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Our ldentifiable Abort Protocol

Main Contribution: TRaccoon with Identifiable Abort Protocol

* Our interactive IA protocol is a simple add-on to TRaccoon
e Communication cost in |IA protocol is 60 + 6.4 - T KB per a signer

Side Contributions:
* The first game-based definition of TS with an interactive |A protocol
* The first formal security analysis of a variant of LaBRADOR with ZK

T
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1-out-of-IN Threshold Signature

Verification key vk
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Signing key sk

Sk]_

x 2-out-of-3




1-out-of-IN Threshold Signature

Verification key vk

Key Generation

* T or more key shares reconstruct sk

* No signer knows sk
* Less than T key shares leak no
information about sk

% We assume that a trusted party executes distributed key

generation as well as [BCK+22,dPKM+24] etc.
% 2-out-of-3
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1-out-of-IN Threshold Signature

Signing Protocol
m, 5 __signing Protocol

(Interactive) Signing Protocol General Procedure:
1. One decides message m and

protocol

4 )
. . signer set SS
A 2. Users in SS execute signing

sk
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1-out-of-IN Threshold Signature

Signing Protocol
m, 5 __signing Protocol

(Interactive) Signing Protocol General Procedure:

1. One decides message m and
signer set SS

2. Users in SS execute signing
protocol

:> Signature ¢

Sk]_

x 2-out-of-3




PQ Threshold Signature Schemes

Early Schemes: [BKP13], [BGG+18], [ASY22], [GKS23]
—The use of heavy tools, e.g., FHE and HTDC

Recent Schemes: [dPKM+24], [EKT24], [KRT24], [CATZ24], [BKL+25], etc
—>No use of such heavy tools
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TRaccoon [dPKM+24]:
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PQ Threshold Signature Schemes

Early Schemes: [BKP13], [BGG+18], [ASY22], [GKS23]
—The use of heavy tools, e.g., FHE and HTDC

Recent Schemes: [dPKM+24], [EKT24], [KRT24], [CATZ24], [BKL+25], etc

—>No use of such heavy tools
One drawback: No Availability

Malicious signer can arbitrarily
TRaccoon [dPKM+24]: cause the signing protocol to fail

* Three-round signing protocol
* Efficient sig size compared with early schemes
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Availability for TS: Identifiable Abort

Identifiable Abort:
When the signing protocol fails, honest signers

A identify misbehaving signers.

Skz

Communication Channel:
Synchronous authenticated Broadcast

Signing protocol \

AA '
:> ?)/?Ild o

\_ Sk SS = {1,3) sky / Signer 1 is misbehavior




Availability for TS: Identifiable Abort

Can we construct an efficient IA protocol for TRaccoon?




TRaccoon




Threshold Raccoon [dPKM+24]

vk: A € RE*Y,t = A - s + e where short vectors (s, e) € RS x RE i

sk;: s; is a secret share of s, (seedi,j, Seedj'i)je[N] are pair-wise seeds.

Lattice variant of
Sparkle[CKM23]
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Threshold Raccoon [dPKM+24]

vk: A € RE*,t = A - s + e where short vectors (s, e) € R x RE

Sk;: s; is a secret share of s, (seedi,j, Seedj'i)je[N

Round 1:

Round 2:
Round 3:

PONPE B WNMNRE

y k
Sample short vectors (1;,e;) € Ry X RS

W; < A ri+ e{
Broadcast cmt; « H(w;)

Broadcast w;

Check cmt; = H(w;)
W )i W
c < H.(vk,m,w)
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Threshold Raccoon [dPKM+24]

vk: A € RE*,t = A - s + e where short vectors (s, e) € R x RE

Sk;: s; is a secret share of s, (seedi,j, Seedj'i)je[N

Round 1:

Round 2:
Round 3:

PONPE B WNMNRE

y k
Sample short vectors (1;,e;) € Ry X RS

W; < A ri+ e{
Broadcast cmt; « H(w;)

Broadcast w;

Check cmt; = H(w;)
W )i W
c < H.(vk,m,w)

Broadcastz; < ¢ - Lgg;- §; +1; + A;

are pair-wise seeds.

