
Multi-Holder Anonymous Credentials
from BBS Signatures

Andrea Flamini Eysa Lee Anna Lysyanskaya

1 / 17

Anonymous Credentials (ACs)[Cha83, CL01]

Privacy preserving digital credentials whose authorship can be cryptographically verified

Issuer
(Identity Provider)

Holder
(User)

Verifier
(Service Provider)

Issue ACPresent AC

Trust

Verifier 2

Present AC

Verifier 3

Present AC

Multiple presentations
are unlinkable!

The EUDI Wallet should “enable privacy preserving techniques which ensure unlinkability,
where the attestation of attributes does not require the identification of the user”

2 / 17

Anonymous Credentials (ACs)[Cha83, CL01]

Privacy preserving digital credentials whose authorship can be cryptographically verified

Issuer
(Identity Provider)

Holder
(User)

Verifier
(Service Provider)

Issue ACPresent AC

Trust

Verifier 2

Present AC

Verifier 3

Present AC

Multiple presentations
are unlinkable!

The EUDI Wallet should “enable privacy preserving techniques which ensure unlinkability,
where the attestation of attributes does not require the identification of the user”

2 / 17

Anonymous Credentials (ACs)[Cha83, CL01]

Privacy preserving digital credentials whose authorship can be cryptographically verified

Issuer
(Identity Provider)

Holder
(User)

Verifier
(Service Provider)

Issue AC

Present AC

Trust

Verifier 2

Present AC

Verifier 3

Present AC

Multiple presentations
are unlinkable!

The EUDI Wallet should “enable privacy preserving techniques which ensure unlinkability,
where the attestation of attributes does not require the identification of the user”

2 / 17

Anonymous Credentials (ACs)[Cha83, CL01]

Privacy preserving digital credentials whose authorship can be cryptographically verified

Issuer
(Identity Provider)

Holder
(User)

Verifier
(Service Provider)

Issue ACPresent AC

Trust

Verifier 2

Present AC

Verifier 3

Present AC

Multiple presentations
are unlinkable!

The EUDI Wallet should “enable privacy preserving techniques which ensure unlinkability,
where the attestation of attributes does not require the identification of the user”

2 / 17

Anonymous Credentials (ACs)[Cha83, CL01]

Privacy preserving digital credentials whose authorship can be cryptographically verified

Issuer
(Identity Provider)

Holder
(User)

Verifier
(Service Provider)

Issue ACPresent AC

Trust

Verifier 2

Present AC

Verifier 3

Present AC

Multiple presentations
are unlinkable!

The EUDI Wallet should “enable privacy preserving techniques which ensure unlinkability,
where the attestation of attributes does not require the identification of the user”

2 / 17

Anonymous Credentials (ACs)[Cha83, CL01]

Privacy preserving digital credentials whose authorship can be cryptographically verified

Issuer
(Identity Provider)

Holder
(User)

Verifier
(Service Provider)

Issue ACPresent AC

Trust

Verifier 2

Present AC

Verifier 3

Present AC

Multiple presentations
are unlinkable!

The EUDI Wallet should “enable privacy preserving techniques which ensure unlinkability,
where the attestation of attributes does not require the identification of the user”

2 / 17

Anonymous Credentials (ACs)[Cha83, CL01]

Privacy preserving digital credentials whose authorship can be cryptographically verified

Issuer
(Identity Provider)

Holder
(User)

Verifier
(Service Provider)

Issue ACPresent AC

Trust

Verifier 2

Present AC

Verifier 3

Present AC

Multiple presentations
are unlinkable!

The EUDI Wallet should “enable privacy preserving techniques which ensure unlinkability,
where the attestation of attributes does not require the identification of the user”

2 / 17

Anonymous Credentials (ACs)[Cha83, CL01]

Privacy preserving digital credentials whose authorship can be cryptographically verified

Issuer
(Identity Provider)

Holder
(User)

Verifier
(Service Provider)

Issue ACPresent AC

Trust

Verifier 2

Present AC

Verifier 3

Present AC

Multiple presentations
are unlinkable!

The EUDI Wallet should “enable privacy preserving techniques which ensure unlinkability,
where the attestation of attributes does not require the identification of the user”

2 / 17

The CL Framework [CL02]

A signature scheme with efficient NIZKPoK

Verifier

Holder

Issuer (skIss, pkIss)

σ
$←− Sign((a1, . . . , am), skIss)

cred = σ, {ai}i∈[m]

cred

π
$←− NIZKP(cred︸︷︷︸

witness

, {ai}i∈Rev, pkIss︸ ︷︷ ︸
statement

)
Attributes revealed to the verifier

pkIss, {ai}i∈Rev, π

pres

Trust

3 / 17

The CL Framework [CL02]

A signature scheme with efficient NIZKPoK

Verifier

Holder

Issuer (skIss, pkIss)

σ
$←− Sign((a1, . . . , am), skIss)

cred = σ, {ai}i∈[m]

cred

π
$←− NIZKP(cred︸︷︷︸

witness

, {ai}i∈Rev, pkIss︸ ︷︷ ︸
statement

)
Attributes revealed to the verifier

pkIss, {ai}i∈Rev, π

pres

Trust

3 / 17

The CL Framework [CL02]

A signature scheme with efficient NIZKPoK

Verifier

Holder

Issuer (skIss, pkIss)

σ
$←− Sign((a1, . . . , am), skIss)

cred = σ, {ai}i∈[m]

cred

π
$←− NIZKP(cred︸︷︷︸

witness

, {ai}i∈Rev, pkIss︸ ︷︷ ︸
statement

)
Attributes revealed to the verifier

pkIss, {ai}i∈Rev, π

pres

Trust

3 / 17

The CL Framework [CL02]

A signature scheme with efficient NIZKPoK

Verifier

Holder

Issuer (skIss, pkIss)

σ
$←− Sign((a1, . . . , am), skIss)

cred = σ, {ai}i∈[m]

cred

π
$←− NIZKP(cred︸︷︷︸

witness

, {ai}i∈Rev, pkIss︸ ︷︷ ︸
statement

)
Attributes revealed to the verifier

pkIss, {ai}i∈Rev, π

pres

Trust

3 / 17

The CL Framework [CL02]

A signature scheme with efficient NIZKPoK

Verifier

Holder

Issuer (skIss, pkIss)

σ
$←− Sign((a1, . . . , am), skIss)

cred = σ, {ai}i∈[m]

cred

π
$←− NIZKP(cred︸︷︷︸

witness

, {ai}i∈Rev, pkIss︸ ︷︷ ︸
statement

)
Attributes revealed to the verifier

pkIss, {ai}i∈Rev, π

pres

Trust

3 / 17

The CL Framework [CL02]

