Unmasking TRaccoon: A Lattice-Based Threshold Signature with An Efficient Identifiable Abort Protocol

Rafael del Pino PQShield

Shuichi Katsumata PQShield & AIST Guilhem Niot PQShield & Univ Rennes, CNRS, IRISA

Michael Reichle ETH Zurich

Kaoru Takemure PQShield & AIST

Our Identifiable Abort Protocol

Main Contribution: TRaccoon with Identifiable Abort Protocol

- Our interactive IA protocol is a simple add-on to TRaccoon
- Communication cost in IA protocol is $60 + 6.4 \cdot T$ KB per a signer

Side Contributions:

- The first game-based definition of TS with an interactive IA protocol
- The first formal security analysis of a variant of LaBRADOR with ZK

Background

Verification key vk \updownarrow Signing key sk

Key Generation

*2-out-of-3

Verification key vk

\$\Bar{1}\$
Signing key \$sk\$

*2-out-of-3

Key Generation

- T or more key shares reconstruct sk
- No signer knows sk
- Less than T key shares leak no information about sk

*We assume that a trusted party executes distributed key generation as well as [BCK+22,dPKM+24] etc.

Signing Protocol

Signing Protocol

General Procedure:

- 1. One decides message m and signer set SS
- 2. Users in SS execute signing protocol

Signing Protocol

General Procedure:

- 1. One decides message m and signer set SS
- 2. Users in SS execute signing protocol

Signature σ

PQ Threshold Signature Schemes

```
Early Schemes: [BKP13], [BGG+18], [ASY22], [GKS23] ⇒The use of heavy tools, e.g., FHE and HTDC
```

Recent Schemes: [dPKM+24], [EKT24], [KRT24], [CATZ24], [BKL+25], etc ⇒No use of such heavy tools

PQ Threshold Signature Schemes

```
Early Schemes: [BKP13], [BGG+18], [ASY22], [GKS23] ⇒The use of heavy tools, e.g., FHE and HTDC
```

Recent Schemes: [dPKM+24], [EKT24], [KRT24], [CATZ24], [BKL+25], etc ⇒No use of such heavy tools

TRaccoon [dPKM+24]:

- Three-round signing protocol
- Efficient sig size compared with early schemes

PQ Threshold Signature Schemes

Early Schemes: [BKP13], [BGG+18], [ASY22], [GKS23]

⇒The use of heavy tools, e.g., FHE and HTDC

Recent Schemes: [dPKM+24], [EKT24], [KRT24], [CATZ24], [BKL+25], etc

⇒No use of such heavy tools

One drawback: No Availability

Malicious signer can arbitrarily cause the signing protocol to fail

TRaccoon [dPKM+24]:

- Three-round signing protocol
- Efficient sig size compared with early schemes

Availability for TS: Identifiable Abort

Identifiable Abort:

When the signing protocol fails, honest signers identify misbehaving signers.

Communication Channel:

Synchronous authenticated Broadcast

Availability for TS: Identifiable Abort

Identifiable Abort:

When the signing protocol fails, honest signers identify misbehaving signers.

Sigi

Can we construct an efficient IA protocol for TRaccoon?

$$SS = \{1,3\}$$

Signer 1 is misbehavior

TRaccoon

 $vk: A \in \mathcal{R}_q^{k \times \ell}, t = A \cdot s + e$ where short vectors $(s, e) \in \mathcal{R}_q^{\ell} \times \mathcal{R}_q^k$ $sk_i: s_i$ is a secret share of s, $\left(seed_{i,j}, seed_{j,i}\right)_{j \in [N]}$ are pair-wise seeds.

Lattice variant of Sparkle[CKM23]

 $vk: A \in \mathcal{R}_q^{k \times \ell}, t = A \cdot s + e$ where short vectors $(s, e) \in \mathcal{R}_q^{\ell} \times \mathcal{R}_q^k$ $sk_i: s_i$ is a secret share of s, $\left(seed_{i,j}, seed_{j,i}\right)_{j \in [N]}$ are pair-wise seeds.

Lattice variant of Sparkle[CKM23]

Round 1:

- 1. Sample short vectors $(r_i, e'_i) \in \mathcal{R}_q^{\ell} \times \mathcal{R}_q^k$
- 2. $\mathbf{w}_i \leftarrow \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}'_i$
- 3. Broadcast $cmt_i \leftarrow H(\mathbf{w}_i)$

 $vk: A \in \mathcal{R}_q^{k \times \ell}, t = A \cdot s + e$ where short vectors $(s, e) \in \mathcal{R}_q^{\ell} \times \mathcal{R}_q^k$ $sk_i: s_i$ is a secret share of s, $\left(seed_{i,j}, seed_{j,i}\right)_{j \in [N]}$ are pair-wise seeds.

