On One-Shot Signatures, Quantum vs Classical Binding, & Obfuscation Permutations

Omri Shmueli

Mark Zhandry

Quantum Cryptography

Classical
Commitments with
Quantum Security

Post-quantum Cryptography

Can we Obfuscate Pseudorandom Permutations?

Classical Cryptography

Is it possible to construct a *one-time* signature token?

Clearly impossible in a classical world...

Is it possible to construct a one-time signature token?

Clearly impossible in a classical world...

Is it possible to construct a *one-time* signature token?

Clearly impossible in a classical world...

Quantum Information in Cryptography

Extracting classical information from a quantum state can degrade it.

Quantum Information in Cryptography

Extracting classical information from a quantum state can degrade it.

Quantum Information in Cryptography

Extracting classical information from a quantum state can degrade it.

Is it possible to make this degradation *inherent*, for the *benefit* of quantum cryptography?

[Amos-Georgiou-Kiayias-Zhandry-20]

[Amos-Georgiou-Kiayias-Zhandry-20]

A box, sampling i.i.d. quantum digital signature tokens, which self-destruct after a single use.

[Amos-Georgiou-Kiayias-Zhandry-20]

A box, sampling i.i.d. quantum digital signature tokens, which self-destruct after a single use.

[Amos-Georgiou-Kiayias-Zhandry-20]

A box, sampling i.i.d. quantum digital signature tokens, which self-destruct after a single use.

[Amos-Georgiou-Kiayias-Zhandry-20]

A box, sampling i.i.d. quantum digital signature tokens, which self-destruct after a single use.

[Amos-Georgiou-Kiayias-Zhandry-20]

A box, sampling i.i.d. quantum digital signature tokens, which self-destruct after a single use.

Everyone has access to the box.

vk, $|sk\rangle$

[Amos-Georgiou-Kiayias-Zhandry-20]

A box, sampling i.i.d. quantum digital signature tokens, which self-destruct after a single use.

[Amos-Georgiou-Kiayias-Zhandry-20]

A box, sampling i.i.d. quantum digital signature tokens, which self-destruct after a single use.

[Amos-Georgiou-Kiayias-Zhandry-20]

A box, sampling i.i.d. quantum digital signature tokens, which self-destruct after a single use.

Everyone has access to the box.

Security: Intractable to sign twice using the <u>same</u> key

[Amos-Georgiou-Kiayias-Zhandry-20]

A box, sampling i.i.d. quantum digital signature tokens, which self-destruct after a single use.

[Amos-Georgiou-Kiayias-Zhandry-20]

A box, sampling i.i.d. quantum digital signature tokens, which self-destruct after a single use.

[Amos-Georgiou-Kiayias-Zhandry-20]

A box, sampling i.i.d. quantum digital signature tokens, which self-destruct after a single use.

[Amos-Georgiou-Kiayias-Zhandry-20]

A box, sampling i.i.d. quantum digital signature tokens, which self-destruct after a single use.

[Amos-Georgiou-Kiayias-Zhandry-20]

A box, sampling i.i.d. quantum digital signature tokens, which self-destruct after a single use.

Everyone has access to the box.

Computationally intractable for $m_0 \neq m_1$

A master primitive in decentralization

- ➤ Cryptocurrency (based on PoW) without a blockchain [Zha-17].
- ➤ Blockchain-free smart contracts [Sat-22].
- ➤ Solves the Blockchain Scalability Problem [Col-Sat-20].
- >A perfect-finality solution to the double spending problem.
- ➤ A lot more applications for blockchains (see [Drake-23]).

A master primitive in decentralization

- ➤ Cryptocurrency (based on PoW) without a blockchain [Zha-17].
- ➤ Blockchain-free smart contracts [Sat-22].
- ➤ Solves the Blockchain Scalability Problem [Col-Sat-20].
- >A perfect-finality solution to the double spending problem.
- ➤ A lot more applications for blockchains (see [Drake-23]).
- Quantum cryptography with classical communication (!)

•

A master primitive in decentralization

- ➤ Cryptocurrency (based on PoW) without a blockchain [Zha-17].
- ➤ Blockchain-free smart contracts [Sat-22].
- ➤ Solves the Blockchain Scalability Problem [Col-Sat-20].
- >A perfect-finality solution to the double spending problem.
- ➤ A lot more applications for blockchains (see [Drake-23]).
- Quantum cryptography with classical communication (!)

•

We do not know of any other primitive in (quantum) cryptography that solves any of these problems

One-Shot Signatures – Previous Work

One-Shot Signatures – Previous Work

• Standard model constructions: No constructions under any (even non-standard) computational assumptions.