A signature scheme with efficient NIZKPoK

Verifier

Holder

Issuer (skIss, pkIss)

σ
$←− Sign((a1, . . . , am), skIss)

cred = σ, {ai}i∈[m]

cred

π
$←− NIZKP(cred︸︷︷︸

witness

, {ai}i∈Rev, pkIss︸ ︷︷ ︸
statement

)
Attributes revealed to the verifier

pkIss, {ai}i∈Rev, π

pres

Trust

3 / 17

Multi-Holder Anonymous Credentials (MHAC)
(Our first contribution)

4 / 17

Motivation and Intuition
Increase the security of storage of anonymous credentials to prevent identity theft

Trust

Issuer (skIss, pkIss)

Holders

Verifier

cred

cred3

cred1
cred2

π
$←− NIZKP(cred, pkIss, {ai}i∈Rev)

pkIss, {ai}i∈Rev, π

pres

5 / 17

Motivation and Intuition
Increase the security of storage of anonymous credentials to prevent identity theft

Trust

Issuer (skIss, pkIss)

Holders

Verifier

cred

cred3

cred1
cred2

π
$←− NIZKP(cred, pkIss, {ai}i∈Rev)

pkIss, {ai}i∈Rev, π

pres

5 / 17

Motivation and Intuition
Increase the security of storage of anonymous credentials to prevent identity theft

Trust

Issuer (skIss, pkIss)

Holders

Verifier cred

cred3

cred1
cred2

π
$←− NIZKP(cred, pkIss, {ai}i∈Rev)

pkIss, {ai}i∈Rev, π

pres

5 / 17

Motivation and Intuition
Increase the security of storage of anonymous credentials to prevent identity theft

Trust

Issuer (skIss, pkIss)

Holders

Verifier cred

cred3

cred1
cred2

π
$←− NIZKP(cred, pkIss, {ai}i∈Rev)

pkIss, {ai}i∈Rev, π

pres

5 / 17

Motivation and Intuition
Increase the security of storage of anonymous credentials to prevent identity theft

Trust

Issuer (skIss, pkIss)

Holders

Verifier cred

cred3

cred1
cred2

π
$←− NIZKP(cred, pkIss, {ai}i∈Rev)

pkIss, {ai}i∈Rev, π

pres

5 / 17

Motivation and Intuition
Increase the security of storage of anonymous credentials to prevent identity theft

Trust

Issuer (skIss, pkIss)

Holders

Verifier cred

cred3

cred1
cred2

π
$←− NIZKP(cred, pkIss, {ai}i∈Rev)

pkIss, {ai}i∈Rev, π

pres

5 / 17

Security and Privacy Properties

Correctness

Unlinkability

Unforgeability of presentations

Standard properties for AC

adapted for MHAC

Identifiable abort

Unforgeability of presentations

6 / 17

Security and Privacy Properties

Correctness

Unlinkability

Unforgeability of presentations

Standard properties for AC

adapted for MHAC

Identifiable abort

Unforgeability of presentations

6 / 17

Security and Privacy Properties

Correctness

Unlinkability

Unforgeability of presentations

Standard properties for AC

adapted for MHAC

Identifiable abort

Unforgeability of presentations

6 / 17

Security and Privacy Properties

Correctness

Unlinkability

Unforgeability of presentations

Standard properties for AC

adapted for MHAC

Identifiable abort

Unforgeability of presentations

6 / 17

Security and Privacy Properties

Correctness

Unlinkability

Unforgeability of presentations

Standard properties for AC

adapted for MHAC

Identifiable abort

Unforgeability of presentations

6 / 17

Security and Privacy Properties

Correctness

Unlinkability

Unforgeability of presentations

Standard properties for AC

adapted for MHAC

Identifiable abort

Unforgeability of presentations

6 / 17

Security and Privacy Properties

Correctness

Unlinkability

Unforgeability of presentations

Standard properties for AC

adapted for MHAC

Identifiable abort

Unforgeability of presentations

6 / 17

Security and Privacy Properties

Correctness

Unlinkability

Unforgeability of presentations

Standard properties for AC

adapted for MHAC

Identifiable abort

Unforgeability of presentations

6 / 17

Unforgeability Experiment

ChallengerAdversary

Setup

pp, pkIss

Training
issuance queries

full
credential

partial
target credential

Presentation queries
and execution

Forgery phase
pres⋆ = (pk, {ai}i∈Rev, π) 0/1

7 / 17

Unforgeability Experiment

ChallengerAdversary

Setup

pp, pkIss

Training
issuance queries

full
credential

partial
target credential

Presentation queries
and execution

Forgery phase
pres⋆ = (pk, {ai}i∈Rev, π) 0/1

7 / 17

Unforgeability Experiment

ChallengerAdversary

Setup

pp, pkIss

Training
issuance queries

full
credential

partial
target credential

Presentation queries
and execution

Forgery phase
pres⋆ = (pk, {ai}i∈Rev, π) 0/1

7 / 17

Unforgeability Experiment

ChallengerAdversary

Setup

pp, pkIss

Training

issuance queries

full
credential

partial
target credential

Presentation queries
and execution

Forgery phase
pres⋆ = (pk, {ai}i∈Rev, π) 0/1

7 / 17

Unforgeability Experiment

ChallengerAdversary

Setup

pp, pkIss

Training
issuance queries

full
credential

partial
target credential

Presentation queries
and execution

Forgery phase
pres⋆ = (pk, {ai}i∈Rev, π) 0/1

7 / 17

Unforgeability Experiment

ChallengerAdversary

Setup

pp, pkIss

Training
issuance queries

full
credential

partial

target credential

Presentation queries
and execution

Forgery phase
pres⋆ = (pk, {ai}i∈Rev, π) 0/1

7 / 17

Unforgeability Experiment

ChallengerAdversary

Setup

pp, pkIss

Training
issuance queries

full
credential

partial
target credential

Presentation queries
and execution

Forgery phase
pres⋆ = (pk, {ai}i∈Rev, π) 0/1

7 / 17

Unforgeability Experiment

ChallengerAdversary

Setup

pp, pkIss

Training
issuance queries

full
credential

partial
target credential

Presentation queries
and execution

Forgery phase
pres⋆ = (pk, {ai}i∈Rev, π) 0/1

7 / 17

Unforgeability Experiment

ChallengerAdversary

Setup

pp, pkIss

Training
issuance queries

full
credential

partial
target credential

Presentation queries
and execution

Forgery phase
pres⋆ = (pk, {ai}i∈Rev, π) 0/1

7 / 17

Unforgeability Experiment

ChallengerAdversary

Setup

pp, pkIss

Training
issuance queries

full
credential

partial
target credential

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π) 0/1

7 / 17

Unforgeability Experiment

ChallengerAdversary

Setup

pp, pkIss

Training
issuance queries

full
credential

partial
target credential

Presentation queries
and execution

Forgery phase
pres⋆ = (pk, {ai}i∈Rev, π)

