Constant-Round Asynchronous MPC with

Optimal Resilience and Linear

Communication
Junru L1 Yifan Song
Tsinghua University Tsinghua University

Shanghai Qi Zhi Institute

Multiparty Computation

Setting

* Asynchronous Network

@ o * Optimal Resilience t = (n —1)/3

* Fully Malicious Adversary (Security with Abort)

Multiparty Computation

Setting

* Asynchronous Network

@ o * Optimal Resilience t = (n —1)/3

* Fully Malicious Adversary (Security with Abort)

@ Target

* Lightweight Cryptographic Primitives (no FHE)

* Constant Round Complexity

* Communication Complexity Linear to n

Differences between Sync. and Async.

Sync: A

Differences between Sync. and Async.

Sync: A

~

N
@ . « Ifno answer after A,
assume L received

Differences between Sync. and Async.

Sync: A

e (Canberealized whent =n—1

* A must be large
TEN

. If no answer after A,
assume 1 received

Differences between Sync. and Async.

Sync: A

e (Canberealized whent =n—1

g « A must be large
C \ .

Async:
T1
|
° 0 2 |
D :
P ?7?? 4 .
Waiting ° °

A
B

Differences between Sync. and Async.

Sync: A

e (Canberealized whent =n—1

g « A must be large
C \ .

Cannot distinguish dishonest sender not

Async: sending vs slow honest sender
T1

D 1 | * Protocol runs at speed of actual

' network delay
. p« Q???J ¢ * t parties may not be able to provide

Waiting ° ° inputs
* Requiringt < n/3

Known Results from Literatures

Communication-Efficient but Non-Constant-Round AMPC (GOD)

* Perfect: O(|C|n) communication is achieved for when t < % [AAPP24].

« Statistical: O(|C|nk) communication is achieved for when t < g [GLS24], with a large additive

overhead O (n'*k?).

e Computational: O(|C|nk) communication is achieved for when t < g assuming RO [BJK+25], with a

low overhead.

Known Results from Literatures

Communication-Efficient but Non-Constant-Round AMPC (GOD)

* Perfect: O(|C|n) communication is achieved for when t < % [AAPP24].

« Statistical: O(|C|nk) communication is achieved for when t < g [GLS24], with a large additive

overhead O (n'*k?).

e Computational: O(|C|nk) communication is achieved for when t < g assuming RO [BJK+25], with a

low overhead.

Constant-Round but Communication-Heavy AMPC

« Requiring Q(|C|n®k) communication from OWFs in the F4¢s -hybrid model [CGHZ16].
* Based on BMR template.
* Achieving GOD.

Known Results from Literatures

Communication-Efficient but Non-Constant-Round AMPC (GOD)

* Perfect: O(|C|n) communication is achieved for when t < % [AAPP24].

« Statistical: O(|C|nk) communication is achieved for when t < g [GLS24], with a large additive

overhead O (n'*k?).

e Computational: O(|C|nk) communication is achieved for when t < g assuming RO [BJK+25], with a

low overhead.

Constant-Round but Communication-Heavy AMPC

« Requiring Q(|C|n®k) communication from OWFs in the F4¢s -hybrid model [CGHZ16].
* Based on BMR template.

The parties must agree on a common set that

* Achieving GOD. provide inputs to the MPC, and this process

cannot be constant-round in the plain model

Our Result

Assuming random oracles, there exists a computationally secure (with abort) constant-round AMPC in the
F 4cs -hybrid model against a fully malicious adversary controlling up to t < n/3 parties with communication

O0(|C|nk + D(n + k)*ni + poly(n, k)) plus 3 invocations of F, s, where |C| is the circuit size, D is the

circuit depth, and k is the computational security parameter.

Our Result

Assuming random oracles, there exists a computationally secure (with abort) constant-round AMPC in the
F scs -hybrid model against a fully malicious adversary controlling up to t < n/3 parties with communication

O0(|C|nk + D(n + k)*ni + poly(n, k)) plus 3 invocations of F, s, where |C| is the circuit size, D is the

circuit depth, and k is the computational security parameter.

Basic Idea:
* Multiparty garbling

* Send the garbled circuit to all the parties

Our Result

Assuming random oracles, there exists a computationally secure (with abort) constant-round AMPC in the
F4cs -hybrid model against a fully malicious adversary controlling up to t < n/3 parties with communication

O0(|C|nk + D(n + k)*ni + poly(n, k)) plus 3 invocations of F, s, where |C| is the circuit size, D is the

circuit depth, and k is the computational security parameter.

