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Randomness beacon
Why study VDF?

4

- Publish randomness regularly

- Cannot predict/manipulate Stock Prices (public source of randomness)

Randomness Extractor

Random Seed

Pseudorandom Generator

Randomness

ISSUE: final randomness easy to compute & manipulate

(Stock prices can be biased/manipulated)

VDF

DELAY: not computable before market closes
UNIQUENESS: no ambiguity on output



Blockchain: leader election
Why study VDF?
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UNIQUENESS  one unique leader

DELAY  cannot predict the next leader 

until shortly before the announcement

→
→



Verifiable Delay Functions 
Do Not Exist  

in the Random Oracle Model!!!!!!
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Existing VDFs rely on algebraic assumptions — not post-quantum secure

What cryptography is needed for VDF constructions?

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

OWF, OWP, CRHF, …

Complex assumptions (e.g. lattice) necessary for post-quantum VDF
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Why do we care about ROM? It’s not real anyway

Standard model construction do not give concrete security analysis…
How to set security parameters in practice?

What security do VDF constructions have?

Similar approach for VDFs?

Incrementally Verifiable Computation 
(Believed to not exist in the ROM)

Alternative idealized model (LDROM, AROM)
Non-succinct IVC in the ROM 
…
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 (# queries to  made by )𝗌 f 𝖵x,y( f ) := 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y)

  algorithm with at most   queries that computes  
i.e. breaking the “DELAY” requirement

⟹ ∃ 𝗌2 𝖤𝗏𝖺𝗅

Challenge: VDF only has cryptographic correctness, above only works for statistical correctness…
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