0/1

7 / 17

Unforgeability Experiment

ChallengerAdversary

Setup

pp, pkIss

Training
issuance queries

full
credential

partial
target credential

Presentation queries
and execution

Forgery phase
pres⋆ = (pk, {ai}i∈Rev, π) 0/1

7 / 17

BBS Anonymous Credentials

8 / 17

BBS Anonymous Credentials

Why BBS?

multi-message signature
compact public keys
efficient signature and NIZKP

[BBS04, CL04]
[ASM06]

[CDL16]
[LKWL22]

[TZ23, DKL+23, HSS23]

[FLL24]
[DDKT25]

2004 2006 2016 2022 2024

Standardization effort by DIF and IRTF

9 / 17

BBS Issuance
(For a single attribute a1)

Setup
p-order groups G1 = ⟨g1⟩,G2 = ⟨g2⟩, GT , and pairing e : G1 ×G2 → GT

pp = h1
$←− G1 x

$←− Zp (skIss, pkIss)← (x, gx
2)

Issuance
C(a1)← g1ha1

1 e
$←− Zp A← (C(a1))

1
x+e

cred← ((A, e)︸ ︷︷ ︸
BBS signature

, a1)

10 / 17

BBS Issuance
(For a single attribute a1)

Setup
p-order groups G1 = ⟨g1⟩,G2 = ⟨g2⟩, GT , and pairing e : G1 ×G2 → GT

pp = h1
$←− G1 x

$←− Zp (skIss, pkIss)← (x, gx
2)

Issuance
C(a1)← g1ha1

1 e
$←− Zp A← (C(a1))

1
x+e

cred← ((A, e)︸ ︷︷ ︸
BBS signature

, a1)

10 / 17

BBS Issuance
(For a single attribute a1)

Setup
p-order groups G1 = ⟨g1⟩,G2 = ⟨g2⟩, GT , and pairing e : G1 ×G2 → GT

pp = h1
$←− G1 x

$←− Zp (skIss, pkIss)← (x, gx
2)

Issuance
C(a1)← g1ha1

1 e
$←− Zp A← (C(a1))

1
x+e

cred← ((A, e)︸ ︷︷ ︸
BBS signature

, a1)

10 / 17

BBS Issuance
(For a single attribute a1)

Setup
p-order groups G1 = ⟨g1⟩,G2 = ⟨g2⟩, GT , and pairing e : G1 ×G2 → GT

pp = h1
$←− G1 x

$←− Zp (skIss, pkIss)← (x, gx
2)

Issuance
C(a1)← g1ha1

1 e
$←− Zp A← (C(a1))

1
x+e

cred← ((A, e)︸ ︷︷ ︸
BBS signature

, a1)

10 / 17

BBS Presentation[TZ23]
(full disclosure)

Presentation for (pkIss, a1) of cred = ((A, e), a1)

signature randomization: r
$←− Zp

A← Ar B ← C(a1)rA
−e

(U, ch, zr, ze) $←− NIZKPoK
{

(α, β) : B = C(a1)αA
β}

π ← (A, B, U, ch, zr, ze)

C(a1) = g1ha1
1

cred = ((A, e), a1) pkIss, a1

A, B, U

ch

zr, ze

pres← (π, a1, pkIss︸ ︷︷ ︸
statement

)

11 / 17

BBS Presentation[TZ23]
(full disclosure)

Presentation for (pkIss, a1) of cred = ((A, e), a1)

signature randomization: r
$←− Zp

A← Ar B ← C(a1)rA
−e

(U, ch, zr, ze) $←− NIZKPoK
{

(α, β) : B = C(a1)αA
β}

π ← (A, B, U, ch, zr, ze)

C(a1) = g1ha1
1

cred = ((A, e), a1) pkIss, a1

A, B, U

ch

zr, ze

pres← (π, a1, pkIss︸ ︷︷ ︸
statement

)

11 / 17

BBS Presentation[TZ23]
(full disclosure)

Presentation for (pkIss, a1) of cred = ((A, e), a1)

signature randomization: r
$←− Zp

A← Ar B ← C(a1)rA
−e

(U, ch, zr, ze) $←− NIZKPoK
{

(α, β) : B = C(a1)αA
β}

π ← (A, B, U, ch, zr, ze)

C(a1) = g1ha1
1

cred = ((A, e), a1) pkIss, a1

A, B, U

ch

zr, ze

pres← (π, a1, pkIss︸ ︷︷ ︸
statement

)

11 / 17

BBS Presentation[TZ23]
(full disclosure)

Presentation for (pkIss, a1) of cred = ((A, e), a1)

signature randomization: r
$←− Zp

A← Ar B ← C(a1)rA
−e

(U, ch, zr, ze) $←− NIZKPoK
{

(α, β) : B = C(a1)αA
β}

π ← (A, B, U, ch, zr, ze)

C(a1) = g1ha1
1

cred = ((A, e), a1) pkIss, a1

A, B, U

ch

zr, ze

pres← (π, a1, pkIss︸ ︷︷ ︸
statement

)

11 / 17

A MHAC compatible with BBS
(Our second contribution)

12 / 17

BBS MHAC Issuance

Generate a BBS credential cred = (A, e), a1

Divide it in shares:

{ei}i∈[n]
$←− SS(t, n, e)

e is never
revealed!

credi ← (ei, A, Ae, {Aei}i∈[n], a1︸ ︷︷ ︸
same for every holder

)

Crucial observation: giving to each holder Ae is just fine!

enables the identifiable abort property

simplifies the presentation protocol

can be made constant size

13 / 17

BBS MHAC Issuance
Generate a BBS credential cred = (A, e), a1

Divide it in shares:

{ei}i∈[n]
$←− SS(t, n, e)

e is never
revealed!

credi ← (ei, A, Ae, {Aei}i∈[n], a1︸ ︷︷ ︸
same for every holder

)

Crucial observation: giving to each holder Ae is just fine!

enables the identifiable abort property

simplifies the presentation protocol

can be made constant size

13 / 17

BBS MHAC Issuance
Generate a BBS credential cred = (A, e), a1

Divide it in shares:

