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Our Identifiable Abort Protocol
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Main Contribution: TRaccoon with Identifiable Abort Protocol

• Our interactive IA protocol is a simple add-on to TRaccoon
• Communication cost in IA protocol is 60 + 6.4 ⋅ 𝑇 KB per a signer

Side Contributions:
• The first game-based definition of TS with an interactive IA protocol
• The first formal security analysis of a variant of LaBRADOR with ZK 
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T-out-of-N Threshold Signature
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Verification key 𝑣𝑘 

⇕
Signing key 𝑠𝑘

※2-out-of-3

𝑠𝑘1
𝑠𝑘2 𝑠𝑘3

Key Generation
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Verification key 𝑣𝑘 

⇕
Signing key 𝑠𝑘

※2-out-of-3

※We assume that a trusted party executes distributed key 
generation as well as [BCK+22,dPKM+24] etc.

• 𝑇 or more key shares reconstruct 𝑠𝑘

• No signer knows 𝑠𝑘
• Less than T key shares leak no 

information about 𝑠𝑘

𝑠𝑘1
𝑠𝑘2 𝑠𝑘3

Key Generation



T-out-of-N Threshold Signature
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Signing Protocol

※2-out-of-3

𝑠𝑘1
𝑠𝑘2 𝑠𝑘3

𝑆𝑆 = 2,3

𝑚, 𝑆𝑆



T-out-of-N Threshold Signature
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Signing Protocol

※2-out-of-3

𝑠𝑘1
𝑠𝑘2 𝑠𝑘3

𝑆𝑆 = 2,3

𝑚, 𝑆𝑆

(Interactive) Signing Protocol General Procedure:
1. One decides message 𝑚 and 

signer set 𝑆𝑆
2. Users in 𝑆𝑆 execute signing 

protocol



T-out-of-N Threshold Signature
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Signing Protocol

※2-out-of-3

𝑠𝑘1
𝑠𝑘2 𝑠𝑘3

𝑆𝑆 = 2,3

𝑚, 𝑆𝑆

(Interactive) Signing Protocol General Procedure:
1. One decides message 𝑚 and 

signer set 𝑆𝑆
2. Users in 𝑆𝑆 execute signing 

protocol

Signature 𝜎
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Early Schemes: [BKP13], [BGG+18], [ASY22], [GKS23]
The use of heavy tools, e.g., FHE and HTDC

Recent Schemes: [dPKM+24], [EKT24], [KRT24], [CATZ24], [BKL+25], etc
No use of such heavy tools
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TRaccoon [dPKM+24]:
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• Efficient sig size compared with early schemes
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Early Schemes: [BKP13], [BGG+18], [ASY22], [GKS23]
The use of heavy tools, e.g., FHE and HTDC

Recent Schemes: [dPKM+24], [EKT24], [KRT24], [CATZ24], [BKL+25], etc
No use of such heavy tools

TRaccoon [dPKM+24]:
• Three-round signing protocol
• Efficient sig size compared with early schemes

One drawback: No Availability

Malicious signer can arbitrarily 
cause the signing protocol to fail



Availability for TS: Identifiable Abort
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𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Signing protocol

Valid 𝜎
or

Signer 1 is misbehavior  𝑆𝑆 = 1,3

Identifiable Abort:
When the signing protocol fails, honest signers 
identify misbehaving signers.

Communication Channel: 
Synchronous authenticated Broadcast
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𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Signing protocol

Valid 𝜎
or

Signer 1 is misbehavior  𝑆𝑆 = 1,3

Identifiable Abort:
When the signing protocol fails, honest signers 
identify misbehaving signers.

Communication Channel: 
Synchronous authenticated Broadcast

PQTS: 
[BGG+18], [ASY22] (HS)
[GKS23] (NIZK)

Signing Protocol requires T signers

Can we construct an efficient IA protocol for TRaccoon?



