New Results on the ϕ -Hiding Assumption and Factoring Related RSA Moduli

Jun Xu, Jun Song, Lei Hu Institute of Information Engineering, Chinese Academy of Sciences

August 18, 2025

- $lue{1}$ The ϕ -Hiding Assumption
- Our Main Results
- Technical Overview
- Partial Applications

Outline

- $lue{1}$ The ϕ -Hiding Assumption
- Our Main Results
- Technical Overview
- Partial Applications

The ϕ -Hiding Assumption

- \bullet At Eurocrypt 1999, Cachin, Micali, and Stadler first introduced the $\phi\text{-hiding}$ assumption
 - in order to construct an efficient private information retrieval scheme
- ullet The ϕ -hiding assumption is related to many cryptographic schemes
 - private information retrieval schemes
 - lossy trapdoor permutation
 - certified trapdoor permutations
 - laconic private set intersection
 - non-committing encryption
 - factoring-based signature schemes

Definition

Definition (ϕ -Hiding Assumption)

Given an integer N with unknown factorization, it is computationally hard to decide whether a prime e with $2 < e \ll N^{\frac{1}{4}}$ divides $\phi(N)$ or not.

- For a standard RSA modulus N=PQ (P,Q have the same bit length), if a given prime $e>N^{\frac{1}{4}}$, then N can be decomposed in the polynomial time by the univariate Coppersmith theorem. Once N is decomposed, the ϕ -Hiding Assumption is decided.
- At Asiacrypt 2008, Schridde and Freisleben analyzed a case of $N = PQ^r$ with even r
 - There exists a polynomial-time algorithm that, with high probability, determines whether a given prime $e \mid (P-1)$ (a special case of $e \mid \phi(N)$).

The integer e in the ϕ -hiding assumption

- In the Journal of Cryptology published in 2019, Abdalla et al. pointed out that:
 - More precisely, we need e in the ϕ -hiding assumption to be chosen as a power of a small prime number ... But to our knowledge, this new variant of the ϕ -hiding assumption has not been analyzed and might actually not hold.
- ullet This means that the e involved in ϕ -hiding assumption can be non prime numbers.

The ϕ -hiding assumption and factoring

- The ϕ -hiding assumption shows a connection between known factors of $\phi(N)$ and decomposing the modulus N.
- Some cryptographic schemes that rely on RSA modulus N also embed information about known factors of $\phi(N)$.
- Given a positive integer N, finding positive integers r and s such that $N = rs^2$, where r is squarefree, is a classic problem in algorithmic number theory.
 - polynomial-time equivalence to the problem of determining the ring of integers of a number field

Outline

- ① The ϕ -Hiding Assumption
- Our Main Results
- Technical Overview
- Partial Applications

Case 1: e is a prime number

Theorem

Let $N=PQ^r$ be a given integer with unknown factorization, where P,Q are different primes, $r\geq 1$ is a given integer, and $Q\geq N^\beta$ for $0<\beta<\frac{1}{r}$. Let e be a given prime satisfying $e\mid \phi(N)$. For any fixed $\varepsilon>0$, we can factorize N in time polynomial of ε^{-1} and $\log N$, when one of the following two conditions is met:

$$\begin{cases} e \ge N^{\frac{1}{4r} + \varepsilon} & (\beta \text{ is unknown}) \\ e > N^{\beta - r\beta^2 + \varepsilon} & (\beta \text{ is known}) \end{cases}$$
 (2)

• Bound (2) equals bound (1), when
$$\beta = \frac{1}{2r} (\beta - r\beta^2 = \frac{1}{4r})$$
.

• Bound (2) is better, when $\beta \neq \frac{1}{2r} \left(\beta - r\beta^2 < \frac{1}{4r}\right)$.

Theorem

Define N as above. Let e be a given square-free composite number with known factorization satisfying $e \mid \phi(N)$, where the number of prime factors of e is $O(\log \log N)$. For any fixed $\varepsilon > 0$, we can factorize N in time polynomial of ε^{-1} and $\log N$ for any integer constant r, when one of conditions (1) and (2) is satisfied.

- The hypothesis on the number of prime factors of e is reasonable
 - The average number of prime factors of a random integer is $O(\log \log N)$.

Case 3: e is a general composite number

Theorem

Define N as above, where unknown prime factors P,Q satisfy $\gcd(P-1,Q-1)=2$. Let e be a given integer with known factorization such that $e \mid \phi(N)$, where the number of prime factors of e is $O(\log\log N)$. For any fixed $\varepsilon>0$, we can factorize N in time polynomial of ε^{-1} and $\log N$ for any integer constant r, when one of conditions (1) and (2) holds.

• For random primes P and Q, the condition that $\gcd(P-1,Q-1)=2$ holds with a probability of $\frac{6}{\pi^2}\approx 61\%$.

Outline

- ① The ϕ -Hiding Assumption
- 2 Our Main Results
- Technical Overview
- Partial Applications

Core idea

- The GOAL: The relation $e \mid \phi(N) \Rightarrow e \mid (Q u)$, where $N = PQ^r$.
- Once u is obtained, then $ex + u \equiv 0 \mod Q$
 - Here $Q \mid N$ and $Q \geq N^{\beta}$
- Then factorize N via two univariate Coppersmith algorithms, based on whether β is unknown or not.
 - For known β , the univariate Coppersmith algorithm is well-known.
 - For unknown β , we develop the corresponding univariate Coppersmith algorithm.
- Our results are rigorous.
 - Due to the lack of heuristics in univariate Coppersmith algorithms.

