

Improved Attacks for SNOVA by Exploiting Stability under a Group Action

Daniel Cabarcas, Peigen Li, Javier Verbel, and Ricardo Villanueva-Polanco

https://eprint.iacr.org/2024/1770

♦ **2nd round candidate** in the NIST process for post-quantum signatures.

- ♦ **2nd round candidate** in the NIST process for post-quantum signatures.
- ♦ Aims to reduce the pk-size of UOV.

- 2nd round candidate in the NIST process for post-quantum signatures.
- ♦ Aims to reduce the pk-size of UOV.
- ♦ Fast and compact when compared with similar proposals.

- 2nd round candidate in the NIST process for post-quantum signatures.
- ♦ Aims to reduce the pk-size of UOV.
- Fast and compact when compared with similar proposals.
- \diamond Based on a new construction: Several attacks since submitted (e.g., [IA24, LD24, Beu25, NTF24])

Our contributions

- Analysis algebraic properties of SNOVA systems.
- New key-recovery attack.
- New forgery attack.

Contents

1. Introduction

2. New Key-recovery Attack

3. New Forgery Attack

Introduction

 $^{^{\}circ}$ Singing-time of ESK versions https://pqsort.tii.ae/. Verify-time \approx sign-time/2.

A keypair
$$(\mathsf{sk}, \mathsf{pk}) \in \mathsf{UOV}(q, n, o, m)$$
:

$$\mathsf{sk} = \mathcal{O} \leq \mathbb{F}_q^n \text{ with } \mathsf{dim}(\mathcal{O}) = o.$$

$$\mathsf{pk} = (p_1, \dots, p_m) \in \mathbb{F}_q[x_1, \dots, x_n]$$
 with $\deg(p_i) = 2$ and

$$p_1(\mathbf{o}) = \cdots = p_m(\mathbf{o}) = 0 \quad \forall \mathbf{o} \in \mathcal{O}.$$

 $^{^{\}circ}$ Singing-time of ESK versions https://pqsort.tii.ae/. Verify-time \approx sign-time/2.

A keypair $(\mathsf{sk}, \mathsf{pk}) \in \mathsf{UOV}(q, n, o, m)$:

$$\operatorname{sk} = \mathcal{O} \leq \mathbb{F}_q^n \operatorname{with} \operatorname{dim}(\mathcal{O}) = o.$$

$$\mathsf{pk} = (p_1, \dots, p_m) \in \mathbb{F}_q[x_1, \dots, x_n]$$
 with $\deg(p_i) = 2$ and

$$p_1(\mathbf{o}) = \cdots = p_m(\mathbf{o}) = 0 \quad \forall \mathbf{o} \in \mathcal{O}.$$

A signature
$$\sigma = (\mathbf{s},\mathsf{salt}) \Rightarrow \tilde{\mathsf{pk}}(\mathbf{s}) = \mathsf{Hash}(\mathsf{message} \| \mathsf{salt}) \in \mathbb{F}_q^m$$

Verification map:

$$\tilde{pk} = Expand(pk)$$

 $^{^{\}circ}$ Singing-time of ESK versions https://pqsort.tii.ae/. Verify-time \approx sign-time/2.

A keypair $(\mathsf{sk}, \mathsf{pk}) \in \mathsf{UOV}(q, n, o, m)$:

$$\operatorname{sk} = \mathcal{O} \leq \mathbb{F}_q^n \operatorname{with} \operatorname{dim}(\mathcal{O}) = o.$$

$$\mathsf{pk} = (p_1, \dots, p_m) \in \mathbb{F}_q[x_1, \dots, x_n]$$
 with $\deg(p_i) = 2$ and

$$p_1(\mathbf{o}) = \cdots = p_m(\mathbf{o}) = 0 \quad \forall \mathbf{o} \in \mathcal{O}.$$

A signature $\sigma = (\mathbf{s}, \mathsf{salt}) \Rightarrow \tilde{\mathsf{pk}}(\mathbf{s}) = \mathsf{Hash}(\mathsf{message} \| \mathsf{salt}) \in \mathbb{F}_q^m$

Verification map:

 $\tilde{\mathsf{pk}} = \mathsf{Expand}(\mathsf{pk})$

For level I:

 $|\text{pk-SNOVA}| \approx 1 \text{KB}, \ 2 \text{KB} \ \text{ and } 10 \text{KB}$ $\text{sign-time} \ \approx 0.5 \text{Mc}, \ 0.4 \text{Mc} \ \text{ and } 0.3 \text{Mc}$

 $^{^{\}circ}$ Singing-time of ESK versions https://pqsort.tii.ae/. Verify-time \approx sign-time/2.

$$\mathbf{S} \in \mathbb{F}_q^{l imes l}$$
 with CharPoly $(\mathbf{S})=$ irreducible and $\Lambda_{\mathbf{S}^i}=egin{bmatrix} \mathbf{s}^i & & & & \\ & \ddots & & & \\ & & & \mathbf{s}^i \end{bmatrix}$.

