
Unmasking TRaccoon:
A Lattice-Based Threshold Signature with

An Efficient Identifiable Abort Protocol

Kaoru Takemure
PQShield & AIST

Shuichi Katsumata
PQShield & AIST

Rafael del Pino
PQShield

Guilhem Niot
PQShield & Univ Rennes,CNRS,IRISA

Michael Reichle
ETH Zurich

1This presentation is based on results obtained from a project, JPNP24003, commissioned by the New Energy and Industrial Technology Development Organization (NEDO)

Our Identifiable Abort Protocol

2

Main Contribution: TRaccoon with Identifiable Abort Protocol

• Our interactive IA protocol is a simple add-on to TRaccoon
• Communication cost in IA protocol is 60 + 6.4 ⋅ 𝑇 KB per a signer

Side Contributions:
• The first game-based definition of TS with an interactive IA protocol
• The first formal security analysis of a variant of LaBRADOR with ZK

Background

3

T-out-of-N Threshold Signature

4

Verification key 𝑣𝑘

⇕
Signing key 𝑠𝑘

※2-out-of-3

𝑠𝑘1
𝑠𝑘2 𝑠𝑘3

Key Generation

T-out-of-N Threshold Signature

5

Verification key 𝑣𝑘

⇕
Signing key 𝑠𝑘

※2-out-of-3

※We assume that a trusted party executes distributed key
generation as well as [BCK+22,dPKM+24] etc.

• 𝑇 or more key shares reconstruct 𝑠𝑘

• No signer knows 𝑠𝑘
• Less than T key shares leak no

information about 𝑠𝑘

𝑠𝑘1
𝑠𝑘2 𝑠𝑘3

Key Generation

T-out-of-N Threshold Signature

6

Signing Protocol

※2-out-of-3

𝑠𝑘1
𝑠𝑘2 𝑠𝑘3

𝑆𝑆 = 2,3

𝑚, 𝑆𝑆

T-out-of-N Threshold Signature

7

Signing Protocol

※2-out-of-3

𝑠𝑘1
𝑠𝑘2 𝑠𝑘3

𝑆𝑆 = 2,3

𝑚, 𝑆𝑆

(Interactive) Signing Protocol General Procedure:
1. One decides message 𝑚 and

signer set 𝑆𝑆
2. Users in 𝑆𝑆 execute signing

protocol

T-out-of-N Threshold Signature

8

Signing Protocol

※2-out-of-3

𝑠𝑘1
𝑠𝑘2 𝑠𝑘3

𝑆𝑆 = 2,3

𝑚, 𝑆𝑆

(Interactive) Signing Protocol General Procedure:
1. One decides message 𝑚 and

signer set 𝑆𝑆
2. Users in 𝑆𝑆 execute signing

protocol

Signature 𝜎

PQ Threshold Signature Schemes

9

Early Schemes: [BKP13], [BGG+18], [ASY22], [GKS23]
The use of heavy tools, e.g., FHE and HTDC

Recent Schemes: [dPKM+24], [EKT24], [KRT24], [CATZ24], [BKL+25], etc
No use of such heavy tools

PQ Threshold Signature Schemes

10

Early Schemes: [BKP13], [BGG+18], [ASY22], [GKS23]
The use of heavy tools, e.g., FHE and HTDC

Recent Schemes: [dPKM+24], [EKT24], [KRT24], [CATZ24], [BKL+25], etc
No use of such heavy tools

TRaccoon [dPKM+24]:
• Three-round signing protocol
• Efficient sig size compared with early schemes

PQ Threshold Signature Schemes

11

Early Schemes: [BKP13], [BGG+18], [ASY22], [GKS23]
The use of heavy tools, e.g., FHE and HTDC

Recent Schemes: [dPKM+24], [EKT24], [KRT24], [CATZ24], [BKL+25], etc
No use of such heavy tools

TRaccoon [dPKM+24]:
• Three-round signing protocol
• Efficient sig size compared with early schemes

One drawback: No Availability

Malicious signer can arbitrarily
cause the signing protocol to fail

Availability for TS: Identifiable Abort

12

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Signing protocol

Valid 𝜎
or

Signer 1 is misbehavior 𝑆𝑆 = 1,3

Identifiable Abort:
When the signing protocol fails, honest signers
identify misbehaving signers.