Lattice variant of Sparkle[CKM23]

Round 1:

- 1. Sample short vectors $(\boldsymbol{r}_i, \boldsymbol{e}_i') \in \mathcal{R}_q^{\ell} \times \mathcal{R}_q^k$
- 2. $w_i \leftarrow A \cdot r_i + e'_i$
- 3. Broadcast $cmt_i \leftarrow H(\mathbf{w}_i)$

Round 2:

1. Broadcast w_i

 $vk: A \in \mathcal{R}_q^{k \times \ell}, t = A \cdot s + e$ where short vectors $(s, e) \in \mathcal{R}_q^{\ell} \times \mathcal{R}_q^k$ $sk_i: s_i$ is a secret share of s, $\left(seed_{i,j}, seed_{j,i}\right)_{j \in [N]}$ are pair-wise seeds.

Lattice variant of Sparkle[CKM23]

- Round 1:
- 1. Sample short vectors $(\mathbf{r}_i, \mathbf{e}'_i) \in \mathcal{R}_q^{\ell} \times \mathcal{R}_q^{k}$
- 2. $w_i \leftarrow A \cdot r_i + e'_i$
- 3. Broadcast $cmt_i \leftarrow H(\mathbf{w}_i)$
- Round 2:
- 1. Broadcast w_i
- Round 3:
- 1. Check $cmt_i = H(\mathbf{w}_i)$
- 2. $w \leftarrow \sum_{j} w_{j}$
- 3. $c \leftarrow H_c(vk, m, \mathbf{w})$
- 4. Broadcast $z_i \leftarrow c \cdot L_{SS,i} \cdot s_i + r_i + \Delta_i$

 $vk: A \in \mathcal{R}_q^{k \times \ell}, t = A \cdot s + e$ where short vectors $(s, e) \in \mathcal{R}_q^{\ell} \times \mathcal{R}_q^k$ $sk_i: s_i$ is a secret share of s, $\left(seed_{i,j}, seed_{j,i}\right)_{j \in [N]}$ are pair-wise seeds.

Lattice variant of Sparkle[CKM23]

- Round 1:
- 1. Sample short vectors $(\mathbf{r}_i, \mathbf{e}'_i) \in \mathcal{R}_q^{\ell} \times \mathcal{R}_q^{k}$
- 2. $w_i \leftarrow A \cdot r_i + e'_i$
- 3. Broadcast $cmt_i \leftarrow H(\mathbf{w}_i)$
- Round 2:
- 1. Broadcast w_i
- Round 3:
- 1. Check $cmt_i = H(\mathbf{w}_i)$
- 2. $\mathbf{w} \leftarrow \sum_{j} \mathbf{w}_{j}$
- 3. $c \leftarrow H_c(vk, m, \mathbf{w})$
- 4. Broadcast $z_i \leftarrow c \cdot L_{SS,i} \cdot s_i + r_i + \Delta_i$

Resulting signature: $(c, \mathbf{z}, \mathbf{h})$ where $\mathbf{z} = \sum_i \mathbf{z}_i$, $\mathbf{h} = \mathbf{w} - \mathbf{A} \cdot \mathbf{z} + c \cdot \mathbf{t}$ Verification: $c = H_c(vk, m, \mathbf{A} \cdot \mathbf{z} - c \cdot \mathbf{t} + \mathbf{h})$


```
vk:
        Important difference from Sparkle:
 Rour Masking Term: \Delta_i = \sum_j ({m m}_{i,j} - {m m}_{j,i}) such that \sum_i \Delta_i = 0
        where \mathbf{m}_{i,i} = H_{msk}(seed_{i,i}, ctnt_z), ctnt_z = SS||m||(cmt_i, w_i)_{i \in SS}.
        This is a crucial component to prevent lattice-specific attacks.
 Rou
                                                                                              Sk_1
                           c \leftarrow H_c(vk, m, \mathbf{w})
                     4. Broadcast z_i \leftarrow c \cdot L_{SS,i} \cdot s_i + r_i + \Delta_i
                                                                                                                         \boldsymbol{z}_i
Resulting signature: (c, \mathbf{z}, \mathbf{h}) where \mathbf{z} = \sum_{i} \mathbf{z}_{i}, \mathbf{h} = \mathbf{w} - \mathbf{A} \cdot \mathbf{z} + c \cdot \mathbf{t}
Verification: c = H_c(vk, m, \mathbf{A} \cdot \mathbf{z} - c \cdot \mathbf{t} + \mathbf{h})
```

Our Approach

Straightforward Approach

All signers prove that they honestly executed the signing protocol for each round.

