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Quantum Information in Cryptography

Extracting classical information from a quantum 
state can degrade it.

Is it possible to make this degradation inherent, for 
the benefit of quantum cryptography?

𝑠 ∈ 0,1 𝑛|𝜓⟩
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One-Shot Signatures
[Amos-Georgiou-Kiayias-Zhandry-20]

A box, sampling i.i.d. quantum digital signature tokens, 
which self-destruct after a single use.

Everyone has access to the box.

𝑣𝑘, 𝑚0, 𝜎𝑚0
, 𝑣𝑘, 𝑚1, 𝜎𝑚1

𝐴∗

poly-time

Computationally intractable for 𝑚0 ≠ 𝑚1
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Post-quantum Collision-Resistant Hash

𝐻

For computationally binding commitments we want:
If the adversary sends 𝑦, it is intractable for it choose 𝑥𝑏 later.

𝑥0

𝑥1
𝑦

For quantum 
adversaries:
The below is 
not known 

to be 
equivalent to 

collision 
resistance

The reason:
We generally 

cannot 
rewind 

quantum 
computers



[VDG-C-97], [Wat-02], [Kob-03], [D-F-S-04], [Wat-09], 
[Unr-12], [H-S-S-11], [L-N-11], [A-R-U-14], [B-J-S-W-16], 
[Unr-16a], [Unr-16b], [B-S-20], [C-M-S-Z-21], [L-M-S-
22], …

Quantum Rewinding is Hard
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• Initially, motivation purely came from understanding post-
quantum cryptography.

• [Zha-17]: A non-collapsing CRH is a powerful primitive for 
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Some of our Results

Theorem 1:
Relative to a classical oracle there exists a non-collapsing CRH 
unconditionally.

Theorem 2:
Assume,
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modulus ratio), and
• Sub-exponentially-secure One-Way Functions, and
• Sub-exponentially-secure iO for classical circuits.
Then, there exists a non-collapsing CRH in the standard model.
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𝑦 𝑦

𝑥1

𝑥𝑚

⋮

𝑥1

𝑥𝑚

⋮

Construct a CRH where the two cases above are distinguishable.

≈



Intuition for Constructing a Non-collapsing CRH

The Challenge (intuitively):

• Non-collapsing:

 Detecting a superposition publicly, without giving a description of 
the state, needs a highly structured set.

• Collision resistance: However, what makes a hash function 
collision resistant is the lack of predictable structure.
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The Challenge (intuitively):

• Non-collapsing:

Detecting a superposition publicly, without giving a description of 
the state, needs a highly structured set.

• Collision resistance:

However, what makes a hash function collision resistant is the lack 
of predictable structure of inputs.
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Our technique: 

A random permutation Π: 0,1 𝑛 → 0,1 𝑛 can be used to mediate 
between two requirements:

1. Unstructured, collision-resistant sets, and

2. Structured sets, detectable in quantum superposition.
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• Define two functions 𝐻, 𝐽: 0,1 𝑛 → 0,1
𝑛

2  :

Π 𝑥 ≔ 𝐻 𝑥 , ถ𝐽 𝑥

• 𝐻: 0,1 𝑛 → 0,1
𝑛

2   is simply a random 2𝑛/2-to-1 function.                          
⇒ 𝐻 is collision resistant.
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Intuition for Constructing a Non-collapsing CRH

𝑦

𝑥1

𝑥𝑚

⋮

𝐻

1. Compute 𝐻 in superposition and measure an output 𝑦.



Intuition for Constructing a Non-collapsing CRH

𝑦

𝑥1

𝑥𝑚

⋮

𝐻 𝑆𝑦

2. Given 𝑦, sample a secret sparse subspace 𝑆𝑦 ⊆ ℤ2
𝑘.



Intuition for Constructing a Non-collapsing CRH

3. Note 𝐽 𝑥 𝑥∈𝐻−1 𝑦 = 0,1 𝑛/2 . We can think of it as ℤ2
𝑛/2

.

These can be coordinate vectors for 𝑆𝑦 .

𝑦

𝑥1

𝑥𝑚

⋮

𝐻 𝑆𝑦



Intuition for Constructing a Non-collapsing CRH

𝑦

𝑥1

𝑥𝑚

⋮

4. We show how to move between 𝐻−1 𝑦  and 𝑆𝑦 reversibly, 

while keeping the collision resistance of 𝐻.

𝐻 𝑆𝑦



Intuition for Constructing a Non-collapsing CRH

5. By known techniques [A-C-12]: Superposition over 𝑆𝑦 can be detected  
publicly, without revealing it.

𝑦

𝑥1

𝑥𝑚

⋮

𝐻 𝑆𝑦



Intuition for Constructing a Non-collapsing CRH

In the paper: We show how to formalize these intuitions to get a 
Non-collapsing CRH in a classical oracle model.

𝑦

𝑥1

𝑥𝑚

⋮

𝐻 𝑆𝑦
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Obfuscating Pseudorandom Permutations

• In our standard model construction, 

➢We use a pseudorandom permutation (PRP) for Π.

➢We use iO to make the scheme public.

• The challenge: We need to obfuscate a PRP (open problem 
in classical cryptography, for at least a decade).

•We define a new notion: Permutable PRPs.

•Permutable PRPs allow: 𝑖𝑂 Π ≈𝑐 𝑖𝑂 Γ ∘ Π , for a known Γ.
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We show how to obfuscate a permutable PRP and make the circuit 
public, without revealing the PRP.

Theorem 3:

Assume,

• Sub-exponentially-secure One-Way Functions, and

• Sub-exponentially-secure iO for classical circuits.

Then, ∃ a trapdoor one-way permutation with domain 0,1 𝑛.
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1. What classes of permutations Γ can we permute by?

•We have 𝑖𝑂 Π ≈𝑐 𝑖𝑂 Γ ∘ Π  only if Γ is “decomposable”.

•A purely combinatorial question: What permutations Γ are 
decomposable?

2. Can we construct One-Shot Signatures (or even weaker 
primitives) without indistinguishability obfuscation?
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