One-Shot Signatures – Previous Work

- Standard model constructions: No constructions under any (even non-standard) computational assumptions.
- Oracle model constructions:
 - ➤ [A-G-K-Z-20]: Suggested a construction in a classical oracle model, and a proof.

One-Shot Signatures – Previous Work

- Standard model constructions: No constructions under any (even non-standard) computational assumptions.
- Oracle model constructions:
 - ➤ [A-G-K-Z-20]: Suggested a construction in a classical oracle model, and a proof.
 - ➤ The proof was found to contain a fatal bug [Bar-23].

One-Shot Signatures – Previous Work

• Standard model constructions: No constructions under any (even non-standard) computational assumptions.

Oracle model constructions:

- ➤ [A-G-K-Z-20]: Suggested a construction in a classical oracle model, and a proof.
- ➤ The proof was found to contain a fatal bug [Bar-23].
- To date, the security of that construction remains unknown.

A Paradigm for Constructing One-Shot Signatures: Detour into Post-quantum Cryptography

Detour into Post-quantum Cryptography

[Unruh-15]:

Classical **commitments** that are <u>post-quantum computationally</u> <u>binding</u>, may nonetheless be "insecure" against quantum computers.

Detour into Post-quantum Cryptography

[Unruh-15]:

Classical **commitments** that are <u>post-quantum computationally</u> <u>binding</u>, may nonetheless be "insecure" against quantum computers.

Classical **hash functions** that are <u>post-quantum collision-resistant</u>, may nonetheless be "insecure" against quantum computers.

Computationally intractable to find $x_0 \neq x_1$ s.t. $H(x_0) = H(x_1)$, even for a quantum computer.

For computationally binding commitments we want: If the adversary sends y, it is intractable for it choose x_b later.

For computationally binding commitments we want:

For computationally binding commitments we want:

For computationally binding commitments we want:

For computationally binding commitments we want:

For computationally binding commitments we want:

Quantum Rewinding is Hard

```
[VDG-C-97], [Wat-02], [Kob-03], [D-F-S-04], [Wat-09], [Unr-12], [H-S-S-11], [L-N-11], [A-R-U-14], [B-J-S-W-16], [Unr-16a], [Unr-16b], [B-S-20], [C-M-S-Z-21], [L-M-S-22], ...
```

• What can a quantum adversary do with a CRH H?

• What can a quantum adversary do with a CRH H?

$$\sum_{x \in \{0,1\}^n} |x\rangle$$

What can a quantum adversary do with a CRH H?

$$\sum_{x \in \{0,1\}^n} |x\rangle \to \sum_{x \in \{0,1\}^n} |x\rangle |H(x)\rangle$$

What can a quantum adversary do with a CRH H?

$$\sum_{x \in \{0,1\}^n} |x\rangle \to \sum_{x \in \{0,1\}^n} |x\rangle |H(x)\rangle \to \sum_{x \in \{0,1\}^n : H(x) = y} |x\rangle, y.$$

What can a quantum adversary do with a CRH H?

$$\sum_{x \in \{0,1\}^n} |x\rangle \to \sum_{x \in \{0,1\}^n} |x\rangle |H(x)\rangle \to \sum_{x \in \{0,1\}^n : H(x) = y} |x\rangle, y.$$

• The adversary sends y as the commitment.

What can a quantum adversary do with a CRH H?

$$\sum_{x \in \{0,1\}^n} |x\rangle \to \sum_{x \in \{0,1\}^n} |x\rangle |H(x)\rangle \to \sum_{x \in \{0,1\}^n : H(x) = y} |x\rangle, y.$$

- The adversary sends y as the commitment.
- **The issue:** The adversary has $\sum_{x \in \{0,1\}^n : H(x) = y} |x\rangle$. Theoretically, could steer the superposition to a specific preimage x (e.g., that starts with a 0).

What can a quantum adversary do with a CRH H?

$$\sum_{x \in \{0,1\}^n} |x\rangle \to \sum_{x \in \{0,1\}^n} |x\rangle |H(x)\rangle \to \sum_{x \in \{0,1\}^n : H(x) = y} |x\rangle, y.$$

• [Unruh-15]: Defined collapsing hash functions.

What can a quantum adversary do with a CRH H?

$$\sum_{x \in \{0,1\}^n} |x\rangle \to \sum_{x \in \{0,1\}^n} |x\rangle |H(x)\rangle \to \sum_{x \in \{0,1\}^n : H(x) = y} |x\rangle, y.$$

- [Unruh-15]: Defined collapsing hash functions.
- For a collapsing $H: \sum_{x \in \{0,1\}^n: H(x)=y} |x\rangle \approx_c \{x: x \leftarrow H^{-1}(y)\}$.

