
Constant-Round Asynchronous MPC with

Optimal Resilience and Linear

Communication

Junru Li

Tsinghua University

Yifan Song

Tsinghua University

Shanghai Qi Zhi Institute

Multiparty Computation

Setting

• Asynchronous Network

• Optimal Resilience 𝑡 = (𝑛 − 1)/3

• Fully Malicious Adversary (Security with Abort)

Multiparty Computation

Setting

• Asynchronous Network

• Optimal Resilience 𝑡 = (𝑛 − 1)/3

• Fully Malicious Adversary (Security with Abort)

Target

• Lightweight Cryptographic Primitives (no FHE)

• Constant Round Complexity

• Communication Complexity Linear to 𝑛

Differences between Sync. and Async.

Sync: Δ

Differences between Sync. and Async.

Sync: Δ

If no answer after Δ,

assume ⊥ received

Differences between Sync. and Async.

Sync: Δ

If no answer after Δ,

assume ⊥ received

• Can be realized when 𝑡 = 𝑛 − 1
• Δ must be large

Differences between Sync. and Async.

Sync:

Async:

Δ

T1

Waiting

T2

???

A

B

• Can be realized when 𝑡 = 𝑛 − 1
• Δ must be large

Differences between Sync. and Async.

Sync:

Async:
T1

Waiting

T2

???

A

B

Δ

• Can be realized when 𝑡 = 𝑛 − 1
• Δ must be large

Cannot distinguish dishonest sender not

sending vs slow honest sender

• Protocol runs at speed of actual

network delay

• 𝑡 parties may not be able to provide

inputs

• Requiring 𝑡 < 𝑛/3

Known Results from Literatures

Communication-Efficient but Non-Constant-Round AMPC (GOD)

• Perfect: 𝑂(|𝐶|𝑛) communication is achieved for when 𝑡 <
𝑛

4
[AAPP24].

• Statistical: 𝑂(|𝐶|𝑛𝜅) communication is achieved for when 𝑡 <
𝑛

3
[GLS24], with a large additive

overhead 𝑂(𝑛14𝜅2).

• Computational: 𝑂(|𝐶|𝑛𝜅) communication is achieved for when 𝑡 <
𝑛

3
assuming RO [BJK+25], with a

low overhead.

Known Results from Literatures

Communication-Efficient but Non-Constant-Round AMPC (GOD)

• Perfect: 𝑂(|𝐶|𝑛) communication is achieved for when 𝑡 <
𝑛

4
[AAPP24].

• Statistical: 𝑂(|𝐶|𝑛𝜅) communication is achieved for when 𝑡 <
𝑛

3
[GLS24], with a large additive

overhead 𝑂(𝑛14𝜅2).

• Computational: 𝑂(|𝐶|𝑛𝜅) communication is achieved for when 𝑡 <
𝑛

3
assuming RO [BJK+25], with a

low overhead.

Constant-Round but Communication-Heavy AMPC

• Requiring Ω(𝐶 𝑛3𝜅) communication from OWFs in the ℱ𝐴𝐶𝑆 -hybrid model [CGHZ16].

• Based on BMR template.

• Achieving GOD.

Known Results from Literatures

Communication-Efficient but Non-Constant-Round AMPC (GOD)

• Perfect: 𝑂(|𝐶|𝑛) communication is achieved for when 𝑡 <
𝑛

4
[AAPP24].

• Statistical: 𝑂(|𝐶|𝑛𝜅) communication is achieved for when 𝑡 <
𝑛

3
[GLS24], with a large additive

overhead 𝑂(𝑛14𝜅2).

• Computational: 𝑂(|𝐶|𝑛𝜅) communication is achieved for when 𝑡 <
𝑛

3
assuming RO [BJK+25], with a

low overhead.

Constant-Round but Communication-Heavy AMPC

• Requiring Ω(𝐶 𝑛3𝜅) communication from OWFs in the ℱ𝐴𝐶𝑆 -hybrid model [CGHZ16].

• Based on BMR template.

• Achieving GOD.

The parties must agree on a common set that

provide inputs to the MPC, and this process

cannot be constant-round in the plain model

Our Result

Assuming random oracles, there exists a computationally secure (with abort) constant-round AMPC in the

ℱ𝐴𝐶𝑆 -hybrid model against a fully malicious adversary controlling up to 𝑡 < 𝑛/3 parties with communication

𝑂(|𝐶|𝑛𝜅 + 𝐷 𝑛 + 𝜅 2𝑛𝜅 + poly(𝑛, 𝜅)) plus 3 invocations of ℱ𝐴𝐶𝑆, where |𝐶| is the circuit size, 𝐷 is the

circuit depth, and 𝜅 is the computational security parameter.