Communication Channel:
Synchronous authenticated Broadcast

Availability for TS: Identifiable Abort

13

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Signing protocol

Valid 𝜎
or

Signer 1 is misbehavior 𝑆𝑆 = 1,3

Identifiable Abort:
When the signing protocol fails, honest signers
identify misbehaving signers.

Communication Channel:
Synchronous authenticated Broadcast

PQTS:
[BGG+18], [ASY22] (HS)
[GKS23] (NIZK)

Signing Protocol requires T signers

Can we construct an efficient IA protocol for TRaccoon?

TRaccoon

14

Threshold Raccoon [dPKM+24]

15

𝑣𝑘: 𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝒕 = 𝑨 ⋅ 𝒔 + 𝒆 where short vectors (𝒔, 𝒆) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

𝑠𝑘𝑖: 𝒔𝑖 is a secret share of 𝒔, 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑠𝑒𝑒𝑑𝑗,𝑖 𝑗∈ 𝑁
 are pair-wise seeds.

𝑠𝑘𝑖

Lattice variant of
Sparkle[CKM23]

Threshold Raccoon [dPKM+24]

16

𝑣𝑘: 𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝒕 = 𝑨 ⋅ 𝒔 + 𝒆 where short vectors (𝒔, 𝒆) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

𝑠𝑘𝑖: 𝒔𝑖 is a secret share of 𝒔, 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑠𝑒𝑒𝑑𝑗,𝑖 𝑗∈ 𝑁
 are pair-wise seeds.

𝑠𝑘𝑖

1. Sample short vectors (𝒓𝑖 , 𝒆𝑖
′) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

2. 𝒘𝑖 ← 𝑨 ⋅ 𝒓𝑖 + 𝒆𝑖
′

3. Broadcast 𝑐𝑚𝑡𝑖 ← 𝐻(𝒘𝑖)

Round 1: 𝑐𝑚𝑡𝑖

𝑐𝑚𝑡𝑗

Lattice variant of
Sparkle[CKM23]

Threshold Raccoon [dPKM+24]

17

𝑣𝑘: 𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝒕 = 𝑨 ⋅ 𝒔 + 𝒆 where short vectors (𝒔, 𝒆) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

𝑠𝑘𝑖: 𝒔𝑖 is a secret share of 𝒔, 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑠𝑒𝑒𝑑𝑗,𝑖 𝑗∈ 𝑁
 are pair-wise seeds.

𝑠𝑘𝑖

1. Sample short vectors (𝒓𝑖 , 𝒆𝑖
′) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

2. 𝒘𝑖 ← 𝑨 ⋅ 𝒓𝑖 + 𝒆𝑖
′

3. Broadcast 𝑐𝑚𝑡𝑖 ← 𝐻(𝒘𝑖)

1. Broadcast 𝒘𝑖

Round 1:

Round 2:

𝑐𝑚𝑡𝑖

𝑐𝑚𝑡𝑗

𝒘𝑖

𝒘𝑗

Lattice variant of
Sparkle[CKM23]

Threshold Raccoon [dPKM+24]

18

𝑣𝑘: 𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝒕 = 𝑨 ⋅ 𝒔 + 𝒆 where short vectors (𝒔, 𝒆) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

𝑠𝑘𝑖: 𝒔𝑖 is a secret share of 𝒔, 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑠𝑒𝑒𝑑𝑗,𝑖 𝑗∈ 𝑁
 are pair-wise seeds.

𝑠𝑘𝑖

1. Sample short vectors (𝒓𝑖 , 𝒆𝑖
′) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

2. 𝒘𝑖 ← 𝑨 ⋅ 𝒓𝑖 + 𝒆𝑖
′

3. Broadcast 𝑐𝑚𝑡𝑖 ← 𝐻(𝒘𝑖)

1. Broadcast 𝒘𝑖

1. Check 𝑐𝑚𝑡𝑗 = 𝐻(𝒘𝑗)

2. 𝒘 ← σ𝑗 𝒘𝑗

3. 𝑐 ← 𝐻𝑐(𝑣𝑘, 𝑚, 𝒘)
4. Broadcast 𝒛𝑖 ← 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

Round 1:

Round 2:

Round 3:

𝑐𝑚𝑡𝑖

𝑐𝑚𝑡𝑗

𝒘𝑖

𝒘𝑗

Lattice variant of
Sparkle[CKM23]

𝒛𝑖

𝒛𝑗

Threshold Raccoon [dPKM+24]

19

𝑣𝑘: 𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝒕 = 𝑨 ⋅ 𝒔 + 𝒆 where short vectors (𝒔, 𝒆) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

𝑠𝑘𝑖: 𝒔𝑖 is a secret share of 𝒔, 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑠𝑒𝑒𝑑𝑗,𝑖 𝑗∈ 𝑁
 are pair-wise seeds.

𝑠𝑘𝑖

1. Sample short vectors (𝒓𝑖 , 𝒆𝑖
′) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

2. 𝒘𝑖 ← 𝑨 ⋅ 𝒓𝑖 + 𝒆𝑖
′

3. Broadcast 𝑐𝑚𝑡𝑖 ← 𝐻(𝒘𝑖)

1. Broadcast 𝒘𝑖

1. Check 𝑐𝑚𝑡𝑗 = 𝐻(𝒘𝑗)

2. 𝒘 ← σ𝑗 𝒘𝑗

3. 𝑐 ← 𝐻𝑐(𝑣𝑘, 𝑚, 𝒘)
4. Broadcast 𝒛𝑖 ← 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

Round 1:

Round 2:

Round 3:

𝑐𝑚𝑡𝑖

𝑐𝑚𝑡𝑗

𝒘𝑖

𝒘𝑗

Lattice variant of
Sparkle[CKM23]

𝒛𝑖

𝒛𝑗Resulting signature: (𝑐, 𝒛, 𝒉) where 𝒛 = σ𝑖 𝒛𝑖 , 𝒉 = 𝒘 − 𝑨 ⋅ 𝒛 + 𝑐 ⋅ 𝒕
Verification: 𝑐 = 𝐻𝑐(𝑣𝑘, 𝑚, 𝑨 ⋅ 𝒛 − 𝑐 ⋅ 𝒕 + 𝒉)

1. Sample short vectors (𝒓𝑖 , 𝒆𝑖
′) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

2. 𝒘𝑖 ← 𝑨 ⋅ 𝒓𝑖 + 𝒆𝑖
′

3. Broadcast 𝑐𝑚𝑡𝑖 ← 𝐻(𝒘𝑖)

1. Broadcast 𝒘𝑖

1. Check 𝑐𝑚𝑡𝑗 = 𝐻(𝒘𝑗)

2. 𝒘 ← σ𝑗 𝒘𝑗

3. 𝑐 ← 𝐻𝑐(𝑣𝑘, 𝑚, 𝒘)
4. Broadcast 𝒛𝑖 ← 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

Threshold Raccoon [dPKM+24]

20

𝑣𝑘: 𝑨 ∈ ℛ𝑞
𝑘×ℓ, 𝒕 = 𝑨 ⋅ 𝒔 + 𝒆 where short vectors (𝑠, 𝑒) ∈ ℛ𝑞

ℓ × ℛ𝑞
𝑘

𝑠𝑘𝑖: 𝑠𝑖 is a secret share of 𝒔, 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑠𝑒𝑒𝑑𝑗,𝑖 𝑗∈ 𝑁
 are pair-wise seeds.

𝑠𝑘1

Round 1:

Round 2:

Round 3:

Lattice variant of
Sparkle[CKM23]

Resulting signature: (𝑐, 𝒛, 𝒉) where 𝒛 = σ𝑖 𝒛𝑖 , 𝒉 = 𝒘 − 𝑨 ⋅ 𝒛 + 𝑐 ⋅ 𝒕
Verification: 𝑐 = 𝐻𝑐(𝑣𝑘, 𝑚, 𝑨 ⋅ 𝒛 − 𝑐 ⋅ 𝒕 + 𝒉)

𝑐𝑚𝑡𝑖

𝑐𝑚𝑡𝑗

𝒘𝑖

𝒘𝑗

𝒛𝑖

𝒛𝑗

Important difference from Sparkle:

Masking Term: Δ𝑖 = σ𝑗(𝒎𝑖,𝑗 − 𝒎𝑗,𝑖) such that σ𝑖 Δ𝑖 = 0

where 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 , 𝑐𝑡𝑛𝑡𝑧 = 𝑆𝑆||𝑚|| 𝑐𝑚𝑡𝑖 , 𝑤𝑖 𝑖∈𝑆𝑆.