What can a quantum adversary do with a CRH H?

$$\sum_{x \in \{0,1\}^n} |x\rangle \to \sum_{x \in \{0,1\}^n} |x\rangle |H(x)\rangle \to \sum_{x \in \{0,1\}^n : H(x) = y} |x\rangle, \frac{y}{x}.$$

- [Unruh-15]: Defined collapsing hash functions.
- For a collapsing $H: \sum_{x \in \{0,1\}^n: H(x)=y} |x\rangle \approx_c \{x: x \leftarrow H^{-1}(y)\}$.
- Plenty of constructions of **collapsing hash functions** in the standard model ([Unr-16], [L-Z-19], [Zha-22], [L-M-Z-23]).

- *H* is a CRH.
- D is a quantum algorithm that can detect superpositions of H:

- *H* is a CRH.
- D is a quantum algorithm that can detect superpositions of H:

$$\sum_{x \in \{0,1\}^n} |x\rangle$$

- *H* is a CRH.
- D is a quantum algorithm that can detect superpositions of H:

$$\sum_{x \in \{0,1\}^n} |x\rangle \to \sum_{x \in \{0,1\}^n} |x\rangle |H(x)\rangle$$

- *H* is a CRH.
- D is a quantum algorithm that can detect superpositions of H:

$$\sum_{x \in \{0,1\}^n} |x\rangle \to \sum_{x \in \{0,1\}^n} |x\rangle |H(x)\rangle \to \sum_{x \in \{0,1\}^n : H(x) = y} |x\rangle, y,$$

- *H* is a CRH.
- D is a quantum algorithm that can detect superpositions of H:

$$\sum_{x \in \{0,1\}^n} |x\rangle \to \sum_{x \in \{0,1\}^n} |x\rangle |H(x)\rangle \to \sum_{x \in \{0,1\}^n : H(x) = y} |x\rangle, \frac{y}{y},$$

$$\sum_{x \in \{0,1\}^n: H(x) = y} |x\rangle \not\approx \left\{x: x \leftarrow H^{-1}(y)\right\}$$

• Initially, motivation purely came from understanding postquantum cryptography.

- Initially, motivation purely came from understanding postquantum cryptography.
- [Zha-17]: A non-collapsing CRH is a powerful primitive for quantum cryptography!
- [Zha-17]: Non-collapsing CRH ⇒ Quantum Lightning.

- Initially, motivation purely came from understanding postquantum cryptography.
- [Zha-17]: A non-collapsing CRH is a powerful primitive for quantum cryptography!
- [Zha-17]: Non-collapsing CRH ⇒ Quantum Lightning .
- [Zha-17], [A-G-K-Z-20], [D-S-22]:
 Non-collapsing CRH ⇒ One-Shot Signatures .
 - (+ collapsing is **necessary** for post-quantum binding)

Some of our Results

Theorem 1:

Relative to a classical oracle there exists a non-collapsing CRH unconditionally.

Theorem 1:

Relative to a classical oracle there exists a non-collapsing CRH unconditionally.

Theorem 2:

Assume,

Polynomial hardness of LWE (with sub-exponential noise-to-modulus ratio), and

Theorem 1:

Relative to a classical oracle there exists a non-collapsing CRH unconditionally.

Theorem 2:

Assume,

- Polynomial hardness of LWE (with sub-exponential noise-to-modulus ratio), and
- Sub-exponentially-secure One-Way Functions, and

Theorem 1:

Relative to a classical oracle there exists a non-collapsing CRH unconditionally.

Theorem 2:

Assume,

- Polynomial hardness of LWE (with sub-exponential noise-to-modulus ratio), and
- Sub-exponentially-secure One-Way Functions, and
- Sub-exponentially-secure iO for classical circuits.

Theorem 1:

Relative to a classical oracle there exists a non-collapsing CRH unconditionally.

Theorem 2:

Assume,

- Polynomial hardness of LWE (with sub-exponential noise-to-modulus ratio), and
- Sub-exponentially-secure One-Way Functions, and
- Sub-exponentially-secure iO for classical circuits.

Then, there exists a non-collapsing CRH in the standard model.

Construct a CRH where the two cases above are distinguishable.

The Challenge (intuitively):

Non-collapsing:

Collision resistance:

The Challenge (intuitively):

Non-collapsing:

Detecting a superposition publicly, without giving a description of the state, needs a highly structured set.

Collision resistance:

The Challenge (intuitively):

Non-collapsing:

Detecting a superposition publicly, without giving a description of the state, needs a highly structured set.

Collision resistance:

However, what makes a hash function collision resistant is the <u>lack</u> of predictable structure of inputs.

