Multiparty Distributed Point Functions

Aarushi Goel

 $\mathrm{Purdue} \to \mathrm{Rutgers}$

Mingyuan Wang

NYU Shanghai

Zhiheng Wang

 $\mathrm{SJTU} \to \mathrm{NYU}$ Shanghai

Crypto'25 — Aug 20

Sharing $f \in \mathcal{F}$

Local Eval given x

f

Correctness

$$y_1 + \dots + y_n = f(x)$$

- Privacy: corrupted shares hide $f \in \mathcal{F}$ • for this talk, n-1 corruption
- Efficiency

$$|f_1| + \dots + |f_n| = \mathrm{o}(\mathcal{D})$$

D denotes domain size

Local Eval given x

Correctness

$$y_1 + \dots + y_n = f(x)$$

- \bullet Privacy: corrupted shares hide $f \in \mathcal{F}$
 - for this talk, n-1 corruption

Efficiency

$$|f_1| + \cdots + |f_n| = \mathrm{o}(\mathcal{D})$$

D denotes domain size

Correctness

$$y_1 + \dots + y_n = f(x)$$

- Privacy: corrupted shares hide $f \in \mathcal{F}$ • for this talk, n-1 corruption
- Efficiency

$$|f_1| + \cdots + |f_n| = \mathrm{o}(\mathcal{D})$$

D denotes domain size

Correctness

$$y_1 + \dots + y_n = f(x)$$

- Privacy: corrupted shares hide $f \in \mathcal{F}$ • for this talk, n-1 corruption
- Efficiency

$$|f_1| + \dots + |f_n| = \mathrm{o}(\mathcal{D})$$

 \mathcal{D} denotes domain size.

Correctness

$$y_1 + \dots + y_n = f(x)$$

- Privacy: corrupted shares hide $f \in \mathcal{F}$
 - for this talk, n-1 corruption
- Efficiency

$$|f_1| + \dots + |f_n| = \mathrm{o}(\mathcal{D})$$

D denotes domain size.

Correctness

$$y_1 + \dots + y_n = f(x)$$

- Privacy: corrupted shares hide $f \in \mathcal{F}$
 - for this talk, n-1 corruption
- Efficiency

$$|f_1| + \cdots + |f_n| = \mathrm{o}(\mathcal{D})$$

 \mathcal{D} denotes domain size.

Distributed Point Functions (DPF)

Point Functions

$$f_{\alpha,\beta}(x) = \begin{cases} \beta & \text{if } x = \alpha \\ 0 & \text{otherwise} \end{cases}$$

DPF

Function secret sharing for the family of point functions [Gilboa-Ishai'14].

Applications of DPF / FSS

- Private Information Retrieval (read & write): [Gilboa-Ishai'14,Boyle-Gilboa-Ishai'15,
 - Corrigan-Gibbs-Boneh-Mazières'15, Boneh-Boyle-Corrigan-Gibbs-Gilboa-Ishai'21, Rathee-Zhang-Corrigan-Gibbs-Ada-Popa'24, ...]
- Pseudo-Correlation Generator (PCG): [Boyle-Couteau-Gilboa-Ishai'18,
 Schoppmann-Gascón-Reichert-Raykova'19, Boyle-Couteau-Gilboa-Ishai-Kohl-Scholl'19'20a'20b',
 Boyle-Couteau-Gilboa-Ishai-Kohl-Resch-Scholl'22, ...]
- (Structure-aware) PSI: [Garimella-Rosulek-Singh'22'23, Garimella-Goff-Miao'24, ...]
- (Concretely efficient) Distributed ORAM: [Doerner-shelat'17, Vadapalli-Henry-Goldberg'23,

Braun-Pancholi-Rachuri-Simkin'23, ...]

- Mix-mode MPC: [Boyle-Gilboa-Ishai'19, Boyle-Chandran-Gilboa-Gupta-Ishai-Kumar-Rathee'21, ...]
 Sublinear MPC: [Couteau-Meyer'21, Boyle-Couteau-Meyer'23, Abram-Roy-Scholl'24, Couteau-Kumar'24,
 - ...]
- Compressing OR proofs: [Boudgoust-Simkin'24]
- ...