This is a crucial component to prevent lattice-specific attacks.

Our Approach

21

Straightforward Approach

22

All signers prove that they honestly executed the signing protocol for each round.

𝑠𝑘1

𝑐𝑚𝑡𝑖

𝒘𝑖

𝒘𝑗

𝒛𝑖

𝒛𝑗

𝑐𝑚𝑡𝑗

Straightforward Approach

23

All signers prove that they honestly executed the signing protocol for each round.

𝑠𝑘1

𝑐𝑚𝑡𝑖, 𝜋1,𝑖

𝒘𝑖, 𝜋2,𝑖

𝒘𝑗, 𝜋2,𝑗

𝒛𝑖 , 𝜋3,𝑖

𝒛𝑗 , 𝜋3,𝑗

Increase communication
cost during signing protocol

𝑐𝑚𝑡𝑗, 𝜋1,𝑗

Deferred IA Protocol

24

Delay the identification of misbehaving signers until the protocol aborts.

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Signing Protocol

Deferred IA Protocol

25

Delay the identification of misbehaving signers until the protocol aborts.

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Valid 𝜎 Do Nothing

Signing Protocol

Deferred IA Protocol

26

Delay the identification of misbehaving signers until the protocol aborts.

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3 𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

IA Protocol

Signing protocol aborts

Valid 𝜎 Do Nothing

Signing Protocol

IAS

Deferred IA Protocol

27

Delay the identification of misbehaving signers until the protocol aborts.

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Signing Protocol

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Signing protocol aborts

IA Protocol

Valid 𝜎 Do Nothing

Preserve the original protocol

• Communication and computation
costs do not increase if signing
protocol succeeds.

Deferred IA Protocol

28

Delay the identification of misbehaving signers until the protocol aborts.

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Valid 𝜎

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Signing protocol aborts

Do Nothing

IA ProtocolSigning Protocol

Existing game-based definitions captures
only non-interactive IA.

We formalized game-based security
definition of TS with interactive IA protocol.

Relations to be Proven via NIZK

29

Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1) 𝒓𝑖 is short
(2) 𝒛𝑖 = 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

(3) Δ𝑖 = σ𝑗(𝒎𝑖,𝑗 − 𝒎𝑗,𝑖)

(4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧

Relations to be Proven via NIZK

30

Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1) 𝒓𝑖 is short
(2) 𝒛𝑖 = 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

(3) Δ𝑖 = σ𝑗(𝒎𝑖,𝑗 − 𝒎𝑗,𝑖)

(4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧

Algebraic

Non-Algebraic

Relations to be Proven via NIZK

31

Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1) 𝒓𝑖 is short
(2) 𝒛𝑖 = 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

(3) Δ𝑖 = σ𝑗(𝒎𝑖,𝑗 − 𝒎𝑗,𝑖)

(4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧

Algebraic

Non-Algebraic

Proving “mixed” relations is impractical
How can we avoid this?

Bypassing Non-Algebraic Relation

32

Why is (4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 required?

Bypassing Non-Algebraic Relation

33

Why is (4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 required?

 Ensure σ𝑖 Δ𝑖 = 0

Bypassing Non-Algebraic Relation

34

Why is (4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 required?

 Ensure σ𝑖 Δ𝑖 = 0

 (★) Each pair of signers uses the same masks

Bypassing Non-Algebraic Relation

35

Why is (4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 required?

 Ensure σ𝑖 Δ𝑖 = 0

 (★) Each pair of signers uses the same masks

Our observation:
As long as each pair uses the same 𝒎𝑖,𝑗 even though it is not

honestly generated, σ𝑖 Δ𝑖 = 0 holds.

Bypassing Non-Algebraic Relation

36

Why is (4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 required?

 Ensure σ𝑖 Δ𝑖 = 0

 (★) Each pair of signers uses the same masks

Our observation:
As long as each pair uses the same 𝒎𝑖,𝑗 even though it is not

honestly generated, σ𝑖 Δ𝑖 = 0 holds.

