needed to compute D(G) a G

Certificate complexity
: min # bits in needed to prove

: min # bits in needed to prove

C(G) = max{C1(G), C0(G)}
C1(G) a G(a) = 1
C0(G) a G(a) = 0

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y)
y

𝖤𝗏𝖺𝗅x(f) := 𝖤𝗏𝖺𝗅 f(x)

 (# queries to made by)𝗌 f 𝖵x,y(f) := 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y)

Verifiable Delay Function

11

G : a ∈ {0,1}n ↦ b ∈ {0,1}

Query complexity : min # bits in needed to compute D(G) a G

Certificate complexity
: min # bits in needed to prove

: min # bits in needed to prove

C(G) = max{C1(G), C0(G)}
C1(G) a G(a) = 1
C0(G) a G(a) = 0

D(G) ≤ C(G)2

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y)
y

𝖤𝗏𝖺𝗅x(f) := 𝖤𝗏𝖺𝗅 f(x)

 (# queries to made by)𝗌 f 𝖵x,y(f) := 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y)

Verifiable Delay Function

11

G : a ∈ {0,1}n ↦ b ∈ {0,1}

Query complexity : min # bits in needed to compute D(G) a G

Certificate complexity
: min # bits in needed to prove

: min # bits in needed to prove

C(G) = max{C1(G), C0(G)}
C1(G) a G(a) = 1
C0(G) a G(a) = 0

D(G) ≤ C(G)2

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y)
y

𝖤𝗏𝖺𝗅x(f) := 𝖤𝗏𝖺𝗅 f(x)

 (# queries to made by)𝗌 f 𝖵x,y(f) := 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y)

 algorithm with at most queries that computes
i.e. breaking the “DELAY” requirement

⟹ ∃ 𝗌2 𝖤𝗏𝖺𝗅

Verifiable Delay Function

11

G : a ∈ {0,1}n ↦ b ∈ {0,1}

Query complexity : min # bits in needed to compute D(G) a G

Certificate complexity
: min # bits in needed to prove

: min # bits in needed to prove

C(G) = max{C1(G), C0(G)}
C1(G) a G(a) = 1
C0(G) a G(a) = 0

D(G) ≤ C(G)2

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y)
y

𝖤𝗏𝖺𝗅x(f) := 𝖤𝗏𝖺𝗅 f(x)

 (# queries to made by)𝗌 f 𝖵x,y(f) := 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y)

 algorithm with at most queries that computes
i.e. breaking the “DELAY” requirement

⟹ ∃ 𝗌2 𝖤𝗏𝖺𝗅

Challenge: VDF only has cryptographic correctness, above only works for statistical correctness…

Recap

12

Verifiable Delay Functions
Do Not Exist in the Random Oracle Model!!!!!!

Recap

12

Verifiable Delay Functions
Do Not Exist in the Random Oracle Model!!!!!!

Random Oracle Model Delay No delay

Unique

Non-unique

Impossible ❌

Recap

12

Verifiable Delay Functions
Do Not Exist in the Random Oracle Model!!!!!!

Random Oracle Model Delay No delay

Unique

Non-unique

Impossible ❌

Proof of work ✅

Recap

12

Verifiable Delay Functions
Do Not Exist in the Random Oracle Model!!!!!!

Random Oracle Model Delay No delay

Unique

Non-unique

Impossible ❌

Proof of sequential work ✅ Proof of work ✅

Recap

12

Verifiable Delay Functions
Do Not Exist in the Random Oracle Model!!!!!!

Random Oracle Model Delay No delay

Unique

Non-unique

Impossible ❌

Proof of sequential work ✅ Proof of work ✅

???

Recap

12 Thank you!

Verifiable Delay Functions
Do Not Exist in the Random Oracle Model!!!!!!

Random Oracle Model Delay No delay

Unique

Non-unique

Impossible ❌

Proof of sequential work ✅ Proof of work ✅

???