TRaccoon
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Threshold Raccoon [dPKM+24] 
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𝑣𝑘:  𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝒕 = 𝑨 ⋅ 𝒔 + 𝒆 where short vectors (𝒔, 𝒆) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

𝑠𝑘𝑖: 𝒔𝑖 is a secret share of 𝒔, 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑠𝑒𝑒𝑑𝑗,𝑖 𝑗∈ 𝑁
 are pair-wise seeds. 

𝑠𝑘𝑖

Lattice variant of 
Sparkle[CKM23]
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𝑣𝑘:  𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝒕 = 𝑨 ⋅ 𝒔 + 𝒆 where short vectors (𝒔, 𝒆) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

𝑠𝑘𝑖: 𝒔𝑖 is a secret share of 𝒔, 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑠𝑒𝑒𝑑𝑗,𝑖 𝑗∈ 𝑁
 are pair-wise seeds. 

𝑠𝑘𝑖

1. Sample short vectors (𝒓𝑖 , 𝒆𝑖
′) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

2.  𝒘𝑖 ← 𝑨 ⋅ 𝒓𝑖 + 𝒆𝑖
′

3.  Broadcast 𝑐𝑚𝑡𝑖 ← 𝐻(𝒘𝑖)

Round 1: 𝑐𝑚𝑡𝑖

𝑐𝑚𝑡𝑗

Lattice variant of 
Sparkle[CKM23]
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𝑣𝑘:  𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝒕 = 𝑨 ⋅ 𝒔 + 𝒆 where short vectors (𝒔, 𝒆) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

𝑠𝑘𝑖: 𝒔𝑖 is a secret share of 𝒔, 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑠𝑒𝑒𝑑𝑗,𝑖 𝑗∈ 𝑁
 are pair-wise seeds. 

𝑠𝑘𝑖

1. Sample short vectors (𝒓𝑖 , 𝒆𝑖
′) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

2.  𝒘𝑖 ← 𝑨 ⋅ 𝒓𝑖 + 𝒆𝑖
′

3.  Broadcast 𝑐𝑚𝑡𝑖 ← 𝐻(𝒘𝑖)

1. Broadcast 𝒘𝑖

Round 1:

Round 2:

𝑐𝑚𝑡𝑖

𝑐𝑚𝑡𝑗

𝒘𝑖

𝒘𝑗

Lattice variant of 
Sparkle[CKM23]
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𝑣𝑘:  𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝒕 = 𝑨 ⋅ 𝒔 + 𝒆 where short vectors (𝒔, 𝒆) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

𝑠𝑘𝑖: 𝒔𝑖 is a secret share of 𝒔, 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑠𝑒𝑒𝑑𝑗,𝑖 𝑗∈ 𝑁
 are pair-wise seeds. 

𝑠𝑘𝑖

1. Sample short vectors (𝒓𝑖 , 𝒆𝑖
′) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

2.  𝒘𝑖 ← 𝑨 ⋅ 𝒓𝑖 + 𝒆𝑖
′

3.  Broadcast 𝑐𝑚𝑡𝑖 ← 𝐻(𝒘𝑖)

1. Broadcast 𝒘𝑖

1. Check 𝑐𝑚𝑡𝑗 = 𝐻(𝒘𝑗)

2.  𝒘 ← σ𝑗 𝒘𝑗

3.  𝑐 ← 𝐻𝑐(𝑣𝑘, 𝑚, 𝒘)
4. Broadcast 𝒛𝑖 ← 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

Round 1:

Round 2:

Round 3:

𝑐𝑚𝑡𝑖

𝑐𝑚𝑡𝑗

𝒘𝑖

𝒘𝑗

Lattice variant of 
Sparkle[CKM23]

𝒛𝑖

𝒛𝑗
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𝑣𝑘:  𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝒕 = 𝑨 ⋅ 𝒔 + 𝒆 where short vectors (𝒔, 𝒆) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

𝑠𝑘𝑖: 𝒔𝑖 is a secret share of 𝒔, 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑠𝑒𝑒𝑑𝑗,𝑖 𝑗∈ 𝑁
 are pair-wise seeds. 