_ A single evaluator may never send the outputs, and
Basic Idea:

the parties cannot decide whether the evaluator is

e Multi party ga rblin g corrupted or the network delay is large

* Send the garbled circuit to all the parties

Our Result

Assuming random oracles, there exists a computationally secure (with abort) constant-round AMPC in the
F4cs -hybrid model against a fully malicious adversary controlling up to t < n/3 parties with communication

O0(|C|nk + D(n + k)*ni + poly(n, k)) plus 3 invocations of F, s, where |C| is the circuit size, D is the

circuit depth, and k is the computational security parameter.

_ A single evaluator may never send the outputs, and
Basic Idea:

the parties cannot decide whether the evaluator is

e Multi party ga blin g corrupted or the network delay is large

* Send the garbled circuit to all the parties

Requiring an O(|C|x)-size multiparty garbled circuit (omitting the D - poly(n, k) term):
* The only known construction in the synchronous case is [GLOS25]

Multiparty Garbling of [GLOS25]

Actual Parties Py

P, P5 Py

Multiparty Garbling of [GLOS25]

9,

P, P; P,
m\k\ Sharing Phase

Via dishonest Via dishonest Garbl Ph
majority MPC majority MPC aroling Fnase

(inner protocol) (inner protocol)

Actual Parties

Virtual Parties Vi v, V3 V, Ve

\ }
|

Outer Protocol II Verification Phase

Run the Protocol in Asynchronous Network

Protocol Steps

1. Sharing Phase: All parties distribute preprocessing/input

sharings to virtual parties

.

Run the Protocol in Asynchronous Network

Protocol Steps

Sharing Phase: All parties distribute preprocessing/input

sharings to virtual parties

Difficulties

-

~

A corrupted party may send his sharings to only a part of

the parties, and the rest of the parties may wait forever

for the shares.

)

Run the Protocol in Asynchronous Network

Protocol Steps Difficulties

4)

Sharing Phase: All parties distribute preprocessing/input A corrupted party may send his sharings to only a part of

sharings to virtual parties the parties, and the rest of the parties may wait forever

for the shares.

)

Garbling Phase: Run the inner protocols to garble the

parties’ local computations for the underlying protocol

Run the Protocol in Asynchronous Network

Protocol Steps Difficulties

4)
A corrupted party may send his sharings to only a part of

Sharing Phase: All parties distribute preprocessing/input

sharings to virtual parties the parties, and the rest of the parties may wait forever

for the shares.

)

Garbling Phase: Run the inner protocols to garble the . o ,
Dishonest majority asynchronous protocol does not exist.

parties’ local computations for the underlying protocol

Run the Protocol in Asynchronous Network

Protocol Steps Difficulties

4)

Sharing Phase: All parties distribute preprocessing/input A corrupted party may send his sharings to only a part of

sharings to virtual parties the parties, and the rest of the parties may wait forever

for the shares.

)

Garbling Phase: Run the inner protocols to garble the . o ,
Dishonest majority asynchronous protocol does not exist.

parties’ local computations for the underlying protocol

Verification Phase: Open a small fraction of virtual

parties’ views

Run the Protocol in Asynchronous Network

Protocol Steps Difficulties

4)

Sharing Phase: All parties distribute preprocessing/input A corrupted party may send his sharings to only a part of

sharings to virtual parties the parties, and the rest of the parties may wait forever

for the shares.

)

Garbling Phase: Run the inner protocols to garble the . o ,
Dishonest majority asynchronous protocol does not exist.

parties’ local computations for the underlying protocol

Verification Phase: Open a small fraction of virtual A corrupted party may never open his commitment and

C, view when he is checked.
parties’ views

Difficulties Caused by the Asynchrony

1. Generating preprocessing/input sharings: A corrupted party may send his input sharings to
only a part of the parties, and the rest of the parties may wait forever for the shares.
* Previous solution: ACSS (but only for Shamir sharings)

2. MPC-in-the-head Verification: A corrupted party may never open his commitments and
view when he 1s checked.

3. Inner protocols: Dishonest majority asynchronous protocol does not exist.

Difficulties Caused by the Asynchrony

1. Generating preprocessing/input sharings: A corrupted party may send his input sharings to
only a part of the parties, and the rest of the parties may wait forever for the shares.
* Previous solution: ACSS (but only for Shamir sharings)

2. MPC-in-the-head Verification: A corrupted party may never open his commitments and

view when he 1s checked.
Solution: Use Asynchronous Verifiable Information Dispersal (AVID) [CT05, ADD+22] el

