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SNOVA: A Signature Scheme based on UOV

< 2nd round candidate in the NIST process for post-quantum signatures.
< Aims to reduce the pk-size of UOV.
¢ Fastand compact when compared with similar proposals.

< Based on a new construction: Several attacks since submitted (e.g., [IA24, LD24, Beu25, NTF24])



Our contributions

Analysis algebraic properties of SNOVA systems.
New key-recovery attack.

New forgery attack.
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SNOVA: A UOV-like Signature Scheme
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SNOVA: A UOV-like Signature Scheme

A keypair (sk, pk) € UOV(q,n,0,m):
sk=0 < Fy withdim(O) = o.
pk=(p1,...,pm) € Fylz1, ..., z,| withdeg(p;) = 2and

pi(o) =+ =pp(0) =0 VoeO.

- Verification map:
A signature o = (s,salt) = pk(s) = Hash(messagel|salt) € F" pk = Expand (pk)

|pk-SNOVA| ~ 1KB, 2KB and 10KB
sign-time = 0.5Mc, 0.4Mc and 0.3Mc

Forlevel I:

°Singing-time of ESK versionshttps: //pgsort.tii.ae/. Verify-time ~ sign-time/2.


https://pqsort.tii.ae/
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SNOVA Sequences

Si
S e ]Féxl with CharPoly(S) =irreducibleand Agi = { ] .
Si

o GivenP € ]FQIX”' define
u'-P-u, u’ - (PAg) - u, u’ - (AgP) - u,

Fp(u) =
ut . (AspAs) - u, s ut . (A5171PA5171) -ua

o ASNOVA sequence is set of the form (Fp,, Fp,, ..., Fp,,)-

m V pkisassociated to a SNOVA sequence F.
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Attacks using a SNOVA Sequences 7 [IA24, LD24, Beu25]

© Reconciliation (key-recovery) attacks = Find uc O (the secret space) such that

/ \ V={u|F(u)=(0,....0)}
F(u) =(0,...,0), where \\Q/

< Beullens (forgery) attack = Findu € IF‘Z}'
E- ‘F(u) + £linear(u) = (al, R ,aolg),

where E is a known matrix.
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Main Theorem: Given a SNOVA sequence F = ( f,
We can compute matrices P and A over [F; such that
H=A-(fle,. ..

and polys in H are multi-homogeneouswrtu = u; U - - - U uy.

u;

m polys with this shape V i

u;

u;

)t - ]Fql [u],

9 ml2

ce fml2> C FQ[U]

u;

2m polys with this shape Vi # j

J

Matrix shape of polys in H over Iqu
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The Multi-Homogeneous (MH) XL Algorithm

Consider the multi-homogeneous polynomial system

fi(w) == frp(a) =0
XL: input an integer D Multi-homogeneous-XL: Input a [-tuple d
 Solve M -z =0 for z # 0, and [ Solve M -z =0 for z # 0, and
_ deg(f) <D _ multi-deg(f) < d
M = Macaulay (f | £ = mon - f; M = Macaulay | f | F— mon- f;
Extract a solution u from z. Extract a solution u from z.

Multi-homogeneous-XL yields smaller Macaulay matrices.

e < diife 75 dandVe; <d; -
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Solving a SNOVA System ( f1(u), ..., f2(u)) = a

Compute H = A - ( 1AP, e ,f;\ﬁz)t (multi-homogeneous over F )

Use MH-XL to solve H(u) = a, for i € IFZ[.

If u=Ap-u CF,, output u. Otherwise, go to step 2.

& Use hybrid approach over I, at Security previous best our
step 2. level reconciliation attack attack
197 195

© Complexity estimation of MH-XL.
mplexity estimation I3 196 187
269 252

< Experimental verification expected
behavior of MH-XL.
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Forgery Attack by Beullens [Beu25]

Let pk(U) be the verification map, with U € IE‘Z’XZ

o Afterachangeofvars. U = ch(u) withu € IF;L/,

Ech

p~k(u) = -F(u)+Liinear(u) +c,

Ech

Attack: Given 7 < Ncols(Egp):
B Brute-force ch with rank(Eg,) = 7.

Solve the easier system involving
pk(u) = Hash(message||salt).

Output o = (ch~!(u), salt)

(d many ch of that kind)

(F assoc. SNOVA seq. to pk)

Our goal: Exploit the structure of

H(@) = A - F P (@) + low-rank of Eqp,

Main issue:

Ech

Ech

-H (@) isn't multi-homogeneous.
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Ecp
Use a (slightly) different ch so that pk(u) = Eqp,- F(u), with Eg, = [ ]
Ech

Attack: Given 7 < Ncols(Eg):

Brute-force ch with rank(Eg) = 7. 2 il 510 S e

m Lift the system over [F; to obtain
0=H@+W-(1,y1,...,y)"
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Our Forgery Attack

Use a (slightly) different ch so that pk(u) =

Attack: Given 7 < Ncols(Eg):

Brute-force ch with rank(Eq,) = r.

Brute-force salt € {0, 1}!?% with
Hash(message||salt) € ColSpace(Ec).
B Solve foru € IFZ;/, y; € Fy, a system
0=F(u)+W-(Lyp,...,yp)"
where W is known matrix.

Output o = (ch~!(u), salt)

Ech
Ec, - F(u), with E¢, = [ ]
Eq,

Solving at Step 3:

m Lift the system over F; to obtain

m Solve using Hybrid-F4.

0=H@ +W-(Ly,...,yp)

Remarks:

X p extra variables linear y;.

v/ Able to exploit the structure of #.

X We have an extra brute-force step.

10



Complexity of Forgery for Level |

- Fraction of . Thi
I rank(Eq) 0" Previousbest | PaPer

weak keys (w=2)
3 1 137 109
2 2 2-89 97 N.A
1 2-171 45 N.A
7 1 150 123
3 6 2-12.0 130 110
5 27400 12 142*
13 1 167 139
4 12 2-16 156 125
1 952 145 117

°N.A = 2nd brute-force step unsuccessful. * attack dominated by the 2nd brute-force step.
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