Our Result

Assuming random oracles, there exists a computationally secure (with abort) constant-round AMPC in the

ℱ𝐴𝐶𝑆 -hybrid model against a fully malicious adversary controlling up to 𝑡 < 𝑛/3 parties with communication

𝑂(|𝐶|𝑛𝜅 + 𝐷 𝑛 + 𝜅 2𝑛𝜅 + poly(𝑛, 𝜅)) plus 3 invocations of ℱ𝐴𝐶𝑆, where |𝐶| is the circuit size, 𝐷 is the

circuit depth, and 𝜅 is the computational security parameter.

Basic Idea:

• Multiparty garbling

• Send the garbled circuit to all the parties

Our Result

Assuming random oracles, there exists a computationally secure (with abort) constant-round AMPC in the

ℱ𝐴𝐶𝑆 -hybrid model against a fully malicious adversary controlling up to 𝑡 < 𝑛/3 parties with communication

𝑂(|𝐶|𝑛𝜅 + 𝐷 𝑛 + 𝜅 2𝑛𝜅 + poly(𝑛, 𝜅)) plus 3 invocations of ℱ𝐴𝐶𝑆, where |𝐶| is the circuit size, 𝐷 is the

circuit depth, and 𝜅 is the computational security parameter.

Basic Idea:

• Multiparty garbling

• Send the garbled circuit to all the parties

A single evaluator may never send the outputs, and

the parties cannot decide whether the evaluator is

corrupted or the network delay is large

Our Result

Assuming random oracles, there exists a computationally secure (with abort) constant-round AMPC in the

ℱ𝐴𝐶𝑆 -hybrid model against a fully malicious adversary controlling up to 𝑡 < 𝑛/3 parties with communication

𝑂(|𝐶|𝑛𝜅 + 𝐷 𝑛 + 𝜅 2𝑛𝜅 + poly(𝑛, 𝜅)) plus 3 invocations of ℱ𝐴𝐶𝑆, where |𝐶| is the circuit size, 𝐷 is the

circuit depth, and 𝜅 is the computational security parameter.

Basic Idea:

• Multiparty garbling

• Send the garbled circuit to all the parties

A single evaluator may never send the outputs, and

the parties cannot decide whether the evaluator is

corrupted or the network delay is large

Requiring an 𝑂(𝐶 𝜅)-size multiparty garbled circuit (omitting the 𝐷 ⋅ poly 𝑛, 𝜅 term):
• The only known construction in the synchronous case is [GLOS25]

Multiparty Garbling of [GLOS25]

𝑃1Actual Parties 𝑃2 𝑃3 𝑃4

Committees 𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Multiparty Garbling of [GLOS25]

𝑃1Actual Parties 𝑃2 𝑃3 𝑃4

Committees 𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Virtual Parties 𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Outer Protocol Π

Via dishonest
majority MPC
(inner protocol)

Sharing Phase

Garbling Phase
Via dishonest
majority MPC
(inner protocol)

Verification Phase

Run the Protocol in Asynchronous Network

1. Sharing Phase: All parties distribute preprocessing/input

sharings to virtual parties

Protocol Steps

Run the Protocol in Asynchronous Network

1. Sharing Phase: All parties distribute preprocessing/input

sharings to virtual parties

A corrupted party may send his sharings to only a part of

the parties, and the rest of the parties may wait forever

for the shares.

Protocol Steps Difficulties

Run the Protocol in Asynchronous Network

1. Sharing Phase: All parties distribute preprocessing/input

sharings to virtual parties

2. Garbling Phase: Run the inner protocols to garble the

parties’ local computations for the underlying protocol

A corrupted party may send his sharings to only a part of

the parties, and the rest of the parties may wait forever

for the shares.

Protocol Steps Difficulties

Run the Protocol in Asynchronous Network

1. Sharing Phase: All parties distribute preprocessing/input

sharings to virtual parties

2. Garbling Phase: Run the inner protocols to garble the

parties’ local computations for the underlying protocol

A corrupted party may send his sharings to only a part of

the parties, and the rest of the parties may wait forever

for the shares.

Protocol Steps Difficulties

Dishonest majority asynchronous protocol does not exist.