{ei}i∈[n]
$←− SS(t, n, e)

e is never
revealed!

credi ← (ei, A, Ae, {Aei}i∈[n], a1︸ ︷︷ ︸
same for every holder

)

Crucial observation: giving to each holder Ae is just fine!

enables the identifiable abort property

simplifies the presentation protocol

can be made constant size

13 / 17

BBS MHAC Issuance
Generate a BBS credential cred = (A, e), a1

Divide it in shares:

{ei}i∈[n]
$←− SS(t, n, e)

e is never
revealed!

credi ← (ei, A, Ae, {Aei}i∈[n], a1︸ ︷︷ ︸
same for every holder

)

Crucial observation: giving to each holder Ae is just fine!

enables the identifiable abort property

simplifies the presentation protocol

can be made constant size

13 / 17

BBS MHAC Issuance
Generate a BBS credential cred = (A, e), a1

Divide it in shares:

{ei}i∈[n]
$←− SS(t, n, e)

e is never
revealed!

credi ← (ei, A, Ae, {Aei}i∈[n], a1︸ ︷︷ ︸
same for every holder

)

Crucial observation: giving to each holder Ae is just fine!

enables the identifiable abort property

simplifies the presentation protocol

can be made constant size

13 / 17

BBS MHAC Issuance
Generate a BBS credential cred = (A, e), a1

Divide it in shares:

{ei}i∈[n]
$←− SS(t, n, e)

e is never
revealed!

credi ← (ei, A, Ae, {Aei}i∈[n], a1︸ ︷︷ ︸
same for every holder

)

Crucial observation: giving to each holder Ae is just fine!

enables the identifiable abort property

simplifies the presentation protocol

can be made constant size

13 / 17

BBS MHAC Issuance
Generate a BBS credential cred = (A, e), a1

Divide it in shares:

{ei}i∈[n]
$←− SS(t, n, e)

e is never
revealed!

credi ← (ei, A, Ae, {Aei}i∈[n], a1︸ ︷︷ ︸
same for every holder

)

Crucial observation: giving to each holder Ae is just fine!

enables the identifiable abort property

simplifies the presentation protocol

can be made constant size

13 / 17

BBS MHAC Issuance
Generate a BBS credential cred = (A, e), a1

Divide it in shares:

{ei}i∈[n]
$←− SS(t, n, e)

e is never
revealed!

credi ← (ei, A, Ae, {Aei}i∈[n], a1︸ ︷︷ ︸
same for every holder

)

Crucial observation: giving to each holder Ae is just fine!

enables the identifiable abort property

simplifies the presentation protocol

can be made constant size

13 / 17

BBS MHAC Issuance
Generate a BBS credential cred = (A, e), a1

Divide it in shares:

{ei}i∈[n]
$←− SS(t, n, e)

e is never
revealed!

credi ← (ei, A, Ae, {Aei}i∈[n], a1︸ ︷︷ ︸
same for every holder

)

Crucial observation: giving to each holder Ae is just fine!

enables the identifiable abort property

simplifies the presentation protocol

can be made constant size

13 / 17

BBS MHAC Issuance
Generate a BBS credential cred = (A, e), a1

Divide it in shares:

{ei}i∈[n]
$←− SS(t, n, e)

e is never
revealed!

credi ← (ei, A, Ae, {Aei}i∈[n], a1︸ ︷︷ ︸
same for every holder

)

Crucial observation: giving to each holder Ae is just fine!

enables the identifiable abort property

simplifies the presentation protocol

can be made constant size

13 / 17

BBS MHAC Presentation protocol

14 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1) cred ← ((A, e), a1)

C
en

tr
al

is
ed

ca
se

M
u

lt
i-

h
ol

d
er

ca
se

r
$
←− Zp r

$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B A, B = (Ar, (C(a1)rA
−e))

= (Ar, (C(a1)A−e)r)

B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze) pres ← (A, B, nonce, a1, ch, zr, ze)

15 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1) cred ← ((A, e), a1)

C
en

tr
al

is
ed

ca
se

M
u

lt
i-

h
ol

d
er

ca
se

r
$
←− Zp r

$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B A, B = (Ar, (C(a1)rA
−e))

= (Ar, (C(a1)A−e)r)

B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze) pres ← (A, B, nonce, a1, ch, zr, ze)

15 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1) cred ← ((A, e), a1)

C
en

tr
al

is
ed

ca
se

M
u

lt
i-

h
ol

d
er

ca
se

r
$
←− Zp r

$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B A, B = (Ar, (C(a1)rA
−e))

= (Ar, (C(a1)A−e)r)

B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze) pres ← (A, B, nonce, a1, ch, zr, ze)

15 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1) cred ← ((A, e), a1)

C
en

tr
al

is
ed

ca
se

M
u

lt
i-

h
ol

d
er

ca
se

r
$
←− Zp r

$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B A, B = (Ar, (C(a1)rA
−e))

= (Ar, (C(a1)A−e)r)

B =
∏

i∈[n]
B̃i

Re-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze) pres ← (A, B, nonce, a1, ch, zr, ze)

15 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1) cred ← ((A, e), a1)

C
en

tr
al

is
ed

ca
se

M
u

lt
i-

h
ol

d
er

ca
se

r
$
←− Zp r

$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B A, B = (Ar, (C(a1)rA
−e))

= (Ar, (C(a1)A−e)r)

B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze) pres ← (A, B, nonce, a1, ch, zr, ze)

15 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1) cred ← ((A, e), a1)

C
en

tr
al

is
ed

ca
se

M
u

lt
i-

h
ol

d
er

ca
se

r
$
←− Zp r

$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B A, B = (Ar, (C(a1)rA
−e))

= (Ar, (C(a1)A−e)r)

B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze) pres ← (A, B, nonce, a1, ch, zr, ze)

15 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1) cred ← ((A, e), a1)

C
en

tr
al

is
ed

ca
se

M
u

lt
i-

h
ol

d
er

ca
se

r
$
←− Zp r

$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B A, B = (Ar, (C(a1)rA
−e))

= (Ar, (C(a1)A−e)r)

B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze) pres ← (A, B, nonce, a1, ch, zr, ze)

15 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1)

r
$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze)

Unforgeability reduces to DL assumption
(When the adversary forges the target credential)

Adversary DL challengerReduction

Setup

g, hpp , pkIss

skIss
Training

issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

16 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1)

r
$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze)

Unforgeability reduces to DL assumption
(When the adversary forges the target credential)

