Unmasking TRaccoon:

A Lattice-Based Threshold Signature with
An Efficient Identifiable Abort Protocol

Rafael del Pino Shuichi Katsumata Guilhem Niot
PQShield PQShield & AIST PQShield & Univ Rennes,CNRS,IRISA
Michael Reichle Kaoru Takemure

ETH Zurich PQShieId & AIST

ioned by the New Energy and Industrial Technology Development Organization (NEDO)

Our ldentifiable Abort Protocol

Main Contribution: TRaccoon with Identifiable Abort Protocol

* Our interactive IA protocol is a simple add-on to TRaccoon
e Communication cost in |IA protocol is 60 + 6.4 - T KB per a signer

Side Contributions:
* The first game-based definition of TS with an interactive |A protocol
* The first formal security analysis of a variant of LaBRADOR with ZK

T

Background

1-out-of-IN Threshold Signature

Verification key vk
()

Signing key sk

Sk]_

x 2-out-of-3

1-out-of-IN Threshold Signature

Verification key vk

Key Generation

* T or more key shares reconstruct sk

* No signer knows sk
* Less than T key shares leak no
information about sk

% We assume that a trusted party executes distributed key

generation as well as [BCK+22,dPKM+24] etc.
% 2-out-of-3

T

1-out-of-IN Threshold Signature
m,Ss

J
2

Sk1 \ Skz Sk

2
% 2-out-of-3 §§ =123}

1-out-of-IN Threshold Signature

Signing Protocol
m, 5 __signing Protocol

(Interactive) Signing Protocol General Procedure:
1. One decides message m and

protocol

4)
. . signer set SS
A 2. Users in SS execute signing

sk

Sk]_ \ 2 Sk3 /

= {2
x 2-out-of-3 §§ =123}

T

1-out-of-IN Threshold Signature

Signing Protocol
m, 5 __signing Protocol

(Interactive) Signing Protocol General Procedure:

1. One decides message m and
signer set SS

2. Users in SS execute signing
protocol

:> Signature ¢

Sk]_

x 2-out-of-3

PQ Threshold Signature Schemes

Early Schemes: [BKP13], [BGG+18], [ASY22], [GKS23]
—The use of heavy tools, e.g., FHE and HTDC

Recent Schemes: [dPKM+24], [EKT24], [KRT24], [CATZ24], [BKL+25], etc
—>No use of such heavy tools

PQ Threshold Signature Schemes

Early Schemes: [BKP13], [BGG+18], [ASY22], [GKS23]
—The use of heavy tools, e.g., FHE and HTDC

Recent Schemes: [dPKM+24], [EKT24], [KRT24], [CATZ24], [BKL+25], etc
—>No use of such heavy tools

TRaccoon [dPKM+24]:
* Three-round signing protocol
* Efficient sig size compared with early schemes

T

PQ Threshold Signature Schemes

Early Schemes: [BKP13], [BGG+18], [ASY22], [GKS23]
—The use of heavy tools, e.g., FHE and HTDC

Recent Schemes: [dPKM+24], [EKT24], [KRT24], [CATZ24], [BKL+25], etc

—>No use of such heavy tools
One drawback: No Availability

Malicious signer can arbitrarily
TRaccoon [dPKM+24]: cause the signing protocol to fail

* Three-round signing protocol
* Efficient sig size compared with early schemes

T

Availability for TS: Identifiable Abort

Identifiable Abort:
When the signing protocol fails, honest signers

A identify misbehaving signers.

Skz

Communication Channel:
Synchronous authenticated Broadcast

Signing protocol \

AA '
:> ?)/?Ild o

_ Sk SS = {1,3) sky / Signer 1 is misbehavior

Availability for TS: Identifiable Abort

Can we construct an efficient IA protocol for TRaccoon?

TRaccoon

Threshold Raccoon [dPKM+24]

vk: A € RE*Y,t = A - s + e where short vectors (s, e) € RS x RE i

sk;: s; is a secret share of s, (seedi,j, Seedj'i)je[N] are pair-wise seeds.

Lattice variant of
Sparkle[CKM23]

Threshold Raccoon [dPKM+24]

vk: A € RE*Y,t = A - s + e where short vectors (s, e) € RS x RE i

sk;: s; is a secret share of s, (seedi,j, Seedj'i)je[N are pair-wise seeds.

Lattice variant of }
]

Sparkle[CKM23]

Round 1: 1. Sample short vectors (r;, e;) € .'Rg X R’; cmt;
2. w;< A -1 +e >

3. Broadcast cmt; <« H(w;) . < cmt:
j

Skl'

Threshold Raccoon [dPKM+24]

vk: A € RE*,t = A - s + e where short vectors (s, e) € R x RE
sk;: s; is a secret share of s, (seedi,j, Seedj'i)je[N are pair-wise seeds.