$$\mathbf{S} \in \mathbb{F}_q^{l \times l} \text{ with CharPoly}(\mathbf{S}) = \text{irreducible and } \Lambda_{\mathbf{S}^i} = \begin{bmatrix} \mathbf{s}^i & & \\ & \ddots & \\ & & \mathbf{s}^i \end{bmatrix}.$$

$$\mathbf{S} \in \mathbb{F}_q^{l imes l}$$
 with CharPoly $(\mathbf{S})=$ irreducible and $\Lambda_{\mathbf{S}^i}=egin{bmatrix} \mathbf{s}^i & & & & \\ & \ddots & & & \\ & & & \mathbf{s}^i \end{bmatrix}$.

$$\mathcal{F}_{\mathbf{P}}(\mathbf{u}) := \left(egin{array}{ccc} \mathbf{u}^t \cdot \mathbf{P} \cdot \mathbf{u}, \ \end{array}
ight.$$

$$\mathbf{S} \in \mathbb{F}_q^{l imes l}$$
 with CharPoly $(\mathbf{S})=$ irreducible and $\Lambda_{\mathbf{S}^i}=egin{bmatrix} \mathbf{s}^i & & & & \\ & \ddots & & & \\ & & \mathbf{s}^i \end{bmatrix}$.

$$\mathcal{F}_{\mathbf{P}}(\mathbf{u}) := \left(egin{array}{ccc} \mathbf{u}^t \cdot \mathbf{P} \cdot \mathbf{u}, & \mathbf{u}^t \cdot (\mathbf{P} \Lambda_{\mathbf{S}}) \cdot \mathbf{u}, \end{array}
ight.$$

$$\mathbf{S} \in \mathbb{F}_q^{l imes l}$$
 with CharPoly $(\mathbf{S})=$ irreducible and $\Lambda_{\mathbf{S}^i}=egin{bmatrix} \mathbf{s}^i & & & & \\ & \ddots & & & \\ & & \mathbf{s}^i \end{bmatrix}$.

$$\mathcal{F}_{\mathbf{P}}(\mathbf{u}) := \left(egin{array}{cccc} \mathbf{u}^t \cdot \mathbf{P} \cdot \mathbf{u}, & \mathbf{u}^t \cdot (\mathbf{P} \Lambda_{\mathbf{S}}) \cdot \mathbf{u}, & \mathbf{u}^t \cdot (\Lambda_{\mathbf{S}} \mathbf{P}) \cdot \mathbf{u}, \\ & \end{array}
ight)$$

$$\mathbf{S} \in \mathbb{F}_q^{l imes l}$$
 with CharPoly $(\mathbf{S})=$ irreducible and $\Lambda_{\mathbf{S}^i}=egin{bmatrix} \mathbf{s}^i & & & & \\ & \ddots & & & \\ & & & \mathbf{s}^i \end{bmatrix}$.

$$\mathcal{F}_{\mathbf{P}}(\mathbf{u}) := \left(egin{array}{ccc} \mathbf{u}^t \cdot \mathbf{P} \cdot \mathbf{u}, & \mathbf{u}^t \cdot (\mathbf{P} \Lambda_{\mathbf{S}}) \cdot \mathbf{u}, & \mathbf{u}^t \cdot (\Lambda_{\mathbf{S}} \mathbf{P}) \cdot \mathbf{u}, \ \mathbf{u}^t \cdot (\Lambda_{\mathbf{S}} \mathbf{P} \Lambda_{\mathbf{S}}) \cdot \mathbf{u}, \end{array}
ight)$$

$$\mathbf{S} \in \mathbb{F}_q^{l imes l}$$
 with CharPoly $(\mathbf{S})=$ irreducible and $\Lambda_{\mathbf{S}^i}=egin{bmatrix} \mathbf{s}^i & & & & \\ & \ddots & & & \\ & & & \mathbf{s}^i \end{bmatrix}$.

 $\diamond \; \mathsf{Given} \, \mathbf{P} \in \mathbb{F}_q^{n' imes n'} \, \mathsf{define}$

$$\mathcal{F}_{\mathbf{P}}(\mathbf{u}) := \left(egin{array}{cccc} \mathbf{u}^t \cdot \mathbf{P} \cdot \mathbf{u}, & \mathbf{u}^t \cdot (\mathbf{P}\Lambda_{\mathbf{S}}) \cdot \mathbf{u}, & \mathbf{u}^t \cdot (\Lambda_{\mathbf{S}}\mathbf{P}) \cdot \mathbf{u}, \ \mathbf{u}^t \cdot (\Lambda_{\mathbf{S}}\mathbf{P}\Lambda_{\mathbf{S}}) \cdot \mathbf{u}, & \cdots & \mathbf{u}^t \cdot (\Lambda_{\mathbf{S}^{l-1}}\mathbf{P}\Lambda_{\mathbf{S}^{l-1}}) \cdot \mathbf{u} \end{array}
ight)$$

4

$$\mathbf{S} \in \mathbb{F}_q^{l imes l}$$
 with CharPoly $(\mathbf{S})=$ irreducible and $\Lambda_{\mathbf{S}^i}=egin{bmatrix} \mathbf{s}^i & & & & \\ & \ddots & & & \\ & & & \mathbf{s}^i \end{bmatrix}$.