Adversary DL challengerReduction

Setup

g, h

pp , pkIss

skIss
Training

issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

16 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1)

r
$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze)

Unforgeability reduces to DL assumption
(When the adversary forges the target credential)

Adversary DL challengerReduction

Setup

g, hpp , pkIss

skIss

Training
issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

16 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1)

r
$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze)

Unforgeability reduces to DL assumption
(When the adversary forges the target credential)

Adversary DL challengerReduction

Setup

g, hpp , pkIss

skIss
Training

issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

16 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1)

r
$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze)

Unforgeability reduces to DL assumption
(When the adversary forges the target credential)

Adversary DL challengerReduction

Setup

g, hpp , pkIss

skIss
Training

issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

16 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1)

r
$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze)

Unforgeability reduces to DL assumption
(When the adversary forges the target credential)

Adversary DL challengerReduction

Setup

g, hpp , pkIss

skIss
Training

issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

16 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1)

r
$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze)

Unforgeability reduces to DL assumption
(When the adversary forges the target credential)

Adversary DL challengerReduction

Setup

g, hpp , pkIss

skIss
Training

issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

16 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1)

r
$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze)

Unforgeability reduces to DL assumption
(When the adversary forges the target credential)

Adversary DL challengerReduction

Setup

g, hpp , pkIss

skIss
Training

issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

16 / 17

credi ← (A, ei, Ae, {A
ej }j∈[n], a1)

r
$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e)r

A, B B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze)

Unforgeability reduces to DL assumption
(When the adversary forges the target credential)

Adversary DL challengerReduction

Setup

g, hpp , pkIss

skIss
Training

issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

16 / 17

Thank you for your attention!
to Eysa Lee for the Alice-and-Bobs illustrations

https://github.com/eysalee/alice-and-bobs/tree/main

and to the QUBIP European project for funding my trip here

17 / 17

https://github.com/eysalee/alice-and-bobs/tree/main

Man Ho Au, Willy Susilo, and Yi Mu.
Constant-size dynamic k-TAA.
In SCN 2006, volume 4116 of LNCS, pages 111–125, 2006.

Dan Boneh, Xavier Boyen, and Hovav Shacham.
Short group signatures.
In Annual international cryptology conference, pages 41–55. Springer, 2004.

Jan Camenisch, Manu Drijvers, and Anja Lehmann.
Anonymous attestation using the strong diffie hellman assumption revisited.
In Trust and Trustworthy Computing: 9th International Conference, TRUST 2016, Vienna,
Austria, August 29-30, 2016, Proceedings 9, pages 1–20. Springer, 2016.

David Chaum.
Blind signatures for untraceable payments.
In Advances in Cryptology: Proceedings of Crypto 82, pages 199–203. Springer, 1983.

Jan Camenisch and Anna Lysyanskaya.
An efficient system for non-transferable anonymous credentials with optional anonymity
revocation.
In International conference on the theory and applications of cryptographic techniques, pages
93–118. Springer, 2001.

17 / 17

Jan Camenisch and Anna Lysyanskaya.
A signature scheme with efficient protocols.
In SCN 2002, volume 2576 of LNCS, pages 268–289, 2002.

Jan Camenisch and Anna Lysyanskaya.
Signature schemes and anonymous credentials from bilinear maps.
In Annual international cryptology conference, pages 56–72. Springer, 2004.

Nicolas Desmoulins, Antoine Dumanois, Seyni Kane, and Jacques Traoré.
Making bbs anonymous credentials eidas 2.0 compliant.
Cryptology ePrint Archive, 2025.

Jack Doerner, Yashvanth Kondi, Eysa Lee, abhi shelat, and LaKyah Tyner.
Threshold bbs+ signatures for distributed anonymous credential issuance.
In 2023 IEEE Symposium on Security and Privacy (SP), pages 773–789. IEEE, 2023.

Andrea Flamini, Eysa Lee, and Anna Lysyanskaya.
Multi-holder anonymous credentials from bbs signatures.
Cryptology ePrint Archive, 2024.

Julia Hesse, Nitin Singh, and Alessandro Sorniotti.
How to bind anonymous credentials to humans.

17 / 17

In 32nd USENIX Security Symposium (USENIX Security 23), pages 3047–3064, 2023.

Tobias Looker, Vasilis Kalos, Andrew Whitehead, and Mike Lodder.
The BBS Signature Scheme.
Internet-Draft draft-irtf-cfrg-bbs-signatures-01, Internet Engineering Task Force, October 2022.

Work in Progress.

Stefano Tessaro and Chenzhi Zhu.
Revisiting BBS signatures.
In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 691–721. Springer, 2023.

17 / 17

Unlinkability Experiment

cred1, cred2
cred3, Rev

b
$←− {0, 1}

Holders

NIZKP(cred1, cred2, {ai}i∈Rev, pkIss)

HONEST

HOLDERS!!

b = 0
transcript

+ pres

b = 1

Sim({ai}i∈Hid, pkIss)

simulator

b′

1 / 6

Unlinkability Experiment

cred1, cred2
cred3, Rev

b
$←− {0, 1}

Holders

NIZKP(cred1, cred2, {ai}i∈Rev, pkIss)

HONEST

HOLDERS!!

b = 0
transcript

+
pres

b = 1

Sim({ai}i∈Hid, pkIss)

simulator

b′

1 / 6

Unlinkability Experiment

cred1, cred2
cred3, Rev

b
$←− {0, 1}

Holders

NIZKP(cred1, cred2, {ai}i∈Rev, pkIss)

HONEST

HOLDERS!!

b = 0
transcript

+
pres

b = 1

Sim({ai}i∈Hid, pkIss)

simulator

b′

1 / 6

Unlinkability Experiment

cred1, cred2
cred3, Rev

b
$←− {0, 1}

Holders

NIZKP(cred1, cred2, {ai}i∈Rev, pkIss)

HONEST

HOLDERS!!

b = 0
transcript

+
pres

b = 1

Sim({ai}i∈Hid, pkIss)

simulator

b′

1 / 6

Unlinkability Experiment

cred1, cred2
cred3, Rev

b
$←− {0, 1}

Holders

NIZKP(cred1, cred2, {ai}i∈Rev, pkIss)

HONEST

HOLDERS!!