Lattice variant of

] Sparkle[CKM23]
Round 1: 1. Sample short vectors (r;, e;) € .'Rg X R’; cmt;
2. w;<A-r;+e; >
3. Broadcast cmt; « H(w;) <
l l cmtj
Round 2: 1. Broadcast w; W
l

>
<

Threshold Raccoon [dPKM+24]

vk: A € RE*,t = A - s + e where short vectors (s, e) € R x RE

Sk;: s; is a secret share of s, (seedi,j, Seedj'i)je[N

Round 1:

Round 2:
Round 3:

PONPE B WNMNRE

y k
Sample short vectors (1;,e;) € Ry X RS

W; < A ri+ e{
Broadcast cmt; « H(w;)

Broadcast w;

Check cmt; = H(w;)
W)i W
c < H.(vk,m,w)

Broadcastz; < ¢ - Lgg;- §; +1; + A;

are pair-wise seeds.

Skl'

Lattice variant of

Sparkle[CKM23]
Cmtl'
>
<
cmtj
Wi
>
<
Wi
Z;
>
<
Z

Threshold Raccoon [dPKM+24]

vk: A € RE*,t = A - s + e where short vectors (s, e) € R x RE

Sk;: s; is a secret share of s, (seedi,j, Seedj'i)je[N

Round 1:

Round 2:
Round 3:

PONPE B WNMNRE

y k
Sample short vectors (1;,e;) € Ry X RS

W; < A ri+ e{
Broadcast cmt; « H(w;)

Broadcast w;

Check cmt; = H(w;)
W)i W
c < H.(vk,m,w)

Broadcastz; < ¢ - Lgg;- §; +1; + A;

are pair-wise seeds.

Skl'

Resulting signature: (¢, z, h) wherez =),,z;, h=w—-A-z+c-t
Verification: c = H.(vk,m,A-z—c -t + h)

Lattice variant of

Sparkle[CKM23]
Cmtl'
>
<
cmtj
Wi
>
<
Wi
Z;
>
<
Z

Threshold Raccoon [dPKM+24]

Important difference from Sparkle:

Masking Term: A; = 3, :(m; ; — m; ;) such that 3;; A; = 0
wherem; ; = msk(seedi,j,ctntz), ctnt, = SS||Im||(cmt;, w;);ess.

This is a crucial component to prevent lattice-specific attacks.

\)

3. C< O vk, m,w) Z;

4. Broadcastz; < c-Lgs;-S; +1; >

Resulting signature: (c,z, h) wherez =), z;,h=w—-A-z+c-t
Verification: c = H.(vk,m,A-z—c -t + h)

T

Our Approach

Straightforward Approach

All signers prove that they honestly executed the signing protocol for each round.

Cmtl'

<
Cmtj
Wi
>
<

sk, wj

Straightforward Approach

All signers prove that they honestly executed the signing protocol for each round.

Cmti, T[l,i

<
. Cmtj, T[Lj
Increase communication

W', 7T2,' .))
n — > cost during signing protocol
<<
sky Wj, Ty, o

Z;,Tl3;

Zj , 7'[3’]'

Deferred |A Protocol

Delay the identification of misbehaving signers until the protocol aborts.

Signing Protocol
a ® N
[=

4 \
.0
Sk1 Sk3

T

Deferred |A Protocol

Delay the identification of misbehaving signers until the protocol aborts.

Signing Protocol
a ® N
[=

0.0
n ﬂ Valid o Do Nothing]
Skl Sk3

Deferred |A Protocol

Delay the identification of misbehaving signers until the protocol aborts.

/ Signing Protocol \ / IA Protocol
. Signing protocol aborts >
[o
, sk \ IAS
.0
\;.; sﬂkS/ Valid o > [Do Nothing]

J

Deferred |A Protocol

Delay the identification of misbehaving signers until the protocol aborts.

Signing Protocol IA Protocol
B o

A Preserve the original protocol <
V4 N * Communication and computation
< costs do not increase if signing
- \\ protocol succeeds.
n ﬂ Valid o L Do Nothlng - . ‘
Skl Sk3 Sk3

T

Deferred |A Protocol

Delay the identification of misbehaving signers until the protocol aborts.

Slgnlng Protocol IA Protocol
i — N ™

Existing game-based definitions captures
only non-interactive |A.

We formalized game-based security
definition of TS with interactive IA protocol.

