
A Framework for WE from Linearly
Verifiable SNARKs and Applications

Sanjam Garg, Mohammad Hajiabadi, Dimitris Kolonelos, Abhiram Kothapalli, and
Guru-Vamsi Policharla

1

Witness Encryption [GGSW13, GKPVZ13]

2

Witness Encryption [GGSW13, GKPVZ13]

Consider an NP relation: R ⊂ {0,1}* × {0,1}*

2

Witness Encryption [GGSW13, GKPVZ13]

Consider an NP relation: R ⊂ {0,1}* × {0,1}*

(Extractable) Witness Encryption: Encrypt to a statement .  
Can decrypt iff you know witness such that .

x
w (x, w) ∈ R

2

Witness Encryption [GGSW13, GKPVZ13]

Consider an NP relation: R ⊂ {0,1}* × {0,1}*

(Extractable) Witness Encryption: Encrypt to a statement .  
Can decrypt iff you know witness such that .

x
w (x, w) ∈ R

Witness encryption for all of NP is very powerful — recent progress but no
concretely efficient constructions. [CVW18,Tsa22,VWW22]

2

Witness Encryption [GGSW13, GKPVZ13]

Consider an NP relation: R ⊂ {0,1}* × {0,1}*

(Extractable) Witness Encryption: Encrypt to a statement .  
Can decrypt iff you know witness such that .

x
w (x, w) ∈ R

Witness encryption for all of NP is very powerful — recent progress but no
concretely efficient constructions. [CVW18,Tsa22,VWW22]

Today: Focus on efficient WE for special relations and applications.

Not going to build WE for NP

2

Many Examples!

*not an exhaustive list

Over the last 25 years:

3

Many Examples!

Identity-Based Encryption 
[BF01]

Hash-Proof Systems  
[CS02], [BC16]

*not an exhaustive list

Over the last 25 years:

3

Many Examples!

Identity-Based Encryption 
[BF01]

Hash-Proof Systems  
[CS02], [BC16]

Committed Value WE 
[GS17], [BL20], [CFK24]

Hash Encryption  
[CDG+17], [DG17]

Registration Based Encryption 
[GHMR18], [GKMR23], [FKdP23]

(Distributed) Broadcast Encryption 
[BGW05], [WQZD10], [KMW23]

Laconic PSI/OT 
[ALOS22], [DKL+23], [FHAS24], [BGJP25]

Registered Functional Encryption 
[FFM+23]

Registered Attribute Based Encryption  
[HLWW23], [FWW23], [ZZGQ23], [AT24], [GLWW24]

Batched Threshold Encryption  
[CGPP24], [CGPW24], [AFP24]

Silent Threshold Encryption  
[GKPW24]

*not an exhaustive list

Over the last 25 years:

3

Many Examples!

Identity-Based Encryption 
[BF01]

Hash-Proof Systems  
[CS02], [BC16]

Committed Value WE 
[GS17], [BL20], [CFK24]

Hash Encryption  
[CDG+17], [DG17]

Registration Based Encryption 
[GHMR18], [GKMR23], [FKdP23]

(Distributed) Broadcast Encryption 
[BGW05], [WQZD10], [KMW23]

Laconic PSI/OT 
[ALOS22], [DKL+23], [FHAS24], [BGJP25]

Registered Functional Encryption 
[FFM+23]

Registered Attribute Based Encryption  
[HLWW23], [FWW23], [ZZGQ23], [AT24], [GLWW24]

Batched Threshold Encryption  
[CGPP24], [CGPW24], [AFP24]

Silent Threshold Encryption  
[GKPW24]

*not an exhaustive list

Over the last 25 years:

At first glance, constructions seem “arbitrary” and unrelated 🫤
Can we systematically study special purpose WE?

4

Taxonomy of WE

5

Taxonomy of WE schemes
(x, w) ∈ R

Gen 1

 𝖤𝗇𝖼(x, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

6

Taxonomy of WE schemes
(x, w) ∈ R

Gen 1

 𝖤𝗇𝖼(x, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

 TE = TD = O(|R |)
|𝖼𝗍 | = O(|R |)

6

Taxonomy of WE schemes
(x, w) ∈ R

Gen 1

𝖤𝗇𝖼(x, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 2

 TE = TD = O(|R |)
|𝖼𝗍 | = O(|R |)

7

Taxonomy of WE schemes
(x, w) ∈ R

Gen 1

𝖤𝗇𝖼(x, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 2

h ← 𝖧𝖺𝗌𝗁(x)

|h | ≪ |x |

 TE = TD = O(|R |)
|𝖼𝗍 | = O(|R |)