b = 0
transcript

+
pres

b = 1

Sim({ai}i∈Hid, pkIss)

simulator

b′

1 / 6

How does the combined NIZKP works?
(r, e1), B̃1 = C(a1)rA

−e1
e2, B̃2 = A

−e2 en, B̃n = A
−en

a1, {bi}i∈[n]
$←− Zp U1 = C(a1)a1 A

b1
U2 = A

b2 Un = A
bn

commit and release U =
∏n

i=1 Ui

ch = H(U, a1, pkIss, nonce)

zr = a1 + chr

ze1 = b1 + che1

ze2 = b2 + che2 zen = bn + chen

zr, ze ←
∑n

i=1 zei

2 / 6

How does the combined NIZKP works?
(r, e1), B̃1 = C(a1)rA

−e1
e2, B̃2 = A

−e2 en, B̃n = A
−en

a1, {bi}i∈[n]
$←− Zp

U1 = C(a1)a1 A
b1

U2 = A
b2 Un = A

bn

commit and release U =
∏n

i=1 Ui

ch = H(U, a1, pkIss, nonce)

zr = a1 + chr

ze1 = b1 + che1

ze2 = b2 + che2 zen = bn + chen

zr, ze ←
∑n

i=1 zei

2 / 6

How does the combined NIZKP works?
(r, e1), B̃1 = C(a1)rA

−e1
e2, B̃2 = A

−e2 en, B̃n = A
−en

a1, {bi}i∈[n]
$←− Zp U1 = C(a1)a1 A

b1
U2 = A

b2 Un = A
bn

commit and release

U =
∏n

i=1 Ui

ch = H(U, a1, pkIss, nonce)

zr = a1 + chr

ze1 = b1 + che1

ze2 = b2 + che2 zen = bn + chen

zr, ze ←
∑n

i=1 zei

2 / 6

How does the combined NIZKP works?
(r, e1), B̃1 = C(a1)rA

−e1
e2, B̃2 = A

−e2 en, B̃n = A
−en

a1, {bi}i∈[n]
$←− Zp U1 = C(a1)a1 A

b1
U2 = A

b2 Un = A
bn

commit and release U =
∏n

i=1 Ui

ch = H(U, a1, pkIss, nonce)

zr = a1 + chr

ze1 = b1 + che1

ze2 = b2 + che2 zen = bn + chen

zr, ze ←
∑n

i=1 zei

2 / 6

How does the combined NIZKP works?
(r, e1), B̃1 = C(a1)rA

−e1
e2, B̃2 = A

−e2 en, B̃n = A
−en

a1, {bi}i∈[n]
$←− Zp U1 = C(a1)a1 A

b1
U2 = A

b2 Un = A
bn

commit and release U =
∏n

i=1 Ui

ch = H(U, a1, pkIss, nonce)

zr = a1 + chr

ze1 = b1 + che1

ze2 = b2 + che2 zen = bn + chen

zr, ze ←
∑n

i=1 zei

2 / 6

How does the combined NIZKP works?
(r, e1), B̃1 = C(a1)rA

−e1
e2, B̃2 = A

−e2 en, B̃n = A
−en

a1, {bi}i∈[n]
$←− Zp U1 = C(a1)a1 A

b1
U2 = A

b2 Un = A
bn

commit and release U =
∏n

i=1 Ui

ch = H(U, a1, pkIss, nonce)

zr = a1 + chr

ze1 = b1 + che1

ze2 = b2 + che2 zen = bn + chen

zr, ze ←
∑n

i=1 zei

2 / 6

How does the combined NIZKP works?
(r, e1), B̃1 = C(a1)rA

−e1
e2, B̃2 = A

−e2 en, B̃n = A
−en

a1, {bi}i∈[n]
$←− Zp U1 = C(a1)a1 A

b1
U2 = A

b2 Un = A
bn

commit and release U =
∏n

i=1 Ui

ch = H(U, a1, pkIss, nonce)

zr = a1 + chr

ze1 = b1 + che1

ze2 = b2 + che2 zen = bn + chen

zr, ze ←
∑n

i=1 zei

2 / 6

How does the combined NIZKP works?
(r, e1), B̃1 = C(a1)rA

−e1
e2, B̃2 = A

−e2 en, B̃n = A
−en

a1, {bi}i∈[n]
$←− Zp U1 = C(a1)a1 A

b1
U2 = A

b2 Un = A
bn

commit and release U =
∏n

i=1 Ui

ch = H(U, a1, pkIss, nonce)

zr = a1 + chr

ze1 = b1 + che1

ze2 = b2 + che2 zen = bn + chen

zr, ze ←
∑n

i=1 zei

2 / 6

How does the combined NIZKP works?
(r, e1), B̃1 = C(a1)rA

−e1
e2, B̃2 = A

−e2 en, B̃n = A
−en

a1, {bi}i∈[n]
$←− Zp U1 = C(a1)a1 A

b1
U2 = A

b2 Un = A
bn

commit and release U =
∏n

i=1 Ui

ch = H(U, a1, pkIss, nonce)

zr = a1 + chr

ze1 = b1 + che1

ze2 = b2 + che2 zen = bn + chen

zr, ze ←
∑n

i=1 zei

2 / 6

Unforgeability of BBS MHAC

3 / 6

How to prove Unforgeability of Presentations?
Via a reduction to DL assumption (and the unforgeability of BBS)

Adversary

DL Challenger

Reduction

Setup

g, h

pp , pkIss

Training
issuance queries

full
credential

target credential
? ?

partial

(A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

4 / 6

How to prove Unforgeability of Presentations?
Via a reduction to DL assumption (and the unforgeability of BBS)

Adversary DL ChallengerReduction

Setup

g, h

pp , pkIss

Training
issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

4 / 6

How to prove Unforgeability of Presentations?
Via a reduction to DL assumption (and the unforgeability of BBS)

Adversary DL ChallengerReduction

Setup

g, hpp , pkIss

Training
issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

4 / 6

How to prove Unforgeability of Presentations?
Via a reduction to DL assumption (and the unforgeability of BBS)

Adversary DL ChallengerReduction

Setup

g, hpp , pkIss

Training
issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

4 / 6

How to prove Unforgeability of Presentations?
Via a reduction to DL assumption (and the unforgeability of BBS)

Adversary DL ChallengerReduction

Setup

g, hpp , pkIss

Training
issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

4 / 6

How to prove Unforgeability of Presentations?
Via a reduction to DL assumption (and the unforgeability of BBS)

Adversary DL ChallengerReduction

Setup

g, hpp , pkIss

Training
issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

4 / 6

How to prove Unforgeability of Presentations?
Via a reduction to DL assumption (and the unforgeability of BBS)

Adversary DL ChallengerReduction

Setup

g, hpp , pkIss

Training
issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

4 / 6

How to prove Unforgeability of Presentations?
Via a reduction to DL assumption (and the unforgeability of BBS)