Construction of DPFs

Two-party case

- \bullet OWF is sufficient. Size: $\lambda \cdot \log \mathcal{D}$ [Gilboa-Ishai'14,Boyle-Gilboa-Ishai'15'16]
- Optimized FSS for other families (multi-point, comparison, decision tree, ...)

 [Boyle-Gilboa-Ishai'16, Boyle-Gilboa-Hamilis-Ishai-Tu'25, ...]
- Optimized DKG: [Doerner-shelat'17, Boyle-Devadas-Servan-Schreiber'25, ...]

Multiparty case

• Only known construction [BGI'15]: $2^n \cdot \sqrt{\mathcal{D}}$

Multiparty case beyond Minicrypt

- LWE: polylog \mathcal{D} [Dodis-Halevi-Rothblum-Wichs'16]
- Anything else: grow with $\sqrt{\mathcal{D}}$ [Corrigan-Gibbs-Boneh-Mazières'15, Abram-Roy-Scholl'24,

Construction of DPFs

Two-party case

- \bullet OWF is sufficient. Size: $\lambda \cdot \log \mathcal{D}$ [Gilboa-Ishai'14,Boyle-Gilboa-Ishai'15'16]
- Optimized FSS for other families (multi-point, comparison, decision tree, ...)

 [Boyle-Gilboa-Ishai'16, Boyle-Gilboa-Hamilis-Ishai-Tu'25, ...]
- Optimized DKG: [Doerner-shelat'17, Boyle-Devadas-Servan-Schreiber'25, ...]

Multiparty case

• Only known construction [BGI'15]: $2^n \cdot \sqrt{\mathcal{D}}$

Multiparty case beyond Minicrypt

- LWE: polylog \mathcal{D} [Dodis-Halevi-Rothblum-Wichs'16]
- Anything else: grow with $\sqrt{\mathcal{D}}$ [Corrigan-Gibbs-Boneh-Mazières'15, Abram-Roy-Scholl'24,

Construction of DPFs

Two-party case

- OWF is sufficient. Size: $\lambda \cdot \log \mathcal{D}$ [Gilboa-Ishai'14,Boyle-Gilboa-Ishai'15'16]
- Optimized FSS for other families (multi-point, comparison, decision tree, ...)
 [Boyle-Gilboa-Ishai'16, Boyle-Gilboa-Hamilis-Ishai-Tu'25, ...]
- Optimized DKG: [Doerner-shelat'17, Boyle-Devadas-Servan-Schreiber'25, ...]

Multiparty case

• Only known construction [BGI'15]: $2^n \cdot \sqrt{\mathcal{D}}$

Multiparty case beyond Minicrypt

- LWE: polylog \mathcal{D} [Dodis-Halevi-Rothblum-Wichs'16]
- Anything else: grow with √D [Corrigan-Gibbs-Boneh-Mazières'15, Abram-Roy-Scholl'24, Couteau-Kumar'24, ...]

• Only known construction [BGI'15]: $2^n \cdot \sqrt{\mathcal{D}}$

Limitation to the applications

- PIR: no three-party PIR with polylog communication from OWF
- PCG: multiparty correlation through pairwise correction $\rightarrow n^2$ overhead
- DORAM / Mixed-mode MPC (DPF-route only supports limited number of parties)

• Only known construction [BGI'15]: $2^n \cdot \sqrt{\mathcal{D}}$

Limitation to the applications

- PIR: no three-party PIR with polylog communication from OWF
 - ullet PCG: multiparty correlation through pairwise correction $\to n^2$ overhead
 - DORAM / Mixed-mode MPC (DPF-route only supports limited number of parties)

• Only known construction [BGI'15]: $2^n \cdot \sqrt{\mathcal{D}}$

• Only known construction [BGI'15]: $2^n \cdot \sqrt{\mathcal{D}}$

This talk

Do efficient multiparty DPFs exist for any number of parties within Minicrypt?