Case 1: e is a prime number

- From $N = PQ^r$, the relation $e \mid \phi(N) \Leftrightarrow e \mid (P-1)(Q-1)$.
 - We can assume gcd(e, N) = 1. Otherwise, N is factorized easily.
- From prime $e \mid (P-1)(Q-1)$, we have $e \mid (Q-1)$ or $e \mid (P-1)$.
- We can write $e \mid (Q u)$, where 0 < u < e
 - If $e \mid (Q 1)$, then u = 1.
 - If $e \mid (P-1)$, then $u^r \equiv N \mod e$.
 - The u can be computed by the Adleman–Manders–Miller (AMM) algorithm.

- From $e \mid (P-1)(Q-1)$, there must be two factors of e, E_1 and E_2 , satisfying $e = E_1E_2$ such that $E_1 \mid (P-1)$ and $E_2 \mid (Q-1)$.
- In order for such tuple (E_1, E_2) to be enumerated in polynomial time,
 - we limit the number of prime factors of e to $O(\log \log N)$
- When such tuple (E_1, E_2) is found, we obtain $P = E_1k_1 + 1$ and $Q = E_2k_2 + 1$.
 - k_1, k_2 are unknown integers
 - $gcd(E_1, E_2) = 1$ because e is square-free

- From $P = E_1 k_1 + 1$ and $Q = E_2 k_2 + 1$, we derive $P = ex_0 + s$
 - x_0 is unknown, and s is known, with 0 < s < e and gcd(e, s) = 1
- According to division with remainder, we write $Q = ey_0 + u$, where 0 < u < e.
 - y₀, u are both unknown.
- From $N = PQ^r$, we get $u^r \equiv b \mod e$,
 - b can be calculated publicly.
- The current task is how to calculate u.
 - If r = 1, then u can be easily calculated.

- For r > 1, u can be calculated via AMM+CRT.
 - We write $e = e_1 e_2 \cdots e_n$
 - e_i 's are prime factors and n is the number of prime factors.
 - Then $u^r \equiv b \mod e_i$ for all $1 \leq i \leq n$.
 - Use the AMM algorithm to compute the root for $x^r \equiv b \mod e_i$.
 - Utilize the CRT algorithm to obtain u for $x^r \equiv b \mod e$.

Case 3: e is a general composite number

- Similar to Case 2, except for calculating $u^r \equiv b \mod e$ when r > 1.
- We use AMM+CRT+Hensel to obtain the *u*.
 - In addition to AMM and CRT, we also need Hensel lifting.

Outline

- ① The ϕ -Hiding Assumption
- 2 Our Main Results
- Technical Overview
- Partial Applications

Application to the ϕ -Hiding Assumption

Corollary

Let $N = PQ^r$ be a given integer with unknown factorization, where primes P, Q have the same bit-length, and $r \ge 1$. For any fixed $\varepsilon > 0$, let

$$e \geq N^{\frac{1}{(r+1)^2} + \varepsilon}$$

be a given prime. Then we can decide whether e divides $\phi(N)$ or not in polynomial time.

- For a standard RSA modulus N = PQ (r = 1), the bound $e > N^{\frac{1}{4}}$ is the same as previous results.
 - But our results can generalize the prime number *e* to the case of related composite numbers.
- For r > 1, our results have more advantages.

Application to the ϕ -Hiding Assumption

Table 2. Experimental results comparing with prior works. For integer $N=PQ^r$, primes P and Q have the same bit-length, and $e=N^{\gamma}$ is prime. The bounds in [39] are derived under the condition that e is expressed as e=rk+1 with $r\geq 1$, which implies $\gcd(r,e-1)=r$. Define "Bound" and "Dim." as in Table 1.

k, l_b, B_Q, B_P	Bound ([22], [26], [39], Ours)	r	,	Dim.
Theorem 1 20,20,300,300	(0.250, 0.250, 0.250, 0.250)	1	0.267	174
Theorem 1 20,20,300,300	(0.250, 0.250, 0.222, 0.111)	2	0.133	121
Theorem 1 20,20,300,300	(0.250, 0.250, 0.188, 0.062)	3	0.082	171
Theorem 1 20,20,300,300	(0.250, 0.250, 0.250, 0.250) (0.250, 0.250, 0.222, 0.111) (0.250, 0.250, 0.188, 0.062) (0.250, 0.250, 0.160, 0.040)	4	0.061	149

- For a standard RSA modulus N = PQ (r = 1), the bound $e > N^{\frac{1}{4}}$ is the same as previous results.
- For r > 1, our results are significantly better than those in [22,26,39].

Application to factoring RSA moduli

Corollary

Let N = PQ be a given semi-smooth RSA subgroup modulus. For any fixed $\varepsilon > 0$, let

$$e \geq N^{\frac{1}{4}+\varepsilon}$$

be a given integer with a known factorization such that $e \mid \phi(N)$, where the number of prime factors of e is $O(\log \log N)$. We can factorize N in time polynomial of $\log N$.

• For the first time, a rigorous proof for the Naccache-Stern bound is presented.

The ϕ -Hiding Assumption Our Main Results Technical Overview Partial Applications

Thank you for your attention