Adversary DL ChallengerReduction

Setup

g, hpp , pkIss

Training
issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

4 / 6

How to prove Unforgeability of Presentations?
Via a reduction to DL assumption (and the unforgeability of BBS)

Adversary DL ChallengerReduction

Setup

g, hpp , pkIss

Training
issuance queries

full
credential

target credential
? ?

partial (A, ?)

logg h

Presentation queries
and execution

Forgery phase

pres⋆ = (pk, {ai}i∈Rev, π)

rewind
pres′⋆ = (pk, {ai}i∈Rev, π′)

extract (A,e)

e

4 / 6

A technical challenge
target credential issuance

Adversary DL ChallengerReduction

g, h

e = logg h

generate skIss = x
$←− Zp and

(somehow) pppkIss, pp
...

a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

pp

cred = ((A, e), a1) is univocally determined! (A = C(a1)
1

x+e)

The reduction must produce A, Ae

recall: credi ← (A, ei, {Aei}i∈[n], a1)

5 / 6

A technical challenge
target credential issuance

Adversary DL ChallengerReduction
g, h

e = logg h

generate skIss = x
$←− Zp and

(somehow) pppkIss, pp
...

a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

pp

cred = ((A, e), a1) is univocally determined! (A = C(a1)
1

x+e)

The reduction must produce A, Ae

recall: credi ← (A, ei, {Aei}i∈[n], a1)

5 / 6

A technical challenge
target credential issuance

Adversary DL ChallengerReduction
g, h

e = logg h

generate skIss = x
$←− Zp and

(somehow) pppkIss, pp
...

a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

pp

cred = ((A, e), a1) is univocally determined! (A = C(a1)
1

x+e)

The reduction must produce A, Ae

recall: credi ← (A, ei, {Aei}i∈[n], a1)

5 / 6

A technical challenge
target credential issuance

Adversary DL ChallengerReduction
g, h

e = logg h

generate skIss = x
$←− Zp and

(somehow) pp

pkIss, pp
...

a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

pp

cred = ((A, e), a1) is univocally determined! (A = C(a1)
1

x+e)

The reduction must produce A, Ae

recall: credi ← (A, ei, {Aei}i∈[n], a1)

5 / 6

A technical challenge
target credential issuance

Adversary DL ChallengerReduction
g, h

e = logg h

generate skIss = x
$←− Zp and

(somehow) pppkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

pp

cred = ((A, e), a1) is univocally determined! (A = C(a1)
1

x+e)

The reduction must produce A, Ae

recall: credi ← (A, ei, {Aei}i∈[n], a1)

5 / 6

A technical challenge
target credential issuance

Adversary DL ChallengerReduction
g, h

e = logg h

generate skIss = x
$←− Zp and

(somehow) pppkIss, pp
...

a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

pp

cred = ((A, e), a1) is univocally determined! (A = C(a1)
1

x+e)

The reduction must produce A, Ae

recall: credi ← (A, ei, {Aei}i∈[n], a1)

5 / 6

A technical challenge
target credential issuance

Adversary DL ChallengerReduction
g, h

e = logg h

generate skIss = x
$←− Zp and

(somehow) pppkIss, pp
...

a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

pp

cred = ((A, e), a1) is univocally determined! (A = C(a1)
1

x+e)

The reduction must produce A, Ae

recall: credi ← (A, ei, {Aei}i∈[n], a1)

5 / 6

A technical challenge
target credential issuance

Adversary DL ChallengerReduction
g, h

e = logg h

generate skIss = x
$←− Zp and

(somehow) pppkIss, pp
...

a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

pp

cred = ((A, e), a1) is univocally determined! (A = C(a1)
1

x+e)

The reduction must produce A, Ae

recall: credi ← (A, ei, {Aei}i∈[n], a1)

5 / 6

A technical challenge
target credential issuance

Adversary DL ChallengerReduction
g, h

e = logg h

generate skIss = x
$←− Zp and

(somehow) pppkIss, pp
...

a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

pp

cred = ((A, e), a1) is univocally determined! (A = C(a1)
1

x+e)

The reduction must produce A, Ae

recall: credi ← (A, ei, {Aei}i∈[n], a1)

5 / 6

Our Solution

Adversary DL ChallengerReduction

g, h

e = logg h

x
$←− Zp, pkIss ← gx

2

k ← hgx = gx+e

u, v
$←− Zp, g1 ← ku, h1 ← kv

pp← (g1, h1)
pkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

A← (g1h
a1
1)

1
x+e = (ku(kv)a1)

1
x+e(k

1
x+e)u((k

1
x+e)v)a1

k
1

x+e = g

gu(gv)a1

Ae ← (gu(gv)a1)e(ge)u((ge)v)a1 h = gehu(hv)a1

The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)

6 / 6

Our Solution

Adversary DL ChallengerReduction
g, h

e = logg h

x
$←− Zp, pkIss ← gx

2

k ← hgx = gx+e

u, v
$←− Zp, g1 ← ku, h1 ← kv

pp← (g1, h1)
pkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

A← (g1h
a1
1)

1
x+e = (ku(kv)a1)

1
x+e(k

1
x+e)u((k

1
x+e)v)a1

k
1

x+e = g

gu(gv)a1

Ae ← (gu(gv)a1)e(ge)u((ge)v)a1 h = gehu(hv)a1

The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)

6 / 6

Our Solution

Adversary DL ChallengerReduction
g, h

e = logg h

x
$←− Zp, pkIss ← gx

2

k ← hgx = gx+e

u, v
$←− Zp, g1 ← ku, h1 ← kv

pp← (g1, h1)
pkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

A← (g1h
a1
1)

1
x+e = (ku(kv)a1)

1
x+e(k

1
x+e)u((k

1
x+e)v)a1

k
1

x+e = g

gu(gv)a1

Ae ← (gu(gv)a1)e(ge)u((ge)v)a1 h = gehu(hv)a1

The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)

6 / 6

Our Solution

Adversary DL ChallengerReduction
g, h

e = logg h

x
$←− Zp, pkIss ← gx

2

k ← hgx = gx+e

u, v
$←− Zp, g1 ← ku, h1 ← kv

pp← (g1, h1)
pkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

A← (g1h
a1
1)

1
x+e = (ku(kv)a1)

1
x+e(k

1
x+e)u((k

1
x+e)v)a1

k
1

x+e = g

gu(gv)a1

Ae ← (gu(gv)a1)e(ge)u((ge)v)a1 h = gehu(hv)a1

The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)