Our technique:

A random permutation $\Pi: \{0,1\}^n \to \{0,1\}^n$ can be used to mediate between two requirements:

Our technique:

A random permutation $\Pi: \{0,1\}^n \to \{0,1\}^n$ can be used to mediate between two requirements:

- 1. Unstructured, collision-resistant sets, and
- 2. Structured sets, detectable in quantum superposition.

Our technique:

• Let $\Pi: \{0,1\}^n \to \{0,1\}^n$ a random permutation.

Our technique:

- Let $\Pi: \{0,1\}^n \to \{0,1\}^n$ a random permutation.
- Define two functions $H, J: \{0,1\}^n \to \{0,1\}^{\frac{n}{2}}$:

$$\Pi(x) := \left(\underbrace{H(x)}_{n \text{ bits}}, \underbrace{J(x)}_{n \text{ bits}}\right)$$

Our technique:

- Let $\Pi: \{0,1\}^n \to \{0,1\}^n$ a random permutation.
- Define two functions $H, J: \{0,1\}^n \to \{0,1\}^{\frac{n}{2}}$:

$$\Pi(x) := \left(\underbrace{H(x)}_{n \text{ bits}}, \underbrace{J(x)}_{n \text{ bits}}\right)$$

• $H: \{0,1\}^n \to \{0,1\}^{\frac{n}{2}}$ is simply a random $2^{n/2}$ -to-1 function. $\Rightarrow H$ is collision resistant.

Our technique:

- Let $\Pi: \{0,1\}^n \to \{0,1\}^n$ a random permutation.
- Define two functions $H, J: \{0,1\}^n \to \{0,1\}^{\frac{n}{2}}$:

$$\Pi(x) := \left(\underbrace{H(x)}_{n \text{ bits}}, \underbrace{J(x)}_{n \text{ bits}}\right)$$

• $H: \{0,1\}^n \to \{0,1\}^{\frac{n}{2}}$ is simply a random $2^{n/2}$ -to-1 function. $\Rightarrow H$ is collision resistant.

Non-collapsing: How to detect superpositions of preimages of H?

1. Compute H in superposition and measure an output y.

2. Given y, sample a secret sparse subspace $S_y \subseteq \mathbb{Z}_2^k$.

3. Note $\{J(x)\}_{x\in H^{-1}(y)}=\{0,1\}^{n/2}$. We can think of it as $\mathbb{Z}_2^{n/2}$. These can be coordinate vectors for S_y .

4. We show how to move between $H^{-1}(y)$ and S_y reversibly, while keeping the collision resistance of H.

5. By known techniques [A-C-12]: Superposition over S_y can be detected publicly, without revealing it.

In the paper: We show how to formalize these intuitions to get a Non-collapsing CRH in a classical oracle model.

- In our standard model construction,
 - \triangleright We use a pseudorandom permutation (PRP) for Π .
 - ➤ We use iO to make the scheme public.

- In our standard model construction,
 - \triangleright We use a pseudorandom permutation (PRP) for Π .
 - > We use iO to make the scheme public.
- The challenge: We need to obfuscate a PRP (open problem in classical cryptography, for at least a decade).

- In our standard model construction,
 - \triangleright We use a pseudorandom permutation (PRP) for Π .
 - > We use iO to make the scheme public.
- The challenge: We need to obfuscate a PRP (open problem in classical cryptography, for at least a decade).
- We define a new notion: Permutable PRPs.
- Permutable PRPs allow: $iO(\Pi) \approx_c iO(\Gamma \circ \Pi)$, for a known Γ .

We show how to obfuscate a permutable PRP and make the circuit public, without revealing the PRP.

We show how to obfuscate a permutable PRP and make the circuit public, without revealing the PRP.

Theorem 3:

Assume,

- Sub-exponentially-secure One-Way Functions, and
- Sub-exponentially-secure iO for classical circuits.

Then, \exists a trapdoor one-way permutation with domain $\{0,1\}^n$.

1. What classes of permutations Γ can we permute by?

- 1. What classes of permutations Γ can we permute by?
- We have $iO(\Pi) \approx_c iO(\Gamma \circ \Pi)$ only if Γ is "decomposable".

- 1. What classes of permutations Γ can we permute by?
- We have $iO(\Pi) \approx_c iO(\Gamma \circ \Pi)$ only if Γ is "decomposable".
- A purely combinatorial question: What permutations Γ are decomposable?

- 1. What classes of permutations Γ can we permute by?
- We have $iO(\Pi) \approx_c iO(\Gamma \circ \Pi)$ only if Γ is "decomposable".
- A purely combinatorial question: What permutations Γ are decomposable?

2. Can we construct One-Shot Signatures (or even weaker primitives) without indistinguishability obfuscation?

Questions?