𝑠𝑘𝑖

1. Sample short vectors (𝒓𝑖 , 𝒆𝑖
′) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

2.  𝒘𝑖 ← 𝑨 ⋅ 𝒓𝑖 + 𝒆𝑖
′

3.  Broadcast 𝑐𝑚𝑡𝑖 ← 𝐻(𝒘𝑖)

1. Broadcast 𝒘𝑖

1. Check 𝑐𝑚𝑡𝑗 = 𝐻(𝒘𝑗)

2.  𝒘 ← σ𝑗 𝒘𝑗

3.  𝑐 ← 𝐻𝑐(𝑣𝑘, 𝑚, 𝒘)
4. Broadcast 𝒛𝑖 ← 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

Round 1:

Round 2:

Round 3:

𝑐𝑚𝑡𝑖

𝑐𝑚𝑡𝑗

𝒘𝑖

𝒘𝑗

Lattice variant of 
Sparkle[CKM23]

𝒛𝑖

𝒛𝑗Resulting signature: (𝑐, 𝒛, 𝒉) where 𝒛 = σ𝑖 𝒛𝑖 , 𝒉 = 𝒘 − 𝑨 ⋅ 𝒛 + 𝑐 ⋅ 𝒕
Verification: 𝑐 = 𝐻𝑐(𝑣𝑘, 𝑚, 𝑨 ⋅ 𝒛 − 𝑐 ⋅ 𝒕 + 𝒉) 
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′) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

2.  𝒘𝑖 ← 𝑨 ⋅ 𝒓𝑖 + 𝒆𝑖
′

3.  Broadcast 𝑐𝑚𝑡𝑖 ← 𝐻(𝒘𝑖)

1. Broadcast 𝒘𝑖

1. Check 𝑐𝑚𝑡𝑗 = 𝐻(𝒘𝑗)

2.  𝒘 ← σ𝑗 𝒘𝑗

3.  𝑐 ← 𝐻𝑐(𝑣𝑘, 𝑚, 𝒘)
4. Broadcast 𝒛𝑖 ← 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖
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𝑣𝑘:  𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝒕 = 𝑨 ⋅ 𝒔 + 𝒆 where short vectors (𝑠, 𝑒) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

𝑠𝑘𝑖: 𝑠𝑖 is a secret share of 𝒔, 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑠𝑒𝑒𝑑𝑗,𝑖 𝑗∈ 𝑁
 are pair-wise seeds. 

𝑠𝑘1

Round 1:

Round 2:

Round 3:

Lattice variant of 
Sparkle[CKM23]

Resulting signature: (𝑐, 𝒛, 𝒉) where 𝒛 = σ𝑖 𝒛𝑖 , 𝒉 = 𝒘 − 𝑨 ⋅ 𝒛 + 𝑐 ⋅ 𝒕
Verification: 𝑐 = 𝐻𝑐(𝑣𝑘, 𝑚, 𝑨 ⋅ 𝒛 − 𝑐 ⋅ 𝒕 + 𝒉) 

𝑐𝑚𝑡𝑖

𝑐𝑚𝑡𝑗

𝒘𝑖

𝒘𝑗

𝒛𝑖

𝒛𝑗

Important difference from Sparkle:

Masking Term: Δ𝑖 = σ𝑗(𝒎𝑖,𝑗 − 𝒎𝑗,𝑖) such that σ𝑖 Δ𝑖 = 0

where 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 , 𝑐𝑡𝑛𝑡𝑧 = 𝑆𝑆||𝑚|| 𝑐𝑚𝑡𝑖 , 𝑤𝑖 𝑖∈𝑆𝑆.

This is a crucial component to prevent lattice-specific attacks.  
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All signers prove that they honestly executed the signing protocol for each round.

𝑠𝑘1

𝑐𝑚𝑡𝑖

𝒘𝑖

𝒘𝑗

𝒛𝑖

𝒛𝑗  

𝑐𝑚𝑡𝑗



Straightforward Approach
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All signers prove that they honestly executed the signing protocol for each round.