 \diamond Given $\mathbf{P} \in \mathbb{F}_q^{n' imes n'}$ define

$$\mathcal{F}_{\mathbf{P}}(\mathbf{u}) := \left(egin{array}{cccc} \mathbf{u}^t \cdot \mathbf{P} \cdot \mathbf{u}, & \mathbf{u}^t \cdot (\mathbf{P} \Lambda_{\mathbf{S}}) \cdot \mathbf{u}, & \mathbf{u}^t \cdot (\Lambda_{\mathbf{S}} \mathbf{P}) \cdot \mathbf{u}, \ \mathbf{u}^t \cdot (\Lambda_{\mathbf{S}} \mathbf{P} \Lambda_{\mathbf{S}}) \cdot \mathbf{u}, & \cdots & \mathbf{u}^t \cdot (\Lambda_{\mathbf{S}^{l-1}} \mathbf{P} \Lambda_{\mathbf{S}^{l-1}}) \cdot \mathbf{u} \end{array}
ight)$$

 \diamond A SNOVA sequence is set of the form $(\mathcal{F}_{\mathbf{P}_1}, \mathcal{F}_{\mathbf{P}_2}, \dots, \mathcal{F}_{\mathbf{P}_m})$.

$$\mathbf{S} \in \mathbb{F}_q^{l imes l}$$
 with CharPoly $(\mathbf{S})=$ irreducible and $\Lambda_{\mathbf{S}^i}=egin{bmatrix} \mathbf{s}^i & & & & \\ & \ddots & & & \\ & & & \mathbf{s}^i \end{bmatrix}$.

$$\mathcal{F}_{\mathbf{P}}(\mathbf{u}) := \left(egin{array}{cccc} \mathbf{u}^t \cdot \mathbf{P} \cdot \mathbf{u}, & \mathbf{u}^t \cdot (\mathbf{P} \Lambda_{\mathbf{S}}) \cdot \mathbf{u}, & \mathbf{u}^t \cdot (\Lambda_{\mathbf{S}} \mathbf{P}) \cdot \mathbf{u}, \ \mathbf{u}^t \cdot (\Lambda_{\mathbf{S}} \mathbf{P} \Lambda_{\mathbf{S}}) \cdot \mathbf{u}, & \cdots & \mathbf{u}^t \cdot (\Lambda_{\mathbf{S}^{l-1}} \mathbf{P} \Lambda_{\mathbf{S}^{l-1}}) \cdot \mathbf{u} \end{array}
ight)$$

- \diamond A SNOVA sequence is set of the form $(\mathcal{F}_{\mathbf{P}_1},\mathcal{F}_{\mathbf{P}_2},\ldots,\mathcal{F}_{\mathbf{P}_m})$.
- \blacksquare \forall pk is associated to a SNOVA sequence \mathcal{F} .

Attacks using a SNOVA Sequences \mathcal{F} [IA24, LD24, Beu25]

Attacks using a SNOVA Sequences \mathcal{F} [IA24, LD24, Beu25]

 \diamond **Reconciliation** (*key-recovery*) attacks \Rightarrow Find $\mathbf{u} \in \mathcal{O}$ (the secret space) such that

$$\mathcal{F}(\mathbf{u}) = (0,\dots,0), \quad \text{ where } \quad$$

$$V = \{ \mathbf{u} \mid \mathcal{F}(\mathbf{u}) = (0, \dots, 0) \}$$

Attacks using a SNOVA Sequences \mathcal{F} [IA24, LD24, Beu25]

 \diamond **Reconciliation** (*key-recovery*) attacks \Rightarrow Find $\mathbf{u} \in \mathcal{O}$ (the secret space) such that

 \diamond **Beullens** (forgery) attack \Rightarrow Find $\mathbf{u} \in \mathbb{F}_q^{n'}$

$$\mathbf{E} \cdot \mathcal{F}(\mathbf{u}) + \mathcal{L}_{\mathsf{linear}}(\mathbf{u}) = (a_1, \dots, a_{ol^2}),$$

where \mathbf{E} is a known matrix.