Skl'

Resulting signature: (¢, z, h) wherez =),,z;, h=w—-A-z+c-t
Verification: c = H.(vk,m,A-z—c -t + h)

Lattice variant of

Sparkle[CKM23]
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Threshold Raccoon [dPKM+24]

Important difference from Sparkle:

Masking Term: A; = 3, :(m; ; — m; ;) such that 3;; A; = 0
wherem; ; = msk(seedi,j,ctntz), ctnt, = SS||Im||(cmt;, w;);ess.

This is a crucial component to prevent lattice-specific attacks.

\ )

3. C< O vk, m,w) Z;

4. Broadcastz; < c-Lgs;-S; +1; >

Resulting signature: (c,z, h) wherez =), z;,h=w—-A-z+c-t
Verification: c = H.(vk,m,A-z—c -t + h)

T




Our Approach




Straightforward Approach

All signers prove that they honestly executed the signing protocol for each round.

Cmtl'

<
Cmtj
Wi
>
<

sk, wj




Straightforward Approach

All signers prove that they honestly executed the signing protocol for each round.

Cmti, T[l,i

<
. Cmtj, T[Lj
Increase communication

W', 7T2,' . ) )
n — > cost during signing protocol
<<
sky Wj, Ty, o

Z;,Tl3;

Zj , 7'[3’]'




Deferred |A Protocol

Delay the identification of misbehaving signers until the protocol aborts.

Signing Protocol
a ® N
[ =

4 \
.0
Sk1 Sk3
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Deferred |A Protocol

Delay the identification of misbehaving signers until the protocol aborts.

Signing Protocol
a ® N
[ =

0.0
n ﬂ Valid o Do Nothing ]
Skl Sk3




Deferred |A Protocol

Delay the identification of misbehaving signers until the protocol aborts.

/ Signing Protocol \ / IA Protocol
. Signing protocol aborts >
[ o
, sk \ IAS
.0
\;.; sﬂkS/ Valid o > [ Do Nothing ]

J




Deferred |A Protocol

Delay the identification of misbehaving signers until the protocol aborts.

Signing Protocol IA Protocol
B o

A Preserve the original protocol <
V4 N * Communication and computation
< costs do not increase if signing
- \\ protocol succeeds.
n ﬂ Valid o L Do Nothlng - . ‘
Skl Sk3 Sk3

T




Deferred |A Protocol

Delay the identification of misbehaving signers until the protocol aborts.

Slgnlng Protocol IA Protocol
i — N ™

Existing game-based definitions captures
only non-interactive |A.

We formalized game-based security
definition of TS with interactive IA protocol.

& SK] SK3 /
T




Relations to be Proven via NIZK

Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1) r; is short

(2) Z; = C- LSS,l" S; + r; + Ai
) A; = X;(my ; —my )

(4 m;; = msk(seedi,j, ctnt,)
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Relations to be Proven via NIZK

Our IA protocol follows the approach using NIZK.

Relations to be proven:
(1) r; is short
(2) z; = c - Lgs;-s; + 1 + 4 } Algebraic

(3) Ai = Z](ml,] — mj,i)
(4) m;; = msk(seedi,j,ctntz) } Non-Algebraic

Proving “mixed” relations is impractical &=
How can we avoid this?

T




Bypassing Non-Algebraic Relation

Why is (4) m; ; = msk(seedi,j, ctnt,) required?
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honestly generated, );; A; = 0 holds.




Bypassing Non-Algebraic Relation

Why is (4) m; ; = msk (seed; ;, ctnt,) required?
= Ensure },;A; =0

— () Each pair of signers uses the same masks

J?

Our observation:
As long as each pair uses the same m; ; even though it is not

honestly generated, );; A; = 0 holds.

ldea: Ensure () outside of NIZK

T




How to Check (3k)

Com: Lattice-based commitment scheme

1. Forj €8S\ {i}, compute Dl.(j.) — Com(mu; 11) and D(i) Com(mj,i; 5j,i)
where §; ; = md(seedi’j, ctntz), 0ji = md(see i ctnt )

Broadcast (Dl(?, D(l))]ess*\{i}

Deterministic




How to Check (3k)

Com: Lattice-based commitment scheme

1. Forj €8S\ {i}, compute Dl.(j.) — Com(mu; U) and D(i) Com(mj,i; 5j,i)
where §; ; = rnd(seedi’j, ctntz), 0ji = md(see i ctnt )