Run the Protocol in Asynchronous Network

1. Sharing Phase: All parties distribute preprocessing/input

sharings to virtual parties

2. Garbling Phase: Run the inner protocols to garble the

parties’ local computations for the underlying protocol

3. Verification Phase: Open a small fraction of virtual

parties’ views

A corrupted party may send his sharings to only a part of

the parties, and the rest of the parties may wait forever

for the shares.

Protocol Steps Difficulties

Dishonest majority asynchronous protocol does not exist.

Run the Protocol in Asynchronous Network

1. Sharing Phase: All parties distribute preprocessing/input

sharings to virtual parties

2. Garbling Phase: Run the inner protocols to garble the

parties’ local computations for the underlying protocol

3. Verification Phase: Open a small fraction of virtual

parties’ views

A corrupted party may send his sharings to only a part of

the parties, and the rest of the parties may wait forever

for the shares.

Protocol Steps Difficulties

A corrupted party may never open his commitment and

view when he is checked.

Dishonest majority asynchronous protocol does not exist.

Difficulties Caused by the Asynchrony

1. Generating preprocessing/input sharings: A corrupted party may send his input sharings to

only a part of the parties, and the rest of the parties may wait forever for the shares.

• Previous solution: ACSS (but only for Shamir sharings)

2. MPC-in-the-head Verification: A corrupted party may never open his commitments and

view when he is checked.

3. Inner protocols: Dishonest majority asynchronous protocol does not exist.

Difficulties Caused by the Asynchrony

1. Generating preprocessing/input sharings: A corrupted party may send his input sharings to

only a part of the parties, and the rest of the parties may wait forever for the shares.

• Previous solution: ACSS (but only for Shamir sharings)

2. MPC-in-the-head Verification: A corrupted party may never open his commitments and

view when he is checked.

Solution: Use Asynchronous Verifiable Information Dispersal (AVID) [CT05, ADD+22]

3. Inner protocols: Dishonest majority asynchronous protocol does not exist.

Solution: Run a synchronous inner protocol

Can be instantiated

from RO

Asynchronous Verifiable Information Dispersal
Goal: 𝐴 𝐵

𝑀

All the parties know

𝑀 is sent

Asynchronous Verifiable Information Dispersal

𝑃1 𝑃2 𝑃3 𝑃4

Goal: 𝐴 𝐵
𝑀

All the parties know

𝑀 is sent

𝐴

dispersedDispersal

𝑃1 𝑃2 𝑃3 𝑃4

𝐵
𝑀

All the parties know

𝑀 is sent

𝐴

dispersed
dispersed

dispersed dispersedDispersal

Goal: 𝐴

Asynchronous Verifiable Information Dispersal

𝑃1 𝑃2 𝑃3 𝑃4

𝐵
𝑀

All the parties know

𝑀 is sent

𝐴
𝑀

dispersed
dispersed

dispersed dispersedDispersal

Goal: 𝐴

Asynchronous Verifiable Information Dispersal

𝑃1 𝑃2 𝑃3 𝑃4

𝐵
𝑀

All the parties know

𝑀 is sent

𝐴
𝑀

dispersed
dispersed

dispersed dispersed

𝐵

Dispersal

Retrieval

Get 𝑀

Goal: 𝐴

Asynchronous Verifiable Information Dispersal

𝑃1 𝑃2 𝑃3 𝑃4

𝐵
𝑀

All the parties know

𝑀 is sent

𝐴
𝑀

𝐵

Dispersal

Retrieval

Get 𝑀
Communication during dispersal and per-

party retrieval: 𝑂(𝑀 + poly(𝑛, 𝜅))

Goal: 𝐴

Asynchronous Verifiable Information Dispersal

dispersed
dispersed

dispersed dispersed

𝑃1 𝑃2 𝑃3 𝑃4

𝐵
𝑀

All the parties know

𝑀 is sent

𝐴
𝑀

𝐵

Dispersal

Retrieval

Get 𝑀

Communication during dispersal and per-

party retrieval: 𝑂(𝑀 + poly(𝑛, 𝜅))

Goal: 𝐴

Asynchronous Verifiable Information Dispersal

dispersed
dispersed

dispersed dispersed

Only 𝑂 poly 𝑛, 𝜅 overhead for sending all

messages of a constant-round MPC via AVID

Generating Sharings via AVID

1. Preparing pair-wise symmetric keys.

2. Send the ciphertexts for the shares via AVID.

A corrupted party may send his sharings to only a part of

the parties, and the rest of the parties may wait forever

for the shares.

Generating Sharings via AVID

A corrupted party may send his sharings to only a part of

the parties, and the rest of the parties may wait forever

for the shares.