<u>Main T</u>heorem: Given a SNOVA sequence $\mathcal{F}=(f_1,\ldots,f_{ml^2})\subset \mathbb{F}_q[\mathbf{u}]$

<u>Main Theorem</u>: Given a SNOVA sequence $\mathcal{F} = (f_1, \dots, f_{ml^2}) \subset \mathbb{F}_q[\mathbf{u}]$

We can compute matrices ${f P}$ and ${f A}$ over ${\Bbb F}_{a^l}$ such that

$$\mathcal{H} = \mathbf{A} \cdot (f_1^{\Lambda_{\mathbf{P}}}, \dots, f_{ml^2}^{\Lambda_{\mathbf{P}}})^t \subset \mathbb{F}_{q^l}[\mathbf{u}],$$

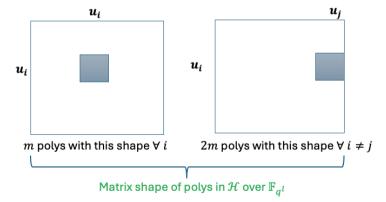
and polys in $\mathcal H$ are multi-homogeneous wrt $\mathbf u = \mathbf u_1 \sqcup \dots \sqcup \mathbf u_l$.

<u>Main T</u>heorem: Given a SNOVA sequence $\mathcal{F}=(f_1,\ldots,f_{ml^2})\subset \mathbb{F}_q[\mathbf{u}]$

We can compute matrices ${f P}$ and ${f A}$ over ${\Bbb F}_{q^l}$ such that

$$\mathcal{H} = \mathbf{A} \cdot (f_1^{\Lambda_{\mathbf{P}}}, \dots, f_{ml^2}^{\Lambda_{\mathbf{P}}})^t \subset \mathbb{F}_{q^l}[\mathbf{u}],$$

and polys in \mathcal{H} are multi-homogeneous wrt $\mathbf{u} = \mathbf{u}_1 \sqcup \cdots \sqcup \mathbf{u}_l$.



Consider the multi-homogeneous polynomial system

$$f_1(\mathbf{u}) = \dots = f_{ml^2}(\mathbf{u}) = 0$$

Consider the multi-homogeneous polynomial system

$$f_1(\mathbf{u}) = \dots = f_{ml^2}(\mathbf{u}) = 0$$

XL: input an integer D

 ${f 1}$ Solve ${f M}\cdot{f z}=0$ for ${f z}
eq 0$, and

$$\mathbf{M} = extsf{Macaulay}\left(f \mid egin{array}{c} \deg(f) \leq D \ f = \min \cdot f_i \end{array}
ight)$$

 \mathbf{z} Extract a solution \mathbf{u} from \mathbf{z} .

Consider the multi-homogeneous polynomial system

$$f_1(\mathbf{u}) = \dots = f_{ml^2}(\mathbf{u}) = 0$$

XL: input an integer D

 ${f II}$ Solve ${f M}\cdot{f z}=0$ for ${f z}
eq 0$, and

$$\mathbf{M} = extsf{Macaulay} \left(f \mid egin{array}{c} \deg(f) \leq D \ f = \min \cdot f_i \end{array}
ight)$$

 \mathbf{z} Extract a solution \mathbf{u} from \mathbf{z} .

Multi-homogeneous-XL: Input a l-tuple d

Solve $\mathbf{M} \cdot \mathbf{z} = 0$ for $\mathbf{z} \neq 0$, and

$$\mathbf{M} = extsf{Macaulay}\left(f \mid egin{array}{c} extsf{multi-}\deg(f) \leq \mathbf{d} \ f = extsf{mon} \cdot f_i \end{array}
ight)$$

 \mathbf{z} Extract a solution \mathbf{u} from \mathbf{z} .

Consider the **multi-homogeneous** polynomial system

$$f_1(\mathbf{u}) = \dots = f_{ml^2}(\mathbf{u}) = 0$$

XL: input an integer D

Solve $\mathbf{M} \cdot \mathbf{z} = 0$ for $\mathbf{z} \neq 0$, and

$$\mathbf{M} = extsf{Macaulay} \left(f \mid egin{array}{c} \deg(f) \leq D \ f = \min \cdot f_i \end{array}
ight)$$

Extract a solution \mathbf{u} from \mathbf{z} .

Multi-homogeneous-XL: Input a l-tuple d

Solve $\mathbf{M} \cdot \mathbf{z} = 0$ for $\mathbf{z} \neq 0$, and

$$\mathbf{M} = \mathbf{Macaulay} \left(f \mid \begin{array}{c} \deg(f) \leq D \\ f = \min \cdot f_i \end{array} \right) \qquad \qquad \mathbf{M} = \mathbf{Macaulay} \left(f \mid \begin{array}{c} \mathrm{multi-deg}(f) \leq \mathbf{d} \\ f = \min \cdot f_i \end{array} \right)$$

Extract a solution u from z.

Multi-homogeneous-XL vields smaller Macaulav matrices.