• Only known construction [BGI'15]: $2^n \cdot \sqrt{\mathcal{D}}$

This talk

Do efficient multiparty DPFs exist for any number of parties within Minicrypt?

with share size $\mathcal{O}_{\lambda}\left(n^3 \cdot \sqrt{|\mathcal{D}|}\right)$

Technical Details

$$\begin{bmatrix} 0 \end{bmatrix} \cdots \begin{bmatrix} 0 \end{bmatrix} \cdots \begin{bmatrix} \beta \end{bmatrix} \cdots \begin{bmatrix} 0 \end{bmatrix} \cdots \begin{bmatrix} 0 \end{bmatrix} \cdots \begin{bmatrix} 0 \end{bmatrix} \cdots \begin{bmatrix} 0 \end{bmatrix} \cdots$$

- Local Eval: $G(s^i) \oplus u_i \cdot w$
- \bullet Privacy: w is pseudorandom
- Efficiency: $\sqrt{\mathcal{D}}$

- Local Eval: $G(s^i) \oplus u_i \cdot w$
- \bullet Privacy: w is pseudorandom
- Efficiency: $\sqrt{\mathcal{D}}$

- Local Eval: $G(s^i) \oplus u_i \cdot w$
- Privacy: w is pseudorandom
- Efficiency: $\sqrt{\mathcal{D}}$

- Local Eval: $G(s^i) \oplus u_i \cdot w$
- \bullet Privacy: w is pseudorandom
- Efficiency: $\sqrt{\mathcal{D}}$

- Local Eval: $G(s^i) \oplus u_i \cdot w$
- \bullet Privacy: w is pseudorandom
- Efficiency: $\sqrt{\mathcal{D}}$

- Local Eval: $G(s^i) \oplus u_i \cdot w$
- Privacy: w is pseudorandom
- Efficiency: $\sqrt{\mathcal{D}}$

- Local Eval: $G(s^i) \oplus u_i \cdot w$
- Privacy: w is pseudorandom
- Efficiency: $\sqrt{\mathcal{D}}$

- Local Eval: $G(s^i) \oplus u_i \cdot w$
- Privacy: w is pseudorandom
- Efficiency: $\sqrt{\mathcal{D}}$

- Local Eval: $G(s^i) \oplus u_i \cdot w$
- Privacy: w is pseudorandom
- Efficiency: $\sqrt{\mathcal{D}}$

- Local Eval: $G(s^i) \oplus u_i \cdot w$
- Privacy: w is pseudorandom
- Efficiency: $\sqrt{\mathcal{D}}$

Our Abstraction: Special Combinatorial Design

- Correctness: G_0 has only even-degree right vertices.
- **2** Pseudorandomness: G_1 has a dedicated right vertex for every left vertex.
- Privacy: Any induced subgraph are indistinguishable.

BGI15 Template + Special Combinatorial Design

- Correctness: non-special chunks sum up to zero.
- Pseudorandomness: special chunks sum up to pseudorandomness.
- Privacy: seed distribution is indistinguishable.

Efficiency

Size of G_0 and G_1 determine the share size!

BGI15 Template + Special Combinatorial Design

- Correctness: non-special chunks sum up to zero.
- Pseudorandomness: special chunks sum up to pseudorandomness.
- Privacy: seed distribution is indistinguishable.

Efficiency

Size of G_0 and G_1 determine the share size!

Lower boun

Any deterministic special combinatorial design requires $\mathcal{O}(2^n)$ right vertices.

• BGI15 construction is optimal.

Lower bound

Any deterministic special combinatorial design requires $\mathcal{O}(2^n)$ right vertices.

• BGI15 construction is optimal.