1. Preparing pair-wise symmetric keys.

• Via a general constant-round AMPC, only requiring 𝑂(poly(𝑛, 𝜅)) communication

2. Send the ciphertexts for the shares via AVID.

Generating Commitments via AVID
Commit:

1. Preparing a secret-shared seed (using a general constant-round ACSS).

2. Reconstruct the seed to the sender.

3. Mask the message using the seed (via RO).

4. Disperse the masked messages via AVID.

Generating Commitments via AVID
Commit:

1. Preparing a secret-shared seed (using a general constant-round ACSS).

2. Reconstruct the seed to the sender.

3. Mask the message using the seed (via RO).

4. Disperse the masked messages via AVID.

Open to a Party:

1. Reconstructing the seed to the party.

2. Let the party retrieve the masked message.

3. Decrypt the message using the seed.

Inner Protocols
Observation 1: We don’t need all the virtual parties’ garbled circuits

(only need enough garbled circuits for reconstructions of the label shares)

Inner Protocols
Observation 1: We don’t need all the virtual parties’ garbled circuits

(only need enough garbled circuits for reconstructions of the label shares)

• Not all honest virtual parties are required to terminate the inner protocol

Inner Protocols
Observation 1: We don’t need all the virtual parties’ garbled circuits

(only need enough garbled circuits for reconstructions of the label shares)

• Not all honest virtual parties are required to terminate the inner protocol

Observation 2: Without guaranteed termination, a synchronous protocol can run in the

asynchronous setting

Inner Protocols
Observation 1: We don’t need all the virtual parties’ garbled circuits

(only need enough garbled circuits for reconstructions of the label shares)

• Not all honest virtual parties are required to terminate the inner protocol

Observation 2: Without guaranteed termination, a synchronous protocol can run in the

asynchronous setting

Idea: We can run synchronous inner protocols

Inner Protocols
Run a synchronous protocol in the asynchronous setting

𝑓1
(1)

A Synchronous Round

𝑓1
(2)

𝑓1
(3)

𝑓1
(4)

𝑓2
(1)

𝑓2
(2)

𝑓2
(3)

𝑓2
(4)

Inner Protocols
Run a synchronous protocol in the asynchronous setting

𝑓1
(1)

A Synchronous Round

𝑓1
(2)

𝑓1
(3)

𝑓1
(4)

𝑓2
(1)

𝑓2
(2)

𝑓2
(3)

𝑓2
(4)

Properties of a synchronous round:

• Can receive all the messages in a round

• When a round finishes, everyone knows.

Inner Protocols
Run a synchronous protocol in the asynchronous setting

𝑓1
(1)

A Synchronous Round

𝑓1
(2)

𝑓1
(3)

𝑓1
(4)

𝑓2
(1)

𝑓2
(2)

𝑓2
(3)

𝑓2
(4)

Properties of a synchronous round:

• Can receive all the messages in a round

• When a round finishes, everyone knows.

Solution:

• Use AVID + encryption to send messages

• Wait for all the dispersal signals in one
round and then continue

Inner Protocols
Run a synchronous protocol in the asynchronous setting

𝑓1
(1)

A Synchronous Round

𝑓1
(2)

𝑓1
(3)

𝑓1
(4)

𝑓2
(1)

𝑓2
(2)

𝑓2
(3)

𝑓2
(4)

Properties of a synchronous round:

• Can receive all the messages in a round

• When a round finishes, everyone knows.

Solution:

• Use AVID + encryption to send messages

• Wait for all the dispersal signals in one
round and then continue

Also providing
commitments to the
view of virtual parties

Multiparty Garbling Outline
Run a Setup Phase for pair-wise keys and secret-shared seeds

Multiparty Garbling Outline

𝑃1Actual Parties 𝑃2 𝑃3 𝑃4

Committees 𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Run a Setup Phase for pair-wise keys and secret-shared seeds

Multiparty Garbling Outline

𝑃1Actual Parties 𝑃2 𝑃3 𝑃4

Committees 𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Run a Setup Phase for pair-wise keys and secret-shared seeds

Invoke ℱ𝐴𝐶𝑆 to determine a set of parties who generate the sharings

Multiparty Garbling Outline

𝑃1Actual Parties 𝑃2 𝑃3 𝑃4

Committees 𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Virtual Parties 𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Outer Protocol Π

Via dishonest
majority MPC
(Inner Protocol)

Via dishonest
majority MPC
(Inner Protocol)

