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Setting

* Asynchronous Network

@ o * Optimal Resilience t = (n —1)/3

* Fully Malicious Adversary (Security with Abort)

@ Target

* Lightweight Cryptographic Primitives (no FHE)

* Constant Round Complexity

* Communication Complexity Linear to n
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Differences between Sync. and Async.

Sync: A

e (Canberealized whent =n—1

g « A must be large
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Async: sending vs slow honest sender
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' network delay
. p« Q???J ¢ * t parties may not be able to provide

Waiting ° ° inputs
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Known Results from Literatures

Communication-Efficient but Non-Constant-Round AMPC (GOD)

* Perfect: O(|C|n) communication is achieved for when t < % [AAPP24].

« Statistical: O(|C|nk) communication is achieved for when t < g [GLS24], with a large additive

overhead O (n'*k?).

e Computational: O(|C|nk) communication is achieved for when t < g assuming RO [BJK+25], with a

low overhead.
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Known Results from Literatures

Communication-Efficient but Non-Constant-Round AMPC (GOD)

* Perfect: O(|C|n) communication is achieved for when t < % [AAPP24].

« Statistical: O(|C|nk) communication is achieved for when t < g [GLS24], with a large additive

overhead O (n'*k?).

e Computational: O(|C|nk) communication is achieved for when t < g assuming RO [BJK+25], with a

low overhead.

Constant-Round but Communication-Heavy AMPC

« Requiring Q(|C|n®k) communication from OWFs in the F4¢s -hybrid model [CGHZ16].
* Based on BMR template.

The parties must agree on a common set that

* Achieving GOD. provide inputs to the MPC, and this process

cannot be constant-round in the plain model




Our Result

Assuming random oracles, there exists a computationally secure (with abort) constant-round AMPC in the
F 4cs -hybrid model against a fully malicious adversary controlling up to t < n/3 parties with communication

O0(|C|nk + D(n + k)*ni + poly(n, k)) plus 3 invocations of F, s, where |C| is the circuit size, D is the

circuit depth, and k is the computational security parameter.
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Our Result

Assuming random oracles, there exists a computationally secure (with abort) constant-round AMPC in the
F4cs -hybrid model against a fully malicious adversary controlling up to t < n/3 parties with communication

O0(|C|nk + D(n + k)*ni + poly(n, k)) plus 3 invocations of F, s, where |C| is the circuit size, D is the

circuit depth, and k is the computational security parameter.

_ A single evaluator may never send the outputs, and
Basic Idea:

the parties cannot decide whether the evaluator is

e Multi party ga blin g corrupted or the network delay is large

* Send the garbled circuit to all the parties

Requiring an O(|C|x)-size multiparty garbled circuit (omitting the D - poly(n, k) term):
* The only known construction in the synchronous case is [GLOS25]
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Protocol Steps Difficulties

4 )

Sharing Phase: All parties distribute preprocessing/input A corrupted party may send his sharings to only a part of

sharings to virtual parties the parties, and the rest of the parties may wait forever

for the shares.

)

Garbling Phase: Run the inner protocols to garble the . o ,
Dishonest majority asynchronous protocol does not exist.

parties’ local computations for the underlying protocol

Verification Phase: Open a small fraction of virtual A corrupted party may never open his commitment and

C, view when he is checked.
parties’ views




Difficulties Caused by the Asynchrony

1. Generating preprocessing/input sharings: A corrupted party may send his input sharings to
only a part of the parties, and the rest of the parties may wait forever for the shares.
* Previous solution: ACSS (but only for Shamir sharings)

2. MPC-in-the-head Verification: A corrupted party may never open his commitments and
view when he 1s checked.
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Difficulties Caused by the Asynchrony

1. Generating preprocessing/input sharings: A corrupted party may send his input sharings to
only a part of the parties, and the rest of the parties may wait forever for the shares.
* Previous solution: ACSS (but only for Shamir sharings)

2. MPC-in-the-head Verification: A corrupted party may never open his commitments and

view when he 1s checked.
Solution: Use Asynchronous Verifiable Information Dispersal (AVID) [CT05, ADD+22] el

3. Inner protocols: Dishonest majority asynchronous protocol does not exist.

Solution: Run a synchronous inner protocol
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Asynchronous Veriflable Information Dispersal

M
Goal: A B
All the parties know
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party retrieval: O(|M| + poly(n, x))

Communication during dispersal and per- ‘(Only 0 (poly(n, K)) overhead for sending all
messages of a constant-round MPC via AVID
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(Generating Sharings via AVID

4 )
A corrupted party may send his sharings to only a part of

the parties, and the rest of the parties may wait forever

for the shares.

)

1. Preparing pair-wise symmetric keys.
* Via a general constant-round AMPC, only requiring O (poly(n, k)) communication

2. Send the ciphertexts for the shares via AVID.
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4. Disperse the masked messages via AVID.



Generating Commitments via AVID

Commit:

1. Preparing a secret-shared seed (using a general constant-round ACSS).
2. Reconstruct the seed to the sender.

3. Mask the message using the seed (via RO).

4. Disperse the masked messages via AVID.

Open to a Party:
1. Reconstructing the seed to the party.
2. Let the party retrieve the masked message.

3. Decrypt the message using the seed.
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Inner Protocols

Observation 1: We don’t need all the virtual parties’ garbled circuits
(only need enough garbled circuits for reconstructions of the label shares)

* Not all honest virtual parties are required to terminate the inner protocol

Observation 2: Without guaranteed termination, a synchronous protocol can run in the
asynchronous setting

Idea: We can run synchronous inner protocols
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Inner Protocols

Run a synchronous protocol in the asynchronous setting

Properties of a synchronous round:
* Can receive all the messages in a round

* When a round finishes, everyone knows.

Also providing

] commitments to the
Solution:

view of virtual parties

* Use AVID + encryption to send messages

N,
VAVAVAY

8 ©

A Synchronous Round

* Wait for all the dispersal signals in one
round and then continue
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May never
terminate

Actual Parties

(size ¢)
Via dishonest Via dishonest
majority MPC majority MPC
(Inner Protocol) Q (Inner Protocol)
Virtual Parties 4] v, V3 V, Ve

Agree on a Common Set of (enough number of) Terminated Virtual Parties

Verifty by MPC-in-the-Head




Thanks!

https://eprint.iacr.org/2025/1032
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