- G_0 : blue
- G_1 : blue and green
- Correctness holds by design
- Pseudorandomness holds by design assuming $t = \Omega(n)$

- G_0 : blue
- G_1 : blue and green
- Correctness holds by design
- Pseudorandomness holds by design assuming $t = \Omega(n)$

- G_0 : blue
- G_1 : blue and green
- Correctness holds by design
- Pseudorandomness holds by design assuming $t = \Omega(n)$

- G_0 : blue
- G_1 : blue and green
- Correctness holds by design
- Pseudorandomness holds by design assuming $t = \Omega(n)$

- G_0 : blue
- G_1 : blue and green
- Correctness holds by design
- Pseudorandomness holds by design assuming $t = \Omega(n)$

- G_0 : blue
- G_1 : blue and green
- Correctness holds by design
- Pseudorandomness holds by design assuming $t = \Omega(n)$

- \bullet Corrupted parties see ${\cal S}$ many single-degree seeds and ${\cal T}$ many two-degree seeds.
- Conditioned on S and T, the actual configuration is identically distributed for G_0 and G_1 .
- \bullet Only need to argue the closeness of the joint distribution $(\mathcal{S},\mathcal{T})$
- \mathcal{T} is the identical for G_0 and G_1
 - \bullet Conditioned on \mathcal{T} , distribution of \mathcal{S} is
 - G₀: ℓ − T many Bernolli samples with bias (n − 1)/ν
 G₁: distribution of G₀ shifted by Ω(n) many Bernolli samples with bias (n − 1)/n
 - Omitting many details, $\ell = \Omega(n^4)$ suffices!

- Corrupted parties see \mathcal{S} many single-degree seeds and \mathcal{T} many two-degree seeds.
- Conditioned on S and T, the actual configuration is identically distributed for G_0 and G_1 .
- Only need to argue the closeness of the joint distribution $(\mathcal{S}, \mathcal{T})$
- \bullet \mathcal{T} is the identical for G_0 and G_1
- Conditioned on \mathcal{T} , distribution of \mathcal{S} is
 - G₀: ℓ − T many Bernolli samples with bias (n − 1)/n
 G₁: distribution of G₀ shifted by Ω(n) many Bernoll samples with bias (n − 1)/n
- Omitting many details, $\ell = \Omega(n^4)$ suffices!

- Corrupted parties see \mathcal{S} many single-degree seeds and \mathcal{T} many two-degree seeds.
- Conditioned on S and T, the actual configuration is identically distributed for G_0 and G_1 .
- Only need to argue the closeness of the joint distribution $(\mathcal{S},\mathcal{T})$
- \bullet \mathcal{T} is the identical for G_0 and G_1
- \bullet Conditioned on \mathcal{T} , distribution of \mathcal{S} is
 - G₀: ℓ − T many Bernolli samples with bias (n − 1)/ν
 G₁: distribution of G₀ shifted by Ω(n) many Bernoll samples with bias (n − 1)/n
- Omitting many details, $\ell = \Omega(n^4)$ suffices!

- Corrupted parties see $\mathcal S$ many single-degree seeds and $\mathcal T$ many two-degree seeds.
- Conditioned on S and T, the actual configuration is identically distributed for G_0 and G_1 .
- Only need to argue the closeness of the joint distribution (S, \mathcal{T})
- \mathcal{T} is the identical for G_0 and G_1
- Conditioned on \mathcal{T} , distribution of \mathcal{S} is
 - G₀: ε = f many Bernoill samples with bias (n = 1)_f
 G₁: distribution of G₀ shifted by Ω(n) many Berno samples with bias (n = 1)/n
- Omitting many details, $\ell = \Omega(n^4)$ suffices!

- \bullet Corrupted parties see ${\cal S}$ many single-degree seeds and ${\cal T}$ many two-degree seeds.
- Conditioned on S and T, the actual configuration is identically distributed for G_0 and G_1 .
- Only need to argue the closeness of the joint distribution (S, \mathcal{T})
- \mathcal{T} is the identical for G_0 and G_1
- Conditioned on \mathcal{T} , distribution of \mathcal{S} is
 - G_0 : $\ell \mathcal{T}$ many Bernolli samples with bias (n-1)/n
 - G_1 : distribution of G_0 shifted by $\Omega(n)$ many Bernoll samples with bias (n-1)/n
- Omitting many details, $\ell = \Omega(n^4)$ suffices!