3. Inner protocols: Dishonest majority asynchronous protocol does not exist.

Solution: Run a synchronous inner protocol

Asynchronous Veriflable Information Dispersal

M

Goal: A B

All the parties know

M 1is sent

Asynchronous Veriflable Information Dispersal

M

Goal: A

All the parties know

Dispersal
.0

Py P, P5 Py

Asynchronous Veriflable Information Dispersal

M

Goal: A

All the parties know

Dispersal

Asynchronous Veriflable Information Dispersal

M

Goal: A

All the parties know

Dispersal

Asynchronous Veriflable Information Dispersal

M

Goal: A

All the parties know

L o
Retrieval \\\\\\\\\\\\\iiii§y4fiijji;////////////

Asynchronous Veriflable Information Dispersal

M
Goal: A B
All the parties know
M 1is sent

M

Retrieval \\\\\\\\\\\\\iii}§yéfiiiji;////////////

B [Communication during dispersal and per- J

party retrieval: O(|M| + poly(n, k))

Asynchronous Veriflable Information Dispersal

M
Goal: A B
All the parties know
M is sent
M
. A .
_ : dispersed _
Dispersal dispersed 2 \ dispersed dispersed
®, o @

Py P, P P,
Retrieval \\/
B
Get M

party retrieval: O(|M| + poly(n, x))

Communication during dispersal and per- ‘(Only 0 (poly(n, K)) overhead for sending all
messages of a constant-round MPC via AVID

(Generating Sharings via AVID

-

the parties, and the rest of the parties may wait forever

for the shares.

~

A corrupted party may send his sharings to only a part of

J

1. Preparing pair-wise symmetric keys.

2. Send the ciphertexts for the shares via AVID.

(Generating Sharings via AVID

4)
A corrupted party may send his sharings to only a part of

the parties, and the rest of the parties may wait forever

for the shares.

)

1. Preparing pair-wise symmetric keys.
* Via a general constant-round AMPC, only requiring O (poly(n, k)) communication

2. Send the ciphertexts for the shares via AVID.

Generating Commitments via AVID

Commit:

1. Preparing a secret-shared seed (using a general constant-round ACSS).
2. Reconstruct the seed to the sender.

3. Mask the message using the seed (via RO).

4. Disperse the masked messages via AVID.

Generating Commitments via AVID

Commit:

1. Preparing a secret-shared seed (using a general constant-round ACSS).
2. Reconstruct the seed to the sender.

3. Mask the message using the seed (via RO).

4. Disperse the masked messages via AVID.

Open to a Party:
1. Reconstructing the seed to the party.
2. Let the party retrieve the masked message.

3. Decrypt the message using the seed.

Inner Protocols

Observation 1: We don’t need all the virtual parties’ garbled circuits
(only need enough garbled circuits for reconstructions of the label shares)

Inner Protocols

Observation 1: We don’t need all the virtual parties’ garbled circuits
(only need enough garbled circuits for reconstructions of the label shares)

* Not all honest virtual parties are required to terminate the inner protocol

Inner Protocols

Observation 1: We don’t need all the virtual parties’ garbled circuits
(only need enough garbled circuits for reconstructions of the label shares)

* Not all honest virtual parties are required to terminate the inner protocol

Observation 2: Without guaranteed termination, a synchronous protocol can run in the
asynchronous setting

Inner Protocols

Observation 1: We don’t need all the virtual parties’ garbled circuits
(only need enough garbled circuits for reconstructions of the label shares)

* Not all honest virtual parties are required to terminate the inner protocol

Observation 2: Without guaranteed termination, a synchronous protocol can run in the
asynchronous setting

Idea: We can run synchronous inner protocols

Inner Protocols

Run a synchronous protocol in the asynchronous setting

Inner Protocols

Run a synchronous protocol in the asynchronous setting

Properties of a synchronous round:
* Can receive all the messages in a round

* When a round finishes, everyone knows.

N,
VAVAVAY

8 ©

A Synchronous Round

Inner Protocols

Run a synchronous protocol in the asynchronous setting

Properties of a synchronous round:
* Can receive all the messages in a round

* When a round finishes, everyone knows.

Solution:

* Use AVID + encryption to send messages

N,
VAVAVAY

8 ©

A Synchronous Round

* Wait for all the dispersal signals in one
round and then continue

Inner Protocols

Run a synchronous protocol in the asynchronous setting

Properties of a synchronous round:
* Can receive all the messages in a round

* When a round finishes, everyone knows.