Straightforward Approach

All signers prove that they honestly executed the signing protocol for each round.

Increase communication cost during signing protocol

Relations to be Proven via NIZK

Our IA protocol follows the approach using NIZK.

Relations to be proven:

- (1) r_i is short
- (2) $\mathbf{z}_i = c \cdot L_{SS,i} \cdot \mathbf{s}_i + \mathbf{r}_i + \Delta_i$
- (3) $\Delta_i = \sum_j (\boldsymbol{m}_{i,j} \boldsymbol{m}_{j,i})$
- (4) $\mathbf{m}_{i,j} = H_{msk}(seed_{i,j}, ctnt_z)$

Relations to be Proven via NIZK

Our IA protocol follows the approach using NIZK.

Relations to be proven:

- (1) r_i is short
- (2) $\mathbf{z}_i = c \cdot L_{SS,i} \cdot \mathbf{s}_i + \mathbf{r}_i + \Delta_i$
- (3) $\Delta_i = \sum_j (\boldsymbol{m}_{i,j} \boldsymbol{m}_{j,i})$
- (4) $m_{i,j} = H_{msk}(seed_{i,j}, ctnt_z)$

Algebraic

Non-Algebraic

Relations to be Proven via NIZK

Our IA protocol follows the approach using NIZK.

Relations to be proven:

- (1) r_i is short
- (2) $\mathbf{z}_i = c \cdot L_{SS,i} \cdot \mathbf{s}_i + \mathbf{r}_i + \Delta_i$
- (3) $\Delta_i = \sum_j (\boldsymbol{m}_{i,j} \boldsymbol{m}_{j,i})$
- (4) $m_{i,j} = H_{msk}(seed_{i,j}, ctnt_z)$

Non-Algebraic

Proving "mixed" relations is impractical >> How can we avoid this?

Why is (4) $m_{i,j} = H_{msk}(seed_{i,j}, ctnt_z)$ required?

```
Why is (4) m_{i,j} = H_{msk}(seed_{i,j}, ctnt_z) required?

\Rightarrow Ensure \sum_i \Delta_i = 0
```

Why is (4) $m_{i,j} = H_{msk}(seed_{i,j}, ctnt_z)$ required?

- \Rightarrow Ensure $\sum_i \Delta_i = 0$
- ⇒ (★) Each pair of signers uses the same masks

Why is (4) $m_{i,j} = H_{msk}(seed_{i,j}, ctnt_z)$ required?

- \Rightarrow Ensure $\sum_i \Delta_i = 0$
- ⇒ (★) Each pair of signers uses the same masks

Our observation:

As long as each pair uses the same $m_{i,j}$ even though it is not honestly generated, $\sum_i \Delta_i = 0$ holds.

Why is (4) $m_{i,j} = H_{msk}(seed_{i,j}, ctnt_z)$ required?

- \Rightarrow Ensure $\sum_i \Delta_i = 0$
- ⇒ (★) Each pair of signers uses the same masks

Our observation:

As long as each pair uses the same $m_{i,j}$ even though it is not honestly generated, $\sum_i \Delta_i = 0$ holds.

Idea: Ensure (*) outside of NIZK

How to Check (\bigstar)

Com: Lattice-based commitment scheme

1. For
$$j \in SS \setminus \{i\}$$
, compute $D_{i,j}^{(i)} \leftarrow Com(\boldsymbol{m}_{i,j}; \delta_{i,j})$ and $D_{j,i}^{(i)} \leftarrow Com(\boldsymbol{m}_{j,i}; \delta_{j,i})$ where $\delta_{i,j} = H_{rnd}(seed_{i,j}, ctnt_z)$, $\delta_{j,i} = H_{rnd}(seed_{j,i}, ctnt_z)$. Deterministic Broadcast $\left(D_{i,j}^{(i)}, D_{j,i}^{(i)}\right)_{i \in SS \setminus \{i\}}$

How to Check (\bigstar)