& SK] SK3 /
T

Relations to be Proven via NIZK

Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1) r; is short

(2) Z; = C- LSS,l" S; + r; + Ai
) A; = X;(my ; —my)

(4 m;; = msk(seedi,j, ctnt,)

Relations to be Proven via NIZK

Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1) r; is short
(2)z; =c-Lggi-s; +1; + 4 } Algebraic
(3) Ai = Z](ml,] — mj,i)

(4) m;; = msk(seedi,j, ctntz) } Non-Algebraic

Relations to be Proven via NIZK

Our IA protocol follows the approach using NIZK.

Relations to be proven:
(1) r; is short
(2) z; = c - Lgs;-s; + 1 + 4 } Algebraic

(3) Ai = Z](ml,] — mj,i)
(4) m;; = msk(seedi,j,ctntz) } Non-Algebraic

Proving “mixed” relations is impractical &=
How can we avoid this?

T

Bypassing Non-Algebraic Relation

Why is (4) m; ; = msk(seedi,j, ctnt,) required?

Bypassing Non-Algebraic Relation

Why is (4) m; ; = msk(seedi,j, ctnt,) required?
= Ensure };;A; =0

Bypassing Non-Algebraic Relation

Why is (4) m; ; = msk(seedi,j, ctnt,) required?
= Ensure },;A; =0
— () Each pair of signers uses the same masks

Bypassing Non-Algebraic Relation

Why is (4) m; ; = msk (seed; ;, ctnt,) required?
= Ensure },;A; =0

— () Each pair of signers uses the same masks

J?

Our observation:
As long as each pair uses the same m; ; even though it is not

honestly generated,);; A; = 0 holds.

Bypassing Non-Algebraic Relation

Why is (4) m; ; = msk (seed; ;, ctnt,) required?
= Ensure },;A; =0

— () Each pair of signers uses the same masks

J?

Our observation:
As long as each pair uses the same m; ; even though it is not

honestly generated,);; A; = 0 holds.

ldea: Ensure () outside of NIZK

T

How to Check (3k)

Com: Lattice-based commitment scheme

1. Forj €8S\ {i}, compute Dl.(j.) — Com(mu; 11) and D(i) Com(mj,i; 5j,i)
where §; ; = md(seedi’j, ctntz), 0ji = md(see i ctnt)

Broadcast (Dl(?, D(l))]ess*\{i}

Deterministic

How to Check (3k)

Com: Lattice-based commitment scheme

1. Forj €8S\ {i}, compute Dl.(j.) — Com(mu; U) and D(i) Com(mj,i; 5j,i)
where §; ; = rnd(seedi’j, ctntz), 0ji = md(see i ctnt)

Broadcast (D(l) D(l)

Deterministic
LI)JESS\{i}

Inconsistent Mask

2. Broadcast (Seed() Seed()) for j s.t. D() + D(]) or D(l) + D(])

L]’

How to Check (3k)

Com: Lattice-based commitment scheme

1. Forj €8S\ {i}, compute Dl.(j.) — Com(ml]; U) and D(i) Com(mj,i; 51-,1-)
where §; ; = md(seedi’j, ctntz), 0ji = md(see i ctnt)

Broadcast (D(l) D(l)

Deterministic
LI)JESS\{i}

| i Mask
2. Broadcast seed() seed() for] s.t. D() —+ D(J) or D(l) & D(J) nconsistent Ivias

i,j’
Seed()c&] Qed() ctnt,]
msk k2t rnd kL’
3. CheckD,E{,) Com mk{,,Sékg) and C; ; Seed(seed(k))

If not, k is mlsbehawor T Generated in KeyGen]

How to Check (3k)

Com: Lattice-based commitment scheme

| Thanks to binding of
1. Forj € S5\ {i}, compute Di(,;-) « Com(m, ;; 6; ;| commitment scheme,
where 8; ; = Hynq(seed; ;, ctnt,), §; ; = Hyng({ We can ensure that each pair

Broadcast (Dl(?, D(l)) " uses the same masks!
JESS\{i

—
I ' Mask
2. Broadcast Seedl(]),seed() for] s.t. D() * D(]) or D(l) +* D(]) nconsistent vias
q® (k)
Hinsk See k{,CtTlt Hyna Seedk{,,ctnt
3. CheckD,E{,) Com mk{,,Sg? and C; ; Seed(seed(k))

If not, k is mlsbehawor T Generated in KeyGen]

How to Check (3k)

Revealing seeds does not heme Thanks to binding of

harm the security because |- Com(m, ;; &; ;| commitment scheme,

seeds for honest pairs are E), i = na({We can ensure that each pair

not revealed. uses the same masks!

2. Broadcast (Seeder s.t. Di(i_) =+ D.(j.m) Inconsistent Mask
: : y i,j ji jid

[Hmsk (Seed&@] %edf{?,ctntz)]

3. Check D,E’? = Com (m,({kg ;515?) and (; ; = seed(Seedl(cl,?)

If not, k is misbehavior.