Also providing

] commitments to the
Solution:

view of virtual parties

* Use AVID + encryption to send messages

N,
VAVAVAY

8 ©

A Synchronous Round

* Wait for all the dispersal signals in one
round and then continue

Multiparty Garbling Outline

Run a Setup Phase for pair-wise keys and secret-shared seeds

Multiparty Garbling Outline

Run a Setup Phase for pair-wise keys and secret-shared seeds

o,

P, P, P,
M\k\

Actual Parties

Multiparty Garbling Outline

Run a Setup Phase for pair-wise keys and secret-shared seeds

o,

Q S C
P, P, P,
M\k\

Invoke Fy4cs to determine a set of parties who generate the sharings

Actual Parties

Multiparty Garbling Outline

Run a Setup Phase for pair-wise keys and secret-shared seeds

< P, P, . P5

Py

LR F~TAN

Via dishonest Via dishonest
majority MPC majority MPC

Actual Parties

(Inner Protocol) (Inner Protocol)

Virtual Parties 4] 1, V3 V4 Vs

\)
|

Outer Protocol I1

Multiparty Garbling Outline
qpl : .PZ qu S

Py

May never
terminate

Actual Parties

Via dishonest Via dishonest
majority MPC majority MPC
(Inner Protocol) Q (Inner Protocol)
Virtual Parties 4] v, V3 V, Ve

Outer Protocol I1

Multiparty Garbling Outline

May never
terminate

Actual Parties

(size ¢)
Via dishonest Via dishonest
majority MPC majority MPC
(Inner Protocol) Q (Inner Protocol)
Virtual Parties 4] v, V3 V, Ve
Actual parties =2:1 Quter Protocol II
Virtual parties © 7 : =2 Enough for

evaluation

Multiparty Garbling Outline

May never
terminate

Actual Parties

(size ¢)
Via dishonest Via dishonest
majority MPC majority MPC
(Inner Protocol) g (Inner Protocol)
Virtual Parties 4] v, V3 V, Ve

Agree on a Common Set of (enough number of) Terminated Virtual Parties

Multiparty Garbling Outline

May never
terminate

Actual Parties

(size ¢)
Via dishonest Via dishonest
majority MPC majority MPC
(Inner Protocol) Q (Inner Protocol)
Virtual Parties 4] v, V3 V, Ve

Agree on a Common Set of (enough number of) Terminated Virtual Parties

Verifty by MPC-in-the-Head

Thanks!

https://eprint.iacr.org/2025/1032

	幻灯片 1: Constant-Round Asynchronous MPC with Optimal Resilience and Linear Communication
	幻灯片 2: Multiparty Computation
	幻灯片 3: Multiparty Computation
	幻灯片 4: Differences between Sync. and Async.
	幻灯片 5: Differences between Sync. and Async.
	幻灯片 6: Differences between Sync. and Async.
	幻灯片 7: Differences between Sync. and Async.
	幻灯片 8: Differences between Sync. and Async.
	幻灯片 9: Known Results from Literatures
	幻灯片 10: Known Results from Literatures
	幻灯片 11: Known Results from Literatures
	幻灯片 12: Our Result
	幻灯片 13: Our Result
	幻灯片 14: Our Result
	幻灯片 15: Our Result
	幻灯片 16: Multiparty Garbling of [GLOS25]
	幻灯片 17: Multiparty Garbling of [GLOS25]
	幻灯片 18: Run the Protocol in Asynchronous Network
	幻灯片 19: Run the Protocol in Asynchronous Network
	幻灯片 20: Run the Protocol in Asynchronous Network
	幻灯片 21: Run the Protocol in Asynchronous Network
	幻灯片 22: Run the Protocol in Asynchronous Network
	幻灯片 23: Run the Protocol in Asynchronous Network
	幻灯片 24: Difficulties Caused by the Asynchrony
	幻灯片 25: Difficulties Caused by the Asynchrony
	幻灯片 26: Asynchronous Verifiable Information Dispersal
	幻灯片 27: Asynchronous Verifiable Information Dispersal
	幻灯片 28: Asynchronous Verifiable Information Dispersal
	幻灯片 29: Asynchronous Verifiable Information Dispersal
	幻灯片 30: Asynchronous Verifiable Information Dispersal
	幻灯片 31: Asynchronous Verifiable Information Dispersal
	幻灯片 32: Asynchronous Verifiable Information Dispersal
	幻灯片 33: Generating Sharings via AVID
	幻灯片 34: Generating Sharings via AVID
	幻灯片 35: Generating Commitments via AVID
	幻灯片 36: Generating Commitments via AVID
	幻灯片 37: Inner Protocols
	幻灯片 38: Inner Protocols
	幻灯片 39: Inner Protocols
	幻灯片 40: Inner Protocols
	幻灯片 41: Inner Protocols
	幻灯片 42: Inner Protocols
	幻灯片 43: Inner Protocols
	幻灯片 44: Inner Protocols
	幻灯片 45: Multiparty Garbling Outline
	幻灯片 46: Multiparty Garbling Outline
	幻灯片 47: Multiparty Garbling Outline
	幻灯片 48: Multiparty Garbling Outline
	幻灯片 49: Multiparty Garbling Outline
	幻灯片 50: Multiparty Garbling Outline
	幻灯片 51: Multiparty Garbling Outline
	幻灯片 52: Multiparty Garbling Outline
	幻灯片 53: Thanks!