𝑠𝑘1

𝑐𝑚𝑡𝑖, 𝜋1,𝑖

𝒘𝑖, 𝜋2,𝑖

𝒘𝑗, 𝜋2,𝑗

𝒛𝑖 , 𝜋3,𝑖

𝒛𝑗  , 𝜋3,𝑗

Increase communication 
cost during signing protocol 

𝑐𝑚𝑡𝑗, 𝜋1,𝑗



Deferred IA Protocol
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Delay the identification of misbehaving signers until the protocol aborts.

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Signing Protocol
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Delay the identification of misbehaving signers until the protocol aborts.

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Valid 𝜎 Do Nothing

Signing Protocol



Deferred IA Protocol
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Delay the identification of misbehaving signers until the protocol aborts.

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3 𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

IA Protocol

Signing protocol aborts

Valid 𝜎 Do Nothing

Signing Protocol

IAS



Deferred IA Protocol
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Delay the identification of misbehaving signers until the protocol aborts.

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Signing Protocol

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Signing protocol aborts

IA Protocol

Valid 𝜎 Do Nothing

Preserve the original protocol

• Communication and computation 
costs do not increase if signing 
protocol succeeds.



Deferred IA Protocol
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Delay the identification of misbehaving signers until the protocol aborts.

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Valid 𝜎

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Signing protocol aborts

Do Nothing

IA ProtocolSigning Protocol

Existing game-based definitions captures 
only non-interactive IA.

We formalized game-based security 
definition of TS with interactive IA protocol.
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Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1) 𝒓𝑖 is short
(2) 𝒛𝑖 = 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

(3) Δ𝑖 = σ𝑗(𝒎𝑖,𝑗 − 𝒎𝑗,𝑖)

(4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧
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Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1) 𝒓𝑖 is short
(2) 𝒛𝑖 = 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

(3) Δ𝑖 = σ𝑗(𝒎𝑖,𝑗 − 𝒎𝑗,𝑖)

(4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧

Algebraic

Non-Algebraic
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Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1) 𝒓𝑖 is short
(2) 𝒛𝑖 = 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

(3) Δ𝑖 = σ𝑗(𝒎𝑖,𝑗 − 𝒎𝑗,𝑖)

(4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧

Algebraic

Non-Algebraic

Proving “mixed” relations is impractical
How can we avoid this? 



Bypassing Non-Algebraic Relation 
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Why is (4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧  required?



Bypassing Non-Algebraic Relation 

33

Why is (4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧  required?

 Ensure σ𝑖 Δ𝑖 = 0
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Why is (4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧  required?

 Ensure σ𝑖 Δ𝑖 = 0

 (★) Each pair of signers uses the same masks
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Why is (4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧  required?

 Ensure σ𝑖 Δ𝑖 = 0

 (★) Each pair of signers uses the same masks

Our observation:
As long as each pair uses the same 𝒎𝑖,𝑗 even though it is not 

honestly generated, σ𝑖 Δ𝑖 = 0 holds.
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Why is (4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧  required?

 Ensure σ𝑖 Δ𝑖 = 0

 (★) Each pair of signers uses the same masks

Our observation:
As long as each pair uses the same 𝒎𝑖,𝑗 even though it is not 

honestly generated, σ𝑖 Δ𝑖 = 0 holds.

Idea: Ensure (★) outside of NIZK



How to Check (★)
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1. For 𝑗 ∈ 𝑆𝑆 ∖ {𝑖}, compute 𝐷𝑖,𝑗
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗  𝑎𝑛𝑑 𝐷𝑗,𝑖
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑗,𝑖; 𝛿𝑗,𝑖

where 𝛿𝑖,𝑗 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 , 𝛿𝑗,𝑖 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑗,𝑖 , 𝑐𝑡𝑛𝑡𝑧 .

Broadcast 𝐷𝑖,𝑗
𝑖

, 𝐷𝑗,𝑖
𝑖

𝑗∈𝑆𝑆∖{𝑖}
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1. For 𝑗 ∈ 𝑆𝑆 ∖ {𝑖}, compute 𝐷𝑖,𝑗
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗  𝑎𝑛𝑑 𝐷𝑗,𝑖
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑗,𝑖; 𝛿𝑗,𝑖

where 𝛿𝑖,𝑗 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 , 𝛿𝑗,𝑖 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑗,𝑖 , 𝑐𝑡𝑛𝑡𝑧 .