Solving a SNOVA System $(f_1(\mathbf{u}),\ldots,f_{ml^2}(\mathbf{u}))=\mathbf{a}$

Solving a SNOVA System $(f_1(\mathbf{u}), \dots, f_{ml^2}(\mathbf{u})) = \mathbf{a}$

$$m{1}$$
 Compute $\mathcal{H} = \mathbf{A} \cdot (f_1^{\Lambda_\mathbf{P}}, \dots, f_{ml^2}^{\Lambda_\mathbf{P}})^t$ (multi-homogeneous over \mathbb{F}_{q^l})

- ${f Z}$ Use MH-XL to solve ${\cal H}(ilde{{f u}})= ilde{{f a}}$, for $ilde{{f u}}\in {\mathbb F}_{q^l}^{n'}.$
- $f If \ u = \Lambda_{f P} \cdot ilde{f u} \subset \mathbb{F}_q$, **output** f u. Otherwise, go to step 2.

Solving a SNOVA System $(f_1(\mathbf{u}), \dots, f_{ml^2}(\mathbf{u})) = \mathbf{a}$

$$\textbf{1} \ \ \mathsf{Compute} \ \ \mathcal{H} = \mathbf{A} \cdot (f_1^{\Lambda_\mathbf{P}}, \dots, f_{ml^2}^{\Lambda_\mathbf{P}})^t \qquad \qquad \mathsf{(multi-homogeneous \ over} \ \mathbb{F}_{q^l})$$

- ${f Z}$ Use MH-XL to solve ${\cal H}(ilde{{f u}})= ilde{{f a}}$, for $ilde{{f u}}\in {\mathbb F}_{q^l}^{n'}.$
- ${
 m f I}$ If ${f u}=\Lambda_{f P}\cdot ilde{f u}\subset {\Bbb F}_q$, **output** ${f u}.$ Otherwise, go to step 2.

- \diamond Use hybrid approach over \mathbb{F}_q at step 2.
- Complexity estimation of MH-XL.
- Experimental verification expected behavior of MH-XL.

Solving a SNOVA System $(f_1(\mathbf{u}),\ldots,f_{ml^2}(\mathbf{u}))=\mathbf{a}$

$$m{1}$$
 Compute $\mathcal{H} = \mathbf{A} \cdot (f_1^{\Lambda_\mathbf{P}}, \dots, f_{ml^2}^{\Lambda_\mathbf{P}})^t$

(multi-homogeneous over \mathbb{F}_{q^l})

- ${f Z}$ Use MH-XL to solve ${\cal H}(ilde{f u})= ilde{f a}$, for $ilde{f u}\in \mathbb{F}_{q^l}^{n'}.$
- If $\mathbf{u}=\Lambda_{\mathbf{P}}\cdot \tilde{\mathbf{u}}\subset \mathbb{F}_q$, **output** \mathbf{u} . Otherwise, go to step 2.
- \diamond Use hybrid approach over \mathbb{F}_q at step 2.
- Complexity estimation of MH-XL.
- Experimental verification expected behavior of MH-XL.

Security level	l	previous best reconciliation attack	our attack
	2	197	195
1	3	196	187
	4	269	252

New Forgery Attack

Let $ilde{\mathrm{pk}}(\mathbf{U})$ be the **verification map**, with $\mathbf{U} \in \mathbb{F}_q^{n' imes l}$

Let $ilde{\mathsf{pk}}(\mathbf{U})$ be the **verification map**, with $\mathbf{U} \in \mathbb{F}_q^{n' imes l}$

 $\diamond \;\;$ After a **change of vars.** $\mathbf{U} = \mathsf{ch}(\mathbf{u})$ with $\mathbf{u} \in \mathbb{F}_q^{n'}$,

 $(\exists many ch of that kind)$

Let $ilde{\mathsf{pk}}(\mathbf{U})$ be the **verification map**, with $\mathbf{U} \in \mathbb{F}_q^{n' imes l}$

 $\diamond~$ After a **change of vars.** $\mathbf{U}=\mathsf{ch}(\mathbf{u})$ with $\mathbf{u}\in\mathbb{F}_q^{n'}$,

$$ilde{\mathsf{pk}}(\mathbf{u}) = egin{bmatrix} \mathbf{ ilde{E}}_{\mathsf{ch}} & & & \\ & \ddots & & \\ & & \mathbf{ ilde{E}}_{\mathsf{ch}} \end{bmatrix} \cdot \mathcal{F}(\mathbf{u}) + \mathcal{L}_{\mathsf{linear}}(\mathbf{u}) + \mathbf{c},$$

 $(\exists many ch of that kind)$

($\mathcal F$ assoc. SNOVA seq. to $\widetilde{\mathsf{pk}}$)

Let $ilde{\mathsf{pk}}(\mathbf{U})$ be the **verification map**, with $\mathbf{U} \in \mathbb{F}_q^{n' imes l}$

 $\diamond~$ After a **change of vars.** $\mathbf{U} = \mathsf{ch}(\mathbf{u})$ with $\mathbf{u} \in \mathbb{F}_q^{n'}$,

$$\tilde{\mathsf{pk}}(\mathbf{u}) = \begin{bmatrix} \tilde{\mathbf{E}}_{\mathsf{ch}} & & \\ & \ddots & \\ & & \tilde{\mathbf{E}}_{\mathsf{ch}} \end{bmatrix} \cdot \mathcal{F}(\mathbf{u}) + \mathcal{L}_{\mathsf{linear}}(\mathbf{u}) + \mathbf{c},$$