Com: Lattice-based commitment scheme

- 1. For $j \in SS \setminus \{i\}$, compute $D_{i,j}^{(i)} \leftarrow Com(\boldsymbol{m}_{i,j}; \delta_{i,j})$ and $D_{j,i}^{(i)} \leftarrow Com(\boldsymbol{m}_{j,i}; \delta_{j,i})$ where $\delta_{i,j} = H_{rnd}(seed_{i,j}, ctnt_z)$, $\delta_{j,i} = H_{rnd}(seed_{j,i}, ctnt_z)$. Deterministic Broadcast $\left(D_{i,j}^{(i)}, D_{j,i}^{(i)}\right)_{i \in SS \setminus \{i\}}$
- 2. Broadcast $\left(seed_{i,j}^{(i)}, seed_{j,i}^{(i)}\right)$ for j s.t. $D_{i,j}^{(i)} \neq D_{i,j}^{(j)}$ or $D_{j,i}^{(i)} \neq D_{j,i}^{(j)}$ Inconsistent Mask

20

How to Check (★)

Com: Lattice-based commitment scheme

- 1. For $j \in SS \setminus \{i\}$, compute $D_{i,j}^{(i)} \leftarrow Com(\boldsymbol{m}_{i,j}; \delta_{i,j})$ and $D_{j,i}^{(i)} \leftarrow Com(\boldsymbol{m}_{j,i}; \delta_{j,i})$ where $\delta_{i,j} = H_{rnd}(seed_{i,j}, ctnt_z)$, $\delta_{j,i} = H_{rnd}(seed_{j,i}, ctnt_z)$. Deterministic Broadcast $\left(D_{i,j}^{(i)}, D_{j,i}^{(i)}\right)_{i \in SS \setminus \{i\}}$
- 2. Broadcast $\left(seed_{i,j}^{(i)}, seed_{j,i}^{(i)}\right)$ for j s.t. $D_{i,j}^{(i)} \neq D_{i,j}^{(j)}$ or $D_{j,i}^{(i)} \neq D_{j,i}^{(j)}$ Inconsistent Mask

$$\underbrace{H_{msk}\left(seed_{k,\ell}^{(k)},ctnt_{z}\right)} \underbrace{H_{rnd}\left(seed_{k,\ell}^{(k)},ctnt_{z}\right)$$

3. Check $D_{k,\ell}^{(k)} = Com\left(\boldsymbol{m}_{k,\ell}^{(k)}; \delta_{k,\ell}^{(k)}\right)$ and $C_{i,j} = H_{seed}(seed_{k,\ell}^{(k)})$ If not, k is misbehavior.

How to Check (\bigstar)

Com: Lattice-based commitment scheme

- 1. For $j \in SS \setminus \{i\}$, compute $D_{i,i}^{(i)} \leftarrow Com(\boldsymbol{m}_{i,j}; \delta_{i,j})$ commitment scheme, where $\delta_{i,j} = H_{rnd}(seed_{i,j}, ctnt_z)$, $\delta_{j,i} = H_{rnd}(seed_{i,j}, ctnt_z)$ Broadcast $\left(D_{i,j}^{(i)}, D_{j,i}^{(i)}\right)_{i \in SS \setminus \{i\}}$
- Thanks to binding of uses the same masks!
- 2. Broadcast $\left(seed_{i,i}^{(i)}, seed_{j,i}^{(i)}\right)$ for j s.t. $D_{i,i}^{(i)} \neq D_{i,i}^{(j)}$ or $D_{i,i}^{(i)} \neq D_{i,i}^{(j)}$

$$\left(H_{msk}\left(seed_{k,\ell}^{(k)},ctnt_{z}\right)\right) \left(H_{rnd}\left(seed_{k,\ell}^{(k)},ctnt_{z}\right)\right)$$

$$H_{rnd}\left(seed_{k,\ell}^{(k)},ctnt_{z}\right)$$

3. Check $D_{k,\ell}^{(k)} = Com\left(\boldsymbol{m}_{k,\ell}^{(k)}; \delta_{k,\ell}^{(k)}\right)$ and $C_{i,j} = H_{seed}(seed_{k,\ell}^{(k)})$ If not, k is misbehavior.