Broadcast 𝐷𝑖,𝑗
𝑖

, 𝐷𝑗,𝑖
𝑖

𝑗∈𝑆𝑆∖{𝑖}

2.  Broadcast 𝑠𝑒𝑒𝑑𝑖,𝑗
𝑖

, 𝑠𝑒𝑒𝑑𝑗,𝑖
𝑖

 for 𝑗 s.t. 𝐷𝑖,𝑗
(𝑖)

≠ 𝐷𝑖,𝑗
𝑗

 or 𝐷𝑗,𝑖
(𝑖)

≠ 𝐷𝑗,𝑖
(𝑗)
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1. For 𝑗 ∈ 𝑆𝑆 ∖ {𝑖}, compute 𝐷𝑖,𝑗
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗  𝑎𝑛𝑑 𝐷𝑗,𝑖
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑗,𝑖; 𝛿𝑗,𝑖

where 𝛿𝑖,𝑗 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 , 𝛿𝑗,𝑖 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑗,𝑖 , 𝑐𝑡𝑛𝑡𝑧 .

Broadcast 𝐷𝑖,𝑗
𝑖

, 𝐷𝑗,𝑖
𝑖

𝑗∈𝑆𝑆∖{𝑖}

2.  Broadcast 𝑠𝑒𝑒𝑑𝑖,𝑗
𝑖

, 𝑠𝑒𝑒𝑑𝑗,𝑖
𝑖

 for 𝑗 s.t. 𝐷𝑖,𝑗
(𝑖)

≠ 𝐷𝑖,𝑗
𝑗

 or 𝐷𝑗,𝑖
(𝑖)

≠ 𝐷𝑗,𝑖
(𝑗)

 

3. Check 𝐷𝑘,ℓ
(𝑘)

= 𝐶𝑜𝑚 𝒎𝑘,ℓ
(𝑘)

 ; 𝛿𝑘,ℓ
(𝑘)

 and 𝐶𝑖,𝑗 = 𝐻𝑠𝑒𝑒𝑑(𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

) 

If not, 𝑘 is misbehavior.
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𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

, 𝑐𝑡𝑛𝑡𝑧 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

, 𝑐𝑡𝑛𝑡𝑧

Generated in KeyGen

Deterministic
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1. For 𝑗 ∈ 𝑆𝑆 ∖ {𝑖}, compute 𝐷𝑖,𝑗
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗  𝑎𝑛𝑑 𝐷𝑗,𝑖
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑗,𝑖; 𝛿𝑗,𝑖

where 𝛿𝑖,𝑗 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 , 𝛿𝑗,𝑖 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑗,𝑖 , 𝑐𝑡𝑛𝑡𝑧 .

Broadcast 𝐷𝑖,𝑗
𝑖

, 𝐷𝑗,𝑖
𝑖

𝑗∈𝑆𝑆∖{𝑖}

2.  Broadcast 𝑠𝑒𝑒𝑑𝑖,𝑗
𝑖

, 𝑠𝑒𝑒𝑑𝑗,𝑖
𝑖

 for 𝑗 s.t. 𝐷𝑖,𝑗
(𝑖)

≠ 𝐷𝑖,𝑗
𝑗

 or 𝐷𝑗,𝑖
(𝑖)

≠ 𝐷𝑗,𝑖
(𝑗)

 

3. Check 𝐷𝑘,ℓ
(𝑘)

= 𝐶𝑜𝑚 𝒎𝑘,ℓ
(𝑘)

 ; 𝛿𝑘,ℓ
(𝑘)

 and 𝐶𝑖,𝑗 = 𝐻𝑠𝑒𝑒𝑑(𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

) 

If not, 𝑘 is misbehavior.