Run a Setup Phase for pair-wise keys and secret-shared seeds

Multiparty Garbling Outline

𝑃1Actual Parties 𝑃2 𝑃3 𝑃4

Committees 𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Virtual Parties 𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Outer Protocol Π

Via dishonest
majority MPC
(Inner Protocol)

Via dishonest
majority MPC
(Inner Protocol)

May never
terminate

Multiparty Garbling Outline

𝑃1Actual Parties 𝑃2 𝑃3 𝑃4

Committees
(size 𝑐)

𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Virtual Parties 𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Outer Protocol Π

Via dishonest
majority MPC
(Inner Protocol)

Via dishonest
majority MPC
(Inner Protocol)

May never
terminate

Actual parties : = 2:1

Virtual parties : = 2𝑐: 1 Enough for
evaluation

Multiparty Garbling Outline

𝑃1Actual Parties 𝑃2 𝑃3 𝑃4

Committees
(size 𝑐)

𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Virtual Parties 𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Via dishonest
majority MPC
(Inner Protocol)

Via dishonest
majority MPC
(Inner Protocol)

May never
terminate

Agree on a Common Set of (enough number of) Terminated Virtual Parties

Multiparty Garbling Outline

𝑃1Actual Parties 𝑃2 𝑃3 𝑃4

Committees
(size 𝑐)

𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Virtual Parties 𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Via dishonest
majority MPC
(Inner Protocol)

Via dishonest
majority MPC
(Inner Protocol)

May never
terminate

Agree on a Common Set of (enough number of) Terminated Virtual Parties

Verify by MPC-in-the-Head

Thanks!

https://eprint.iacr.org/2025/1032

	幻灯片 1: Constant-Round Asynchronous MPC with Optimal Resilience and Linear Communication
	幻灯片 2: Multiparty Computation
	幻灯片 3: Multiparty Computation
	幻灯片 4: Differences between Sync. and Async.
	幻灯片 5: Differences between Sync. and Async.
	幻灯片 6: Differences between Sync. and Async.
	幻灯片 7: Differences between Sync. and Async.
	幻灯片 8: Differences between Sync. and Async.
	幻灯片 9: Known Results from Literatures
	幻灯片 10: Known Results from Literatures
	幻灯片 11: Known Results from Literatures
	幻灯片 12: Our Result
	幻灯片 13: Our Result
	幻灯片 14: Our Result
	幻灯片 15: Our Result
	幻灯片 16: Multiparty Garbling of [GLOS25]
	幻灯片 17: Multiparty Garbling of [GLOS25]
	幻灯片 18: Run the Protocol in Asynchronous Network
	幻灯片 19: Run the Protocol in Asynchronous Network
	幻灯片 20: Run the Protocol in Asynchronous Network
	幻灯片 21: Run the Protocol in Asynchronous Network
	幻灯片 22: Run the Protocol in Asynchronous Network
	幻灯片 23: Run the Protocol in Asynchronous Network
	幻灯片 24: Difficulties Caused by the Asynchrony
	幻灯片 25: Difficulties Caused by the Asynchrony
	幻灯片 26: Asynchronous Verifiable Information Dispersal
	幻灯片 27: Asynchronous Verifiable Information Dispersal
	幻灯片 28: Asynchronous Verifiable Information Dispersal
	幻灯片 29: Asynchronous Verifiable Information Dispersal
	幻灯片 30: Asynchronous Verifiable Information Dispersal
	幻灯片 31: Asynchronous Verifiable Information Dispersal
	幻灯片 32: Asynchronous Verifiable Information Dispersal
	幻灯片 33: Generating Sharings via AVID
	幻灯片 34: Generating Sharings via AVID
	幻灯片 35: Generating Commitments via AVID
	幻灯片 36: Generating Commitments via AVID
	幻灯片 37: Inner Protocols
	幻灯片 38: Inner Protocols
	幻灯片 39: Inner Protocols
	幻灯片 40: Inner Protocols
	幻灯片 41: Inner Protocols
	幻灯片 42: Inner Protocols
	幻灯片 43: Inner Protocols
	幻灯片 44: Inner Protocols
	幻灯片 45: Multiparty Garbling Outline
	幻灯片 46: Multiparty Garbling Outline
	幻灯片 47: Multiparty Garbling Outline
	幻灯片 48: Multiparty Garbling Outline
	幻灯片 49: Multiparty Garbling Outline
	幻灯片 50: Multiparty Garbling Outline
	幻灯片 51: Multiparty Garbling Outline
	幻灯片 52: Multiparty Garbling Outline
	幻灯片 53: Thanks!