Broadcast (D(l) D(l)

Deterministic
LI )JESS\{i}

Inconsistent Mask

2. Broadcast (Seed() Seed( )) for j s.t. D() + D(]) or D(l) + D(])

L]’




How to Check (3k)

Com: Lattice-based commitment scheme

1. Forj €8S\ {i}, compute Dl.(j.) — Com(ml]; U) and D(i) Com(mj,i; 51-,1-)
where §; ; = md(seedi’j, ctntz), 0ji = md(see i ctnt )

Broadcast (D(l) D(l)

Deterministic
LI )JESS\{i}

| i Mask
2. Broadcast seed() seed() for] s.t. D() —+ D(J) or D(l) & D(J) nconsistent Ivias

i,j’
Seed( )c&] Qed( ) ctnt, ]
msk k2t rnd kL’
3. CheckD,E{,) Com mk{,,Sékg) and C; ; Seed(seed(k))

If not, k is mlsbehawor T Generated in KeyGen ]




How to Check (3k)

Com: Lattice-based commitment scheme

| Thanks to binding of
1. Forj € S5\ {i}, compute Di(,;-) « Com(m, ;; 6; ;| commitment scheme,
where 8; ; = Hynq(seed; ;, ctnt,), §; ; = Hyng({ We can ensure that each pair

Broadcast (Dl(?, D(l)) " uses the same masks!
JESS\{i

—
I ' Mask
2. Broadcast Seedl(]),seed() for] s.t. D() * D(]) or D(l) +* D(]) nconsistent vias
q® (k)
Hinsk See k{,CtTlt Hyna Seedk{,,ctnt
3. CheckD,E{,) Com mk{,,Sg? and C; ; Seed(seed(k))

If not, k is mlsbehawor T Generated in KeyGen ]




How to Check (3k)

Revealing seeds does not heme Thanks to binding of

harm the security because |- Com(m, ;; &; ;| commitment scheme,

seeds for honest pairs are E), i = na({We can ensure that each pair

not revealed. uses the same masks!

2. Broadcast (Seeder s.t. Di(i_) =+ D.(j.m) Inconsistent Mask
: : y i,j ji jid

[Hmsk (Seed&@] %edf{?,ctntz) ]

3. Check D,E’? = Com (m,({kg ;515?) and (; ; = seed(Seedl(cl,?)

If not, k is misbehavior.

T Generated in KeyGen ]




Eventual Relations to be Proven via NIZK

Our |A protocol follows the approach using NIZK.

Relations to be proven:

(1) r; is short

(2)z; =c - Lggi- §; +1; + A
34, =% (ml] _m]l)

SU—— - )
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(4)’ Dl(;) — Com(mi,j, i,j)
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Our |A protocol follows the approach using NIZK.

Relations to be proven:

(1) r; is short
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-t/ i,J _ 1lmsk \occwl], L,LTLLZ)
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Eventual Relations to be Proven via NIZK

Our |A protocol follows the approach using NIZK.

Relations to be proven:

(1) r; is short

(2) Z; = C- LSS,i' S; + r; + Ai

(3) Ai = Z](ml,] — mj’i)

o srSeeth, Tttty

(4) (l) Com(mi’j; 51"]') _
Lattlce-based ZK-SNARK combining LNP[LNP22] + LaBRADOR|[BS23]

which is sketched in prior works [BS23,ADDG24].
We formally analyze security of this approach in a modular manner.

T

> Algebraic !!




Performance

| STt st | meeny
In Signing

Traccoon[dPKM+24] 12.7 28.2 T -

1A

Traccoon-IA 12.7 28.2 T 6046.4- T

Same cost in signing protocol Simple add-on




Thank you for your attention!!

Future Works:

» Does our technique work on related lattice-based schemes using masking
mechanism [EKT24], [KRT24], [BKL+25].

» Distributed Key Generation for our scheme

ndependent and Concurrent Work:

'[dPENP] Del Pino et al. “Simple and Efficient Lattice Threshold Signatures with
dentifiable Aborts”

|A for a variant of TRaccoon based on new short secret sharing technique
- Non-interactive |A

- Efficient when the number of signers or corruption threshold is small

T
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