𝐶𝑜𝑚: Lattice-based commitment scheme 

Inconsistent Mask

𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

, 𝑐𝑡𝑛𝑡𝑧 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

, 𝑐𝑡𝑛𝑡𝑧

Generated in KeyGen

Deterministic

Thanks to binding of 
commitment scheme, 
we can ensure that each pair 
uses the same masks!
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1. For 𝑗 ∈ 𝑆𝑆 ∖ {𝑖}, compute 𝐷𝑖,𝑗
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗  𝑎𝑛𝑑 𝐷𝑗,𝑖
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑗,𝑖; 𝛿𝑗,𝑖

where 𝛿𝑖,𝑗 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 , 𝛿𝑗,𝑖 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑗,𝑖 , 𝑐𝑡𝑛𝑡𝑧 .

Broadcast 𝐷𝑖,𝑗
𝑖

, 𝐷𝑗,𝑖
𝑖

𝑗∈𝑆𝑆∖{𝑖}

2.  Broadcast 𝑠𝑒𝑒𝑑𝑖,𝑗
𝑖

, 𝑠𝑒𝑒𝑑𝑗,𝑖
𝑖

 for 𝑗 s.t. 𝐷𝑖,𝑗
(𝑖)

≠ 𝐷𝑖,𝑗
𝑗

 or 𝐷𝑗,𝑖
(𝑖)

≠ 𝐷𝑗,𝑖
(𝑗)

 

3. Check 𝐷𝑘,ℓ
(𝑘)

= 𝐶𝑜𝑚 𝒎𝑘,ℓ
(𝑘)

 ; 𝛿𝑘,ℓ
(𝑘)

 and 𝐶𝑖,𝑗 = 𝐻𝑠𝑒𝑒𝑑(𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

) 

If not, 𝑘 is misbehavior.

𝐶𝑜𝑚: Lattice-based commitment scheme 

Inconsistent Mask

𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

, 𝑐𝑡𝑛𝑡𝑧 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

, 𝑐𝑡𝑛𝑡𝑧

Generated in KeyGen

Deterministic

Thanks to binding of 
commitment scheme, 
we can ensure that each pair 
uses the same masks!

Revealing seeds does not 
harm the security because 
seeds for honest pairs are 
not revealed.
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Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1) 𝒓𝑖 is short
(2) 𝒛𝑖 = 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

(3) Δ𝑖 = σ𝑗(𝒎𝑖,𝑗 − 𝒎𝑗,𝑖)

(4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧

(4)’𝐷𝑖,𝑗
(𝑖)

= 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗
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Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1) 𝒓𝑖 is short
(2) 𝒛𝑖 = 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

(3) Δ𝑖 = σ𝑗(𝒎𝑖,𝑗 − 𝒎𝑗,𝑖)

(4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧

(4)’𝐷𝑖,𝑗
(𝑖)

= 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗

Algebraic !!
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Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1) 𝒓𝑖 is short
(2) 𝒛𝑖 = 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

(3) Δ𝑖 = σ𝑗(𝒎𝑖,𝑗 − 𝒎𝑗,𝑖)

(4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧

(4)’𝐷𝑖,𝑗
(𝑖)

= 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗

Algebraic !!

Lattice-based ZK-SNARK combining LNP[LNP22] + LaBRADOR[BS23]
which is sketched in prior works [BS23,ADDG24].
We formally analyze security of this approach in a modular manner.
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|𝝈|
Com Cost 
in Signing

|𝑺𝑺| Availability

Traccoon[dPKM+24] 12.7 28.2 𝑇 -

Traccoon-IA 12.7 28.2 𝑇
IA

60+6.4⋅ 𝑇

Same cost in signing protocol Simple add-on
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Future Works:
➢ Does our technique work on related lattice-based schemes using masking 

mechanism [EKT24], [KRT24], [BKL+25].
➢ Distributed Key Generation for our scheme

Independent and Concurrent Work:
[dPENP] Del Pino et al. “Simple and Efficient Lattice Threshold Signatures with 
Identifiable Aborts”
- IA for a variant of TRaccoon based on new short secret sharing technique
- Non-interactive IA
- Efficient when the number of signers or corruption threshold is small
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