<u>Attack</u>: Given $r < Ncols(\tilde{\mathbf{E}}_{ch})$:

- In Brute-force ch with rank $(\tilde{\mathbf{E}}_{\mathsf{ch}}) = r$.
- 2 Solve the easier system involving

$$\tilde{\mathsf{pk}}(\mathbf{u}) = \mathsf{Hash}(\mathsf{message} \| \mathsf{salt}).$$

 $oldsymbol{\mathsf{Output}}\ \sigma = (\mathsf{ch}^{-1}(\mathbf{u}), \mathsf{salt})$

 $(\exists many ch of that kind)$

($\mathcal F$ assoc. SNOVA seq. to $\widetilde{\mathsf{pk}}$)

Let $ilde{\mathsf{pk}}(\mathbf{U})$ be the **verification map**, with $\mathbf{U} \in \mathbb{F}_a^{n' imes l}$

 \diamond After a **change of vars.** $\mathbf{U} = \mathsf{ch}(\mathbf{u})$ with $\mathbf{u} \in \mathbb{F}_q^{n'}$,

$$\tilde{\mathsf{pk}}(\mathbf{u}) = \begin{bmatrix} \tilde{\mathbf{E}}_{\mathsf{ch}} & & \\ & \ddots & \\ & & \tilde{\mathbf{E}}_{\mathsf{ch}} \end{bmatrix} \cdot \mathcal{F}(\mathbf{u}) + \mathcal{L}_{\mathsf{linear}}(\mathbf{u}) + \mathbf{c}, \tag{\mathcal{F} assoc. SNOVA seq. to $\tilde{\mathsf{pk}}$)}$$

Attack: Given $r < Ncols(\tilde{\mathbf{E}}_{ch})$:

- Brute-force ch with rank($\tilde{\mathbf{E}}_{ch}$) = r.
- 2 Solve the **easier** system involving

$$\tilde{\mathsf{pk}}(\mathbf{u}) = \mathsf{Hash}(\mathtt{message} \| \mathtt{salt}).$$

Output $\sigma = (\mathsf{ch}^{-1}(\mathbf{u}), \mathsf{salt})$

Our goal: Exploit the structure of
$$\mathcal{H}(\tilde{\mathbf{u}}) = \mathbf{A} \cdot \mathcal{F}^{\Lambda_{\mathbf{P}}}(\tilde{\mathbf{u}}) + \text{low-rank of } \tilde{\mathbf{E}}_{\mathsf{ch}}$$

 $(\exists many ch of that kind)$

Let $\tilde{\mathsf{pk}}(\mathbf{U})$ be the **verification map**, with $\mathbf{U} \in \mathbb{F}_a^{n' \times l}$

- **Attack**: Given $r < Ncols(\tilde{\mathbf{E}}_{ch})$:
- Brute-force ch with rank($\tilde{\mathbf{E}}_{ch}$) = r.
- 2 Solve the easier system involving $\tilde{\mathsf{pk}}(\mathbf{u}) = \mathsf{Hash}(\mathsf{message} \| \mathsf{salt}).$
- **Output** $\sigma = (\mathsf{ch}^{-1}(\mathbf{u}), \mathsf{salt})$

Our goal: Exploit the structure of $\mathcal{H}(ilde{\mathbf{u}}) = \mathbf{A} \cdot \mathcal{F}^{\Lambda_{\mathbf{P}}}(ilde{\mathbf{u}}) + ext{low-rank of } ilde{\mathbf{E}}_{\mathsf{ch}}$

Main issue:

 $\begin{bmatrix} \tilde{\mathbf{E}}_{\mathsf{ch}} & & & \\ & \ddots & & \\ & & \tilde{\mathbf{E}}_{\mathsf{ch}} \end{bmatrix} \cdot \mathcal{H}(\tilde{\mathbf{u}}) \text{ isn't multi-homogeneous.}$

Use a (slightly) different ch so that
$$\tilde{pk}(\mathbf{u}) = \mathbf{E}_{\mathsf{ch}} \cdot \mathcal{F}(\mathbf{u})$$
, with $\mathbf{E}_{\mathsf{ch}} = \begin{bmatrix} \tilde{\mathbf{E}}_{\mathsf{ch}} & & \\ & \ddots & \\ & & \tilde{\mathbf{E}}_{\mathsf{ch}} \end{bmatrix}$

Use a (slightly) different ch so that $\tilde{pk}(\mathbf{u}) = \mathbf{E}_{\mathsf{ch}} \cdot \mathcal{F}(\mathbf{u})$, with $\mathbf{E}_{\mathsf{ch}} = \begin{bmatrix} \tilde{\mathbf{E}}_{\mathsf{ch}} \\ & & \\ & & \\ & & \\ & & & \\$