Idea: Ensure (★) outside of NIZK

How to Check (★)

37

1. For 𝑗 ∈ 𝑆𝑆 ∖ {𝑖}, compute 𝐷𝑖,𝑗
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗 𝑎𝑛𝑑 𝐷𝑗,𝑖
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑗,𝑖; 𝛿𝑗,𝑖

where 𝛿𝑖,𝑗 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 , 𝛿𝑗,𝑖 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑗,𝑖 , 𝑐𝑡𝑛𝑡𝑧 .

Broadcast 𝐷𝑖,𝑗
𝑖

, 𝐷𝑗,𝑖
𝑖

𝑗∈𝑆𝑆∖{𝑖}

𝐶𝑜𝑚: Lattice-based commitment scheme

Deterministic

How to Check (★)

38

1. For 𝑗 ∈ 𝑆𝑆 ∖ {𝑖}, compute 𝐷𝑖,𝑗
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗 𝑎𝑛𝑑 𝐷𝑗,𝑖
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑗,𝑖; 𝛿𝑗,𝑖

where 𝛿𝑖,𝑗 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 , 𝛿𝑗,𝑖 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑗,𝑖 , 𝑐𝑡𝑛𝑡𝑧 .

Broadcast 𝐷𝑖,𝑗
𝑖

, 𝐷𝑗,𝑖
𝑖

𝑗∈𝑆𝑆∖{𝑖}

2. Broadcast 𝑠𝑒𝑒𝑑𝑖,𝑗
𝑖

, 𝑠𝑒𝑒𝑑𝑗,𝑖
𝑖

 for 𝑗 s.t. 𝐷𝑖,𝑗
(𝑖)

≠ 𝐷𝑖,𝑗
𝑗

 or 𝐷𝑗,𝑖
(𝑖)

≠ 𝐷𝑗,𝑖
(𝑗)

𝐶𝑜𝑚: Lattice-based commitment scheme

Inconsistent Mask

Deterministic

How to Check (★)

39

1. For 𝑗 ∈ 𝑆𝑆 ∖ {𝑖}, compute 𝐷𝑖,𝑗
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗 𝑎𝑛𝑑 𝐷𝑗,𝑖
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑗,𝑖; 𝛿𝑗,𝑖

where 𝛿𝑖,𝑗 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 , 𝛿𝑗,𝑖 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑗,𝑖 , 𝑐𝑡𝑛𝑡𝑧 .

Broadcast 𝐷𝑖,𝑗
𝑖

, 𝐷𝑗,𝑖
𝑖

𝑗∈𝑆𝑆∖{𝑖}

2. Broadcast 𝑠𝑒𝑒𝑑𝑖,𝑗
𝑖

, 𝑠𝑒𝑒𝑑𝑗,𝑖
𝑖

 for 𝑗 s.t. 𝐷𝑖,𝑗
(𝑖)

≠ 𝐷𝑖,𝑗
𝑗

 or 𝐷𝑗,𝑖
(𝑖)

≠ 𝐷𝑗,𝑖
(𝑗)

3. Check 𝐷𝑘,ℓ
(𝑘)

= 𝐶𝑜𝑚 𝒎𝑘,ℓ
(𝑘)

 ; 𝛿𝑘,ℓ
(𝑘)

 and 𝐶𝑖,𝑗 = 𝐻𝑠𝑒𝑒𝑑(𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

)

If not, 𝑘 is misbehavior.

𝐶𝑜𝑚: Lattice-based commitment scheme

Inconsistent Mask

𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

, 𝑐𝑡𝑛𝑡𝑧 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

, 𝑐𝑡𝑛𝑡𝑧

Generated in KeyGen

Deterministic

How to Check (★)

40

1. For 𝑗 ∈ 𝑆𝑆 ∖ {𝑖}, compute 𝐷𝑖,𝑗
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗 𝑎𝑛𝑑 𝐷𝑗,𝑖
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑗,𝑖; 𝛿𝑗,𝑖

where 𝛿𝑖,𝑗 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 , 𝛿𝑗,𝑖 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑗,𝑖 , 𝑐𝑡𝑛𝑡𝑧 .

