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Anonymous Credentials (ACs)[Cha83, CL01]

Privacy preserving digital credentials whose authorship can be cryptographically verified

Issuer
(Identity Provider)

Holder
(User)

Verifier
(Service Provider)

Issue ACPresent AC

Trust

Verifier 2

Present AC

Verifier 3

Present AC

Multiple presentations
are unlinkable!

The EUDI Wallet should “enable privacy preserving techniques which ensure unlinkability,
where the attestation of attributes does not require the identification of the user”
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The CL Framework [CL02]

A signature scheme with efficient NIZKPoK

Verifier

Holder

Issuer (skIss, pkIss)

σ
$←− Sign((a1, . . . , am), skIss)

cred = σ, {ai}i∈[m]

cred

π
$←− NIZKP( cred︸︷︷︸

witness

, {ai}i∈Rev, pkIss︸ ︷︷ ︸
statement

)
Attributes revealed to the verifier

pkIss, {ai}i∈Rev, π

pres

Trust
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Multi-Holder Anonymous Credentials (MHAC)
(Our first contribution)
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Motivation and Intuition
Increase the security of storage of anonymous credentials to prevent identity theft

Trust

Issuer (skIss, pkIss)

Holders

Verifier

cred

cred3

cred1
cred2

π
$←− NIZKP(cred, pkIss, {ai}i∈Rev)

pkIss, {ai}i∈Rev, π

pres
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Security and Privacy Properties

Correctness

Unlinkability

Unforgeability of presentations

Standard properties for AC

adapted for MHAC

Identifiable abort

Unforgeability of presentations
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Unforgeability Experiment

ChallengerAdversary

Setup

pp, pkIss

Training
issuance queries

full
credential

partial
target credential

Presentation queries
and execution

Forgery phase
pres⋆ = (pk, {ai}i∈Rev, π) 0/1
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BBS Anonymous Credentials
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BBS Anonymous Credentials

Why BBS?

multi-message signature
compact public keys
efficient signature and NIZKP

[BBS04, CL04]
[ASM06]

[CDL16]
[LKWL22]

[TZ23, DKL+23, HSS23]

[FLL24]
[DDKT25]

2004 2006 2016 2022 2024

Standardization effort by DIF and IRTF
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BBS Issuance
(For a single attribute a1)

Setup
p-order groups G1 = ⟨g1⟩,G2 = ⟨g2⟩, GT , and pairing e : G1 ×G2 → GT

pp = h1
$←− G1 x

$←− Zp (skIss, pkIss)← (x, gx
2 )

Issuance
C(a1)← g1ha1

1 e
$←− Zp A← (C(a1))

1
x+e

cred← ( (A, e)︸ ︷︷ ︸
BBS signature

, a1)
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BBS Presentation[TZ23]
(full disclosure)

Presentation for (pkIss, a1) of cred = ((A, e), a1)

signature randomization: r
$←− Zp

A← Ar B ← C(a1)rA
−e

(U, ch, zr, ze) $←− NIZKPoK
{

(α, β) : B = C(a1)αA
β}

π ← (A, B, U, ch, zr, ze)

C(a1) = g1ha1
1

cred = ((A, e), a1) pkIss, a1

A, B, U

ch

zr, ze

pres← (π, a1, pkIss︸ ︷︷ ︸
statement

)
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A MHAC compatible with BBS
(Our second contribution)
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BBS MHAC Issuance

Generate a BBS credential cred = (A, e), a1

Divide it in shares:

{ei}i∈[n]
$←− SS(t, n, e)

e is never
revealed!

credi ← (ei, A, Ae, {Aei}i∈[n], a1︸ ︷︷ ︸
same for every holder

)

Crucial observation: giving to each holder Ae is just fine!

enables the identifiable abort property

simplifies the presentation protocol

can be made constant size
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BBS MHAC Presentation protocol
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credi ← (A, ei, Ae, {A
ej }j∈[n], a1) cred ← ((A, e), a1)

C
en

tr
al

is
ed

ca
se

M
u

lt
i-

h
ol

d
er

ca
se

r
$
←− Zp r

$
←− Zp

Broadcast r: everyone computes A = Ar, B = (C(a1) A
−e )r

A, B A, B = (Ar, (C(a1)rA
−e))

= (Ar, (C(a1)A−e)r)

B =
∏

i∈[n]
B̃iRe-distribute B

B̃1 = C(a1)rA
−e1 B̃2 = A

−e2 B̃n = A
−en

NIZKPoK B̃1 w.r.t.
the basis C(a1), A

NIZKPoK B̃2 w.r.t.
the basis A

NIZKPoK B̃n w.r.t.
the basis A

“combine” them and obtain a NIZKPoK of B w.r.t. C(a1), A

NIZKPoK of B w.r.t. C(a1), A

pres ← (A, B, nonce, a1, ch, zr, ze) pres ← (A, B, nonce, a1, ch, zr, ze)
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Thank you for your attention!
to Eysa Lee for the Alice-and-Bobs illustrations

https://github.com/eysalee/alice-and-bobs/tree/main

and to the QUBIP European project for funding my trip here
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How does the combined NIZKP works?
(r, e1), B̃1 = C(a1)rA

−e1
e2, B̃2 = A

−e2 en, B̃n = A
−en

a1, {bi}i∈[n]
$←− Zp U1 = C(a1)a1 A

b1
U2 = A

b2 Un = A
bn

commit and release U =
∏n

i=1 Ui

ch = H(U, a1, pkIss, nonce)

zr = a1 + chr

ze1 = b1 + che1

ze2 = b2 + che2 zen = bn + chen

zr, ze ←
∑n

i=1 zei
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A technical challenge
target credential issuance
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Our Solution
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The adversary shares are (A, {ei}i∈cor, {Aei}i∈[n], a1)
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