- \bullet Corrupted parties see ${\cal S}$ many single-degree seeds and ${\cal T}$ many two-degree seeds.
- Conditioned on S and T, the actual configuration is identically distributed for G_0 and G_1 .
- Only need to argue the closeness of the joint distribution (S, \mathcal{T})
- \mathcal{T} is the identical for G_0 and G_1
- Conditioned on \mathcal{T} , distribution of \mathcal{S} is
 - G_0 : $\ell \mathcal{T}$ many Bernolli samples with bias (n-1)/n
 - G_1 : distribution of G_0 shifted by $\Omega(n)$ many Bernoll samples with bias (n-1)/n
- Omitting many details, $\ell = \Omega(n^4)$ suffices!

- \bullet Corrupted parties see ${\cal S}$ many single-degree seeds and ${\cal T}$ many two-degree seeds.
- Conditioned on S and T, the actual configuration is identically distributed for G_0 and G_1 .
- Only need to argue the closeness of the joint distribution (S, \mathcal{T})
- \mathcal{T} is the identical for G_0 and G_1
- Conditioned on \mathcal{T} , distribution of \mathcal{S} is
 - G_0 : $\ell \mathcal{T}$ many Bernolli samples with bias (n-1)/n
 - G_1 : distribution of G_0 shifted by $\Omega(n)$ many Bernolli samples with bias (n-1)/n
- Omitting many details, $\ell = \Omega(n^4)$ suffices!

- \bullet Corrupted parties see ${\cal S}$ many single-degree seeds and ${\cal T}$ many two-degree seeds.
- Conditioned on S and T, the actual configuration is identically distributed for G_0 and G_1 .
- Only need to argue the closeness of the joint distribution (S, \mathcal{T})
- \mathcal{T} is the identical for G_0 and G_1
- Conditioned on \mathcal{T} , distribution of \mathcal{S} is
 - G_0 : $\ell \mathcal{T}$ many Bernolli samples with bias (n-1)/n
 - G_1 : distribution of G_0 shifted by $\Omega(n)$ many Bernolli samples with bias (n-1)/n
- Omitting many details, $\ell = \Omega(n^4)$ suffices!

- Corrupted parties see $\mathcal S$ many single-degree seeds and $\mathcal T$ many two-degree seeds.
- Conditioned on S and T, the actual configuration is identically distributed for G_0 and G_1 .
- Only need to argue the closeness of the joint distribution (S, \mathcal{T})
- \mathcal{T} is the identical for G_0 and G_1
- Conditioned on \mathcal{T} , distribution of \mathcal{S} is
 - G_0 : $\ell \mathcal{T}$ many Bernolli samples with bias (n-1)/n
 - G_1 : distribution of G_0 shifted by $\Omega(n)$ many Bernolli samples with bias (n-1)/n
- Omitting many details, $\ell = \Omega(n^4)$ suffices!

Summary

- We construct a <u>randomized</u> special combinatorial design with size $\mathcal{O}(n^4)$
- Overall per party share size $\mathcal{O}\left(n^3 \cdot \sqrt{\mathcal{D}}\right)$

Summary

- We construct a <u>randomized</u> special combinatorial design with size $\mathcal{O}(n^4)$
- Overall per party share size $\mathcal{O}\left(n^3 \cdot \sqrt{\mathcal{D}}\right)$
- $\bullet \ \ \text{Only 1/poly}(\lambda) \text{-weakly secure, need privacy amplification [Boyle-Gilboa-Ishai-Kolobov'22]}$

Summary

- We construct a <u>randomized</u> special combinatorial design with size $\mathcal{O}(n^4)$
- Overall per party share size $\mathcal{O}\left(n^3 \cdot \sqrt{\mathcal{D}}\right)$
- $\bullet \ \ \text{Only 1/poly}(\lambda) \text{-weakly secure, need privacy amplification [Boyle-Gilboa-Ishai-Kolobov'22]}$

Thanks, questions? ia.cr/2025/1074