6 / 6

Our Solution

Adversary DL ChallengerReduction
g, h

e = logg h

x
$←− Zp, pkIss ← gx

2

k ← hgx = gx+e

u, v
$←− Zp, g1 ← ku, h1 ← kv

pp← (g1, h1)

pkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

A← (g1h
a1
1)

1
x+e = (ku(kv)a1)

1
x+e(k

1
x+e)u((k

1
x+e)v)a1

k
1

x+e = g

gu(gv)a1

Ae ← (gu(gv)a1)e(ge)u((ge)v)a1 h = gehu(hv)a1

The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)

6 / 6

Our Solution

Adversary DL ChallengerReduction
g, h

e = logg h

x
$←− Zp, pkIss ← gx

2

k ← hgx = gx+e

u, v
$←− Zp, g1 ← ku, h1 ← kv

pp← (g1, h1)
pkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

A← (g1h
a1
1)

1
x+e = (ku(kv)a1)

1
x+e(k

1
x+e)u((k

1
x+e)v)a1

k
1

x+e = g

gu(gv)a1

Ae ← (gu(gv)a1)e(ge)u((ge)v)a1 h = gehu(hv)a1

The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)

6 / 6

Our Solution

Adversary DL ChallengerReduction
g, h

e = logg h

x
$←− Zp, pkIss ← gx

2

k ← hgx = gx+e

u, v
$←− Zp, g1 ← ku, h1 ← kv

pp← (g1, h1)
pkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

A← (g1h
a1
1)

1
x+e = (ku(kv)a1)

1
x+e(k

1
x+e)u((k

1
x+e)v)a1

k
1

x+e = g

gu(gv)a1

Ae ← (gu(gv)a1)e(ge)u((ge)v)a1 h = gehu(hv)a1

The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)

6 / 6

Our Solution

Adversary DL ChallengerReduction
g, h

e = logg h

x
$←− Zp, pkIss ← gx

2

k ← hgx = gx+e

u, v
$←− Zp, g1 ← ku, h1 ← kv

pp← (g1, h1)
pkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

A← (g1h
a1
1)

1
x+e = (ku(kv)a1)

1
x+e(k

1
x+e)u((k

1
x+e)v)a1

k
1

x+e = g

gu(gv)a1

Ae ← (gu(gv)a1)e(ge)u((ge)v)a1 h = gehu(hv)a1

The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)

6 / 6

Our Solution

Adversary DL ChallengerReduction
g, h

e = logg h

x
$←− Zp, pkIss ← gx

2

k ← hgx = gx+e

u, v
$←− Zp, g1 ← ku, h1 ← kv

pp← (g1, h1)
pkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

A← (g1h
a1
1)

1
x+e = (ku(kv)a1)

1
x+e

(k
1

x+e)u((k
1

x+e)v)a1

k
1

x+e = g

gu(gv)a1

Ae ← (gu(gv)a1)e(ge)u((ge)v)a1 h = gehu(hv)a1

The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)

6 / 6

Our Solution

Adversary DL ChallengerReduction
g, h

e = logg h

x
$←− Zp, pkIss ← gx

2

k ← hgx = gx+e

u, v
$←− Zp, g1 ← ku, h1 ← kv

pp← (g1, h1)
pkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

A← (g1h
a1
1)

1
x+e =

(ku(kv)a1)
1

x+e

(k
1

x+e)u((k
1

x+e)v)a1

k
1

x+e = g

gu(gv)a1

Ae ← (gu(gv)a1)e(ge)u((ge)v)a1 h = gehu(hv)a1

The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)

6 / 6

Our Solution

Adversary DL ChallengerReduction
g, h

e = logg h

x
$←− Zp, pkIss ← gx

2

k ← hgx = gx+e

u, v
$←− Zp, g1 ← ku, h1 ← kv

pp← (g1, h1)
pkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

A← (g1h
a1
1)

1
x+e =

(ku(kv)a1)
1

x+e

(k
1

x+e)u((k
1

x+e)v)a1

k
1

x+e = g

gu(gv)a1

Ae ← (gu(gv)a1)e(ge)u((ge)v)a1 h = gehu(hv)a1

The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)

6 / 6

Our Solution

Adversary DL ChallengerReduction
g, h

e = logg h

x
$←− Zp, pkIss ← gx

2

k ← hgx = gx+e

u, v
$←− Zp, g1 ← ku, h1 ← kv

pp← (g1, h1)
pkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

A← (g1h
a1
1)

1
x+e =

(ku(kv)a1)
1

x+e(k
1

x+e)u((k
1

x+e)v)a1

k
1

x+e = g

gu(gv)a1

Ae ← (gu(gv)a1)e

(ge)u((ge)v)a1 h = gehu(hv)a1

The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)

6 / 6

Our Solution

Adversary DL ChallengerReduction
g, h

e = logg h

x
$←− Zp, pkIss ← gx

2

k ← hgx = gx+e

u, v
$←− Zp, g1 ← ku, h1 ← kv

pp← (g1, h1)
pkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

A← (g1h
a1
1)

1
x+e =

(ku(kv)a1)
1

x+e(k
1

x+e)u((k
1

x+e)v)a1

k
1

x+e = g

gu(gv)a1

Ae ←

(gu(gv)a1)e

(ge)u((ge)v)a1 h = ge

hu(hv)a1

The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)

6 / 6

Our Solution

Adversary DL ChallengerReduction
g, h

e = logg h

x
$←− Zp, pkIss ← gx

2

k ← hgx = gx+e

u, v
$←− Zp, g1 ← ku, h1 ← kv

pp← (g1, h1)
pkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

A← (g1h
a1
1)

1
x+e =

(ku(kv)a1)
1

x+e(k
1

x+e)u((k
1

x+e)v)a1

k
1

x+e = g

gu(gv)a1

Ae ←

(gu(gv)a1)e(ge)u((ge)v)a1

h = gehu(hv)a1

The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)

6 / 6

Our Solution

Adversary DL ChallengerReduction
g, h

e = logg h

x
$←− Zp, pkIss ← gx

2

k ← hgx = gx+e

u, v
$←− Zp, g1 ← ku, h1 ← kv

pp← (g1, h1)
pkIss, pp

...
a1

Give me a
partial credential

for a1

C(a1) = g1ha1
1

A← (g1h
a1
1)

1
x+e =

(ku(kv)a1)
1

x+e(k
1

x+e)u((k
1

x+e)v)a1

k
1

x+e = g

gu(gv)a1

Ae ←

(gu(gv)a1)e(ge)u((ge)v)a1

h = gehu(hv)a1

The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)

6 / 6

	
	Appendix