$\underline{\mathbf{Attack}} \text{: Given } r < \mathsf{Ncols}(\tilde{\mathbf{E}}_{\mathsf{ch}}) \text{:}$

Use a (slightly) different ch so that $\tilde{pk}(\mathbf{u}) = \mathbf{E}_{\mathsf{ch}} \cdot \mathcal{F}(\mathbf{u})$, with $\mathbf{E}_{\mathsf{ch}} = \begin{bmatrix} \tilde{\mathbf{E}}_{\mathsf{ch}} \\ & & \\ & & \\ & & \\ & & & \\$

<u>Attack</u>: Given $r < \text{Ncols}(\tilde{\mathbf{E}}_{\mathsf{ch}})$:

 \blacksquare Brute-force ch with $\mathrm{rank}(\tilde{\mathbf{E}}_{\mathsf{ch}}) = r.$

Use a (slightly) different ch so that
$$\tilde{pk}(\mathbf{u}) = \mathbf{E}_{\mathsf{ch}} \cdot \mathcal{F}(\mathbf{u})$$
, with $\mathbf{E}_{\mathsf{ch}} = \begin{bmatrix} \tilde{\mathbf{E}}_{\mathsf{ch}} \\ & \ddots \\ & & \\ & & \\ & & \\ & & & \\ &$

- **<u>Attack</u>**: Given $r < \text{Ncols}(\tilde{\mathbf{E}}_{\mathsf{ch}})$:
- f 1 Brute-force ch with rank $(ilde{f E}_{\sf ch})=r.$
- **2** Brute-force salt $\in \{0,1\}^{128}$ with

 $\mathsf{Hash}(\mathtt{message} \| \mathtt{salt}) \in \mathsf{ColSpace}(\mathbf{E}_{\mathsf{ch}}).$

Use a (slightly) different ch so that $\tilde{pk}(\mathbf{u}) = \mathbf{E}_{\mathsf{ch}} \cdot \mathcal{F}(\mathbf{u})$, with $\mathbf{E}_{\mathsf{ch}} = \begin{bmatrix} \mathbf{E}_{\mathsf{ch}} & & \\ & \ddots & \\ & & \\ & & & \\ &$

$\underline{\mathbf{Attack}} \text{: Given } r < \mathsf{Ncols}(\tilde{\mathbf{E}}_{\mathsf{ch}}) \text{:}$

- ${\color{red} {
 m II}}$ Brute-force ch with ${
 m rank}(\tilde{{f E}}_{\sf ch})=r.$
- **2** Brute-force salt $\in \{0,1\}^{128}$ with

 $\mathsf{Hash}(\mathtt{message} \| \mathtt{salt}) \in \mathsf{ColSpace}(\mathbf{E}_{\mathsf{ch}}).$

f S Solve for ${f u}\in \mathbb{F}_q^{n'}$, $y_i\in \mathbb{F}_q$, a system

$$0 = \mathcal{F}(\mathbf{u}) + \mathbf{W} \cdot (1, y_1, \dots, y_p)^t$$

where W is known matrix.

Use a (slightly) different ch so that $\tilde{pk}(\mathbf{u}) = \mathbf{E}_{\mathsf{ch}} \cdot \mathcal{F}(\mathbf{u})$, with $\mathbf{E}_{\mathsf{ch}} = \begin{bmatrix} \mathbf{E}_{\mathsf{ch}} & & \\ & \ddots & \\ & & \\ & & & \\ & &$

$\underline{\mathbf{Attack}} \text{: Given } r < \mathsf{Ncols}(\tilde{\mathbf{E}}_{\mathsf{ch}}) \text{:}$

- ${\color{red} {
 m II}}$ Brute-force ch with ${
 m rank}(\tilde{{f E}}_{\sf ch})=r.$
- **2** Brute-force salt $\in \{0,1\}^{128}$ with

 $\mathsf{Hash}(\mathtt{message} \| \mathtt{salt}) \in \mathsf{ColSpace}(\mathbf{E}_{\mathsf{ch}}).$

 $exttt{3}$ Solve for $\mathbf{u} \in \mathbb{F}_q^{n'}$, $y_i \in \mathbb{F}_q$, a system

$$0 = \mathcal{F}(\mathbf{u}) + \mathbf{W} \cdot (1, y_1, \dots, y_p)^t$$

where W is known matrix.