Broadcast 𝐷𝑖,𝑗
𝑖

, 𝐷𝑗,𝑖
𝑖

𝑗∈𝑆𝑆∖{𝑖}

2. Broadcast 𝑠𝑒𝑒𝑑𝑖,𝑗
𝑖

, 𝑠𝑒𝑒𝑑𝑗,𝑖
𝑖

 for 𝑗 s.t. 𝐷𝑖,𝑗
(𝑖)

≠ 𝐷𝑖,𝑗
𝑗

 or 𝐷𝑗,𝑖
(𝑖)

≠ 𝐷𝑗,𝑖
(𝑗)

3. Check 𝐷𝑘,ℓ
(𝑘)

= 𝐶𝑜𝑚 𝒎𝑘,ℓ
(𝑘)

 ; 𝛿𝑘,ℓ
(𝑘)

 and 𝐶𝑖,𝑗 = 𝐻𝑠𝑒𝑒𝑑(𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

)

If not, 𝑘 is misbehavior.

𝐶𝑜𝑚: Lattice-based commitment scheme

Inconsistent Mask

𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

, 𝑐𝑡𝑛𝑡𝑧 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

, 𝑐𝑡𝑛𝑡𝑧

Generated in KeyGen

Deterministic

Thanks to binding of
commitment scheme,
we can ensure that each pair
uses the same masks!

How to Check (★)

41

1. For 𝑗 ∈ 𝑆𝑆 ∖ {𝑖}, compute 𝐷𝑖,𝑗
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗 𝑎𝑛𝑑 𝐷𝑗,𝑖
(𝑖)

← 𝐶𝑜𝑚 𝒎𝑗,𝑖; 𝛿𝑗,𝑖

where 𝛿𝑖,𝑗 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧 , 𝛿𝑗,𝑖 = 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑗,𝑖 , 𝑐𝑡𝑛𝑡𝑧 .

Broadcast 𝐷𝑖,𝑗
𝑖

, 𝐷𝑗,𝑖
𝑖

𝑗∈𝑆𝑆∖{𝑖}

2. Broadcast 𝑠𝑒𝑒𝑑𝑖,𝑗
𝑖

, 𝑠𝑒𝑒𝑑𝑗,𝑖
𝑖

 for 𝑗 s.t. 𝐷𝑖,𝑗
(𝑖)

≠ 𝐷𝑖,𝑗
𝑗

 or 𝐷𝑗,𝑖
(𝑖)

≠ 𝐷𝑗,𝑖
(𝑗)

3. Check 𝐷𝑘,ℓ
(𝑘)

= 𝐶𝑜𝑚 𝒎𝑘,ℓ
(𝑘)

 ; 𝛿𝑘,ℓ
(𝑘)

 and 𝐶𝑖,𝑗 = 𝐻𝑠𝑒𝑒𝑑(𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

)

If not, 𝑘 is misbehavior.

𝐶𝑜𝑚: Lattice-based commitment scheme

Inconsistent Mask

𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

, 𝑐𝑡𝑛𝑡𝑧 𝐻𝑟𝑛𝑑 𝑠𝑒𝑒𝑑𝑘,ℓ
𝑘

, 𝑐𝑡𝑛𝑡𝑧

Generated in KeyGen

Deterministic

Thanks to binding of
commitment scheme,
we can ensure that each pair
uses the same masks!

Revealing seeds does not
harm the security because
seeds for honest pairs are
not revealed.

Eventual Relations to be Proven via NIZK

42

Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1) 𝒓𝑖 is short
(2) 𝒛𝑖 = 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

(3) Δ𝑖 = σ𝑗(𝒎𝑖,𝑗 − 𝒎𝑗,𝑖)

(4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧

(4)’𝐷𝑖,𝑗
(𝑖)

= 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗

Eventual Relations to be Proven via NIZK

43

Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1) 𝒓𝑖 is short
(2) 𝒛𝑖 = 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

(3) Δ𝑖 = σ𝑗(𝒎𝑖,𝑗 − 𝒎𝑗,𝑖)

(4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧

(4)’𝐷𝑖,𝑗
(𝑖)

= 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗

Algebraic !!

Eventual Relations to be Proven via NIZK

44

Our IA protocol follows the approach using NIZK.