T Generated in KeyGen]

Eventual Relations to be Proven via NIZK

Our |A protocol follows the approach using NIZK.

Relations to be proven:

(1) r; is short

(2)z; =c - Lggi- §; +1; + A
34, =% (ml] _m]l)

SU—— -)
-t/ i,J _ 1lmsk \occwl], L,LTLLZ)

(4)’ Dl(;) — Com(mi,j, i,j)

T

Eventual Relations to be Proven via NIZK

Our |A protocol follows the approach using NIZK.

Relations to be proven:

(1) r; is short

(2)z; =c - Lggi- §; +1; + A
34, =% (ml] _m]l)

SU—— -)
-t/ i,J _ 1lmsk \occwl], L,LTLLZ)

(4)’ Dl(;) — Com(mi,j, i,j) U

> Algebraic !!

T

Eventual Relations to be Proven via NIZK

Our |A protocol follows the approach using NIZK.

Relations to be proven:

(1) r; is short

(2) Z; = C- LSS,i' S; + r; + Ai

(3) Ai = Z](ml,] — mj’i)

o srSeeth, Tttty

(4) (l) Com(mi’j; 51"]') _
Lattlce-based ZK-SNARK combining LNP[LNP22] + LaBRADOR|[BS23]

which is sketched in prior works [BS23,ADDG24].
We formally analyze security of this approach in a modular manner.

T

> Algebraic !!

Performance

| STt st | meeny
In Signing

Traccoon[dPKM+24] 12.7 28.2 T -

1A

Traccoon-IA 12.7 28.2 T 6046.4- T

Same cost in signing protocol Simple add-on

Thank you for your attention!!

Future Works:

» Does our technique work on related lattice-based schemes using masking
mechanism [EKT24], [KRT24], [BKL+25].

» Distributed Key Generation for our scheme

ndependent and Concurrent Work:

'[dPENP] Del Pino et al. “Simple and Efficient Lattice Threshold Signatures with
dentifiable Aborts”

|A for a variant of TRaccoon based on new short secret sharing technique
- Non-interactive |A

- Efficient when the number of signers or corruption threshold is small

T

	スライド 1: Unmasking TRaccoon: A Lattice-Based Threshold Signature with An Efficient Identifiable Abort Protocol
	スライド 2: Our Identifiable Abort Protocol
	スライド 3: Background
	スライド 4: T-out-of-N Threshold Signature
	スライド 5: T-out-of-N Threshold Signature
	スライド 6: T-out-of-N Threshold Signature
	スライド 7: T-out-of-N Threshold Signature
	スライド 8: T-out-of-N Threshold Signature
	スライド 9: PQ Threshold Signature Schemes
	スライド 10: PQ Threshold Signature Schemes
	スライド 11: PQ Threshold Signature Schemes
	スライド 12: Availability for TS: Identifiable Abort
	スライド 13: Availability for TS: Identifiable Abort
	スライド 14: TRaccoon
	スライド 15: Threshold Raccoon [dPKM+24]
	スライド 16: Threshold Raccoon [dPKM+24]
	スライド 17: Threshold Raccoon [dPKM+24]
	スライド 18: Threshold Raccoon [dPKM+24]
	スライド 19: Threshold Raccoon [dPKM+24]
	スライド 20: Threshold Raccoon [dPKM+24]
	スライド 21: Our Approach
	スライド 22: Straightforward Approach
	スライド 23: Straightforward Approach
	スライド 24: Deferred IA Protocol
	スライド 25: Deferred IA Protocol
	スライド 26: Deferred IA Protocol
	スライド 27: Deferred IA Protocol
	スライド 28: Deferred IA Protocol
	スライド 29: Relations to be Proven via NIZK
	スライド 30: Relations to be Proven via NIZK
	スライド 31: Relations to be Proven via NIZK
	スライド 32: Bypassing Non-Algebraic Relation
	スライド 33: Bypassing Non-Algebraic Relation
	スライド 34: Bypassing Non-Algebraic Relation
	スライド 35: Bypassing Non-Algebraic Relation
	スライド 36: Bypassing Non-Algebraic Relation
	スライド 37: How to Check (★)
	スライド 38: How to Check (★)
	スライド 39: How to Check (★)
	スライド 40: How to Check (★)
	スライド 41: How to Check (★)
	スライド 42: Eventual Relations to be Proven via NIZK
	スライド 43: Eventual Relations to be Proven via NIZK
	スライド 44: Eventual Relations to be Proven via NIZK
	スライド 45: Performance
	スライド 46: Thank you for your attention!!