4 Output $\sigma = (\mathsf{ch}^{-1}(\mathbf{u}), \mathtt{salt})$

Use a (slightly) different ch so that $\tilde{pk}(\mathbf{u}) = \mathbf{E}_{\mathsf{ch}} \cdot \mathcal{F}(\mathbf{u})$, with $\mathbf{E}_{\mathsf{ch}} = \begin{bmatrix} \tilde{\mathbf{E}}_{\mathsf{ch}} \\ & & \\ & & \\ & & \\ & & \\ & & & \\$

<u>Attack</u>: Given $r < \mathsf{Ncols}(\tilde{\mathbf{E}}_{\mathsf{ch}})$:

- ${\color{red} {
 m II}}$ Brute-force ch with ${
 m rank}(\tilde{{
 m E}}_{\sf ch})=r.$
- **2** Brute-force salt $\in \{0,1\}^{128}$ with

 $\mathsf{Hash}(\mathtt{message} \| \mathtt{salt}) \in \mathsf{ColSpace}(\mathbf{E}_{\mathsf{ch}}).$

 $exttt{3}$ Solve for $\mathbf{u} \in \mathbb{F}_q^{n'}$, $y_i \in \mathbb{F}_q$, a system

$$0 = \mathcal{F}(\mathbf{u}) + \mathbf{W} \cdot (1, y_1, \dots, y_p)^t$$

where W is known matrix.

Output $\sigma = (\mathsf{ch}^{-1}(\mathbf{u}), \mathsf{salt})$

Solving at Step 3:

lacksquare Lift the system over \mathbb{F}_{q^l} to obtain

$$0 = \mathcal{H}(\tilde{\mathbf{u}}) + \tilde{\mathbf{W}} \cdot (1, y_1, \dots, y_p)^t$$

Solve using Hybrid-F4.

Use a (slightly) different ch so that $\tilde{\mathsf{pk}}(\mathbf{u}) = \mathbf{E}_{\mathsf{ch}} \cdot \mathcal{F}(\mathbf{u})$, with $\mathbf{E}_{\mathsf{ch}} = \begin{bmatrix} \tilde{\mathbf{E}}_{\mathsf{ch}} & & & \\ & \ddots & & \\ & & \tilde{\mathbf{E}}_{\mathsf{ch}} \end{bmatrix}$

<u>Attack</u>: Given $r < \text{Ncols}(\tilde{\mathbf{E}}_{\mathsf{ch}})$:

- ${\color{red} {
 m II}}$ Brute-force ch with ${
 m rank}(\tilde{{
 m E}}_{\sf ch})=r.$
- **2** Brute-force salt $\in \{0,1\}^{128}$ with

 $\mathsf{Hash}(\mathtt{message} \| \mathtt{salt}) \in \mathsf{ColSpace}(\mathbf{E}_{\mathsf{ch}}).$

 $exttt{3}$ Solve for $\mathbf{u} \in \mathbb{F}_q^{n'}$, $y_i \in \mathbb{F}_q$, a system

$$0 = \mathcal{F}(\mathbf{u}) + \mathbf{W} \cdot (1, y_1, \dots, y_p)^t$$

where \mathbf{W} is known matrix.

4 Output $\sigma = (\mathsf{ch}^{-1}(\mathbf{u}), \mathsf{salt})$

Solving at Step 3:

lacksquare Lift the system over \mathbb{F}_{q^l} to obtain

$$0 = \mathcal{H}(\tilde{\mathbf{u}}) + \tilde{\mathbf{W}} \cdot (1, y_1, \dots, y_p)^t$$

Solve using Hybrid-F4.

Remarks:

- ✓ Able to exploit the structure of \mathcal{H} .
- \nearrow p extra variables linear y_i .
- X We have an extra brute-force step.

Complexity of Forgery for Level I

l	$\text{rank}(\tilde{\mathbf{E}}_{\text{ch}})$	Fraction of weak keys	Previous best	This paper $(\omega=2)$
2	3	1	137	109
	2	$2^{-8.9}$	97	N.A
	1	$2^{-17.1}$	45	N.A
3	7	1	150	123
	6	$2^{-12.0}$	130	110
	5	$2^{-40.0}$	112	142*
4	13	1	167	139
	12	2^{-16}	156	125
	11	2^{-52}	145	117

 $^{^{\}circ}$ N.A = 2nd brute-force step unsuccessful. * attack dominated by the 2nd brute-force step.

Thanks.

References I

- [Beu25] Ward Beullens. Improved cryptanalysis of SNOVA. In Advances in Cryptology EUROCRYPT 2025: 44th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Madrid, Spain, May 4–8, 2025, Proceedings, Part VI, page 277–293, Berlin, Heidelberg, 2025. Springer-Verlag.
 - [FS13] Jean-Charles Faugère and Jules Svartz. Gröbner bases of ideals invariant under a commutative group: the non-modular case. In *Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation*, ISSAC '13, page 347–354, New York, NY, USA, 2013. Association for Computing Machinery.
 - [IA24] Yasuhiko Ikematsu and Rika Akiyama. Revisiting the security analysis of SNOVA. Proceedings of the 11th ACM Asia Public-Key Cryptography Workshop, 2024.
- [LD24] Peigen Li and Jintai Ding. Cryptanalysis of the SNOVA signature scheme. In *International Conference on Post-Quantum Cryptography*, pages 79–91. Springer, 2024.

References II

[NTF24] Shuhei Nakamura, Yusuke Tani, and Hiroki Furue. Lifting approach against the SNOVA scheme. Cryptology ePrint Archive, Paper 2024/1374, 2024.