Relations to be proven:

(1) 𝒓𝑖 is short
(2) 𝒛𝑖 = 𝑐 ⋅ 𝐿𝑆𝑆,𝑖⋅ 𝒔𝑖 + 𝒓𝑖 + Δ𝑖

(3) Δ𝑖 = σ𝑗(𝒎𝑖,𝑗 − 𝒎𝑗,𝑖)

(4) 𝒎𝑖,𝑗 = 𝐻𝑚𝑠𝑘 𝑠𝑒𝑒𝑑𝑖,𝑗 , 𝑐𝑡𝑛𝑡𝑧

(4)’𝐷𝑖,𝑗
(𝑖)

= 𝐶𝑜𝑚 𝒎𝑖,𝑗; 𝛿𝑖,𝑗

Algebraic !!

Lattice-based ZK-SNARK combining LNP[LNP22] + LaBRADOR[BS23]
which is sketched in prior works [BS23,ADDG24].
We formally analyze security of this approach in a modular manner.

Performance

45

|𝝈|
Com Cost
in Signing

|𝑺𝑺| Availability

Traccoon[dPKM+24] 12.7 28.2 𝑇 -

Traccoon-IA 12.7 28.2 𝑇
IA

60+6.4⋅ 𝑇

Same cost in signing protocol Simple add-on

Thank you for your attention!!

46

Future Works:
➢ Does our technique work on related lattice-based schemes using masking

mechanism [EKT24], [KRT24], [BKL+25].
➢ Distributed Key Generation for our scheme

Independent and Concurrent Work:
[dPENP] Del Pino et al. “Simple and Efficient Lattice Threshold Signatures with
Identifiable Aborts”
- IA for a variant of TRaccoon based on new short secret sharing technique
- Non-interactive IA
- Efficient when the number of signers or corruption threshold is small

	スライド 1: Unmasking TRaccoon: A Lattice-Based Threshold Signature with An Efficient Identifiable Abort Protocol
	スライド 2: Our Identifiable Abort Protocol
	スライド 3: Background
	スライド 4: T-out-of-N Threshold Signature
	スライド 5: T-out-of-N Threshold Signature
	スライド 6: T-out-of-N Threshold Signature
	スライド 7: T-out-of-N Threshold Signature
	スライド 8: T-out-of-N Threshold Signature
	スライド 9: PQ Threshold Signature Schemes
	スライド 10: PQ Threshold Signature Schemes
	スライド 11: PQ Threshold Signature Schemes
	スライド 12: Availability for TS: Identifiable Abort
	スライド 13: Availability for TS: Identifiable Abort
	スライド 14: TRaccoon
	スライド 15: Threshold Raccoon [dPKM+24]
	スライド 16: Threshold Raccoon [dPKM+24]
	スライド 17: Threshold Raccoon [dPKM+24]
	スライド 18: Threshold Raccoon [dPKM+24]
	スライド 19: Threshold Raccoon [dPKM+24]
	スライド 20: Threshold Raccoon [dPKM+24]
	スライド 21: Our Approach
	スライド 22: Straightforward Approach
	スライド 23: Straightforward Approach
	スライド 24: Deferred IA Protocol
	スライド 25: Deferred IA Protocol
	スライド 26: Deferred IA Protocol
	スライド 27: Deferred IA Protocol
	スライド 28: Deferred IA Protocol
	スライド 29: Relations to be Proven via NIZK
	スライド 30: Relations to be Proven via NIZK
	スライド 31: Relations to be Proven via NIZK
	スライド 32: Bypassing Non-Algebraic Relation
	スライド 33: Bypassing Non-Algebraic Relation
	スライド 34: Bypassing Non-Algebraic Relation
	スライド 35: Bypassing Non-Algebraic Relation
	スライド 36: Bypassing Non-Algebraic Relation
	スライド 37: How to Check (★)
	スライド 38: How to Check (★)
	スライド 39: How to Check (★)
	スライド 40: How to Check (★)
	スライド 41: How to Check (★)
	スライド 42: Eventual Relations to be Proven via NIZK
	スライド 43: Eventual Relations to be Proven via NIZK
	スライド 44: Eventual Relations to be Proven via NIZK
	スライド 45: Performance
	スライド 46: Thank you for your attention!!