Generated in KeyGen

Inconsistent Mask

How to Check (\bigstar)

Revealing seeds does not harm the security because seeds for honest pairs are not revealed.

lheme

-
$$Com(\mathbf{m}_{i,j}; \delta_{i,j})$$

 $(\mathbf{z}_z), \delta_{j,i} = H_{rnd}(\mathbf{z}_j)$

Thanks to binding of $- Com(\mathbf{m}_{i,j}; \delta_{i,j})$ commitment scheme, t_z), $\delta_{i,i} = H_{rnd}(s)$ we can ensure that each pair uses the same masks!

2. Broadcast $\left(seed_{i,i}^{(i)}, seed_{j,i}^{(i)}\right)$ for j s.t. $D_{i,j}^{(i)} \neq D_{i,j}^{(j)}$ or $D_{j,i}^{(i)} \neq D_{j,i}^{(j)}$

$$\left(H_{msk}\left(seed_{k,\ell}^{(k)},ctnt_{z}\right)\right) \left(H_{rnd}\left(seed_{k,\ell}^{(k)},ctnt_{z}\right)\right)$$

$$H_{rnd}\left(seed_{k,\ell}^{(k)},ctnt_{z}\right)$$

3. Check $D_{k,\ell}^{(k)} = Com\left(\boldsymbol{m}_{k,\ell}^{(k)}; \delta_{k,\ell}^{(k)}\right)$ and $C_{i,j} = H_{seed}(seed_{k,\ell}^{(k)})$ If not, k is misbehavior.

Generated in KeyGen

Inconsistent Mask

Eventual Relations to be Proven via NIZK

Our IA protocol follows the approach using NIZK.

Relations to be proven:

- (1) r_i is short
- (2) $\mathbf{z}_i = c \cdot L_{SS,i} \cdot \mathbf{s}_i + \mathbf{r}_i + \Delta_i$

(3)
$$\Delta_i = \sum_j (\boldsymbol{m}_{i,j} - \boldsymbol{m}_{j,i})$$

$$\frac{\textbf{(4)} \ \boldsymbol{m}_{i,j} = H_{msk}(seed_{i,j},ctnt_Z)}{}$$

(4)'
$$D_{i,j}^{(i)} = Com(\boldsymbol{m}_{i,j}; \delta_{i,j})$$

Eventual Relations to be Proven via NIZK

Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1)
$$\boldsymbol{r}_{i}$$
 is short
(2) $\boldsymbol{z}_{i} = c \cdot L_{SS,i} \cdot \boldsymbol{s}_{i} + \boldsymbol{r}_{i} + \Delta_{i}$
(3) $\Delta_{i} = \sum_{j} (\boldsymbol{m}_{i,j} - \boldsymbol{m}_{j,i})$
(4) $\boldsymbol{m}_{i,j} = H_{msk}(seed_{i,j}, ctnt_{z})$
(4) $D_{i,j}^{(i)} = Com(\boldsymbol{m}_{i,j}; \delta_{i,j})$

Eventual Relations to be Proven via NIZK

Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1)
$$\boldsymbol{r}_{i}$$
 is short
(2) $\boldsymbol{z}_{i} = c \cdot L_{SS,i} \cdot \boldsymbol{s}_{i} + \boldsymbol{r}_{i} + \Delta_{i}$
(3) $\Delta_{i} = \sum_{j} (\boldsymbol{m}_{i,j} - \boldsymbol{m}_{j,i})$
(4) $\boldsymbol{m}_{i,j} = H_{msk}(seed_{i,j}, ctnt_{z})$
(4) $D_{i,j}^{(i)} = Com(\boldsymbol{m}_{i,j}; \delta_{i,j})$

<u>Lattice-based ZK-SNARK combining LNP[LNP22] + LaBRADOR[BS23]</u> which is sketched in prior works [BS23,ADDG24].

We formally analyze security of this approach in a modular manner.

Performance

	$ \sigma $	Com Cost in Signing	<i>SS</i>	Availability
Traccoon[dPKM+24]	12.7	28.2	T	-
Traccoon-IA	12.7	28.2	T	IA 60+6.4· <i>T</i>

Same cost in signing protocol

Simple add-on

Thank you for your attention!!

Future Works:

- ➤ Does our technique work on related lattice-based schemes using masking mechanism [EKT24], [KRT24], [BKL+25].
- Distributed Key Generation for our scheme

Independent and Concurrent Work:

[dPENP] Del Pino et al. "Simple and Efficient Lattice Threshold Signatures with Identifiable Aborts"

- IA for a variant of TRaccoon based on new short secret sharing technique
- Non-interactive IA
- Efficient when the number of signers or corruption threshold is small