7

Taxonomy of WE schemes
(x, w) ∈ R

Gen 1

𝖤𝗇𝖼(x, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 2

h ← 𝖧𝖺𝗌𝗁(x)

|h | ≪ |x |

𝖤𝗇𝖼(h, m) → 𝖼𝗍

 TE = TD = O(|R |)
|𝖼𝗍 | = O(|R |)

7

Taxonomy of WE schemes
(x, w) ∈ R

Gen 1

𝖤𝗇𝖼(x, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 2

h ← 𝖧𝖺𝗌𝗁(x)

|h | ≪ |x |

𝖤𝗇𝖼(h, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

 TE = TD = O(|R |)
|𝖼𝗍 | = O(|R |)

7

Taxonomy of WE schemes
(x, w) ∈ R

Gen 1

𝖤𝗇𝖼(x, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 2

h ← 𝖧𝖺𝗌𝗁(x)

|h | ≪ |x |

𝖤𝗇𝖼(h, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Can build “Laconic” primitives!

• Laconic OT: Hash the

receiver’s choice bits

• Laconic PSI: Hash the

receiver’s database

 TE = TD = O(|R |)
|𝖼𝗍 | = O(|R |)

7

Taxonomy of WE schemes
(x, w) ∈ R

Gen 1

𝖤𝗇𝖼(x, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 2

h ← 𝖧𝖺𝗌𝗁(x)

|h | ≪ |x |

𝖤𝗇𝖼(h, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 3

 TE = TD = O(|R |)
|𝖼𝗍 | = O(|R |)

8

Taxonomy of WE schemes
(x, w) ∈ R

Gen 1

𝖤𝗇𝖼(x, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 2

h ← 𝖧𝖺𝗌𝗁(x)

|h | ≪ |x |

𝖤𝗇𝖼(h, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 3

 (h, π) ∈ R′￼

|R′￼| ≪ |R |

 TE = TD = O(|R |)
|𝖼𝗍 | = O(|R |)

8

Taxonomy of WE schemes
(x, w) ∈ R

Gen 1

𝖤𝗇𝖼(x, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 2

h ← 𝖧𝖺𝗌𝗁(x)

|h | ≪ |x |

𝖤𝗇𝖼(h, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 3

 (h, π) ∈ R′￼

|R′￼| ≪ |R |

Computational Reduction 
(SNARK the relation!)

 TE = TD = O(|R |)
|𝖼𝗍 | = O(|R |)

8

Taxonomy of WE schemes
(x, w) ∈ R

Gen 1

𝖤𝗇𝖼(x, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 2

h ← 𝖧𝖺𝗌𝗁(x)

|h | ≪ |x |

𝖤𝗇𝖼(h, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 3

 (h, π) ∈ R′￼

|R′￼| ≪ |R |

𝖤𝗇𝖼(h, m) → 𝖼𝗍

Computational Reduction 
(SNARK the relation!)

 TE = TD = O(|R |)
|𝖼𝗍 | = O(|R |)

8

Taxonomy of WE schemes
(x, w) ∈ R

Gen 1

𝖤𝗇𝖼(x, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 2

h ← 𝖧𝖺𝗌𝗁(x)

|h | ≪ |x |

𝖤𝗇𝖼(h, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 3

 (h, π) ∈ R′￼

|R′￼| ≪ |R |

𝖤𝗇𝖼(h, m) → 𝖼𝗍

𝖣𝖾𝖼(π, 𝖼𝗍) → m

Computational Reduction 
(SNARK the relation!)

 TE = TD = O(|R |)
|𝖼𝗍 | = O(|R |)

8

Taxonomy of WE schemes
(x, w) ∈ R

Gen 1

𝖤𝗇𝖼(x, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 2

h ← 𝖧𝖺𝗌𝗁(x)

|h | ≪ |x |

𝖤𝗇𝖼(h, m) → 𝖼𝗍

𝖣𝖾𝖼(w, 𝖼𝗍) → m

Gen 3

 (h, π) ∈ R′￼

|R′￼| ≪ |R |

𝖤𝗇𝖼(h, m) → 𝖼𝗍

𝖣𝖾𝖼(π, 𝖼𝗍) → m

Computational Reduction 
(SNARK the relation!)

 TE = TD = O(|R |)
|𝖼𝗍 | = O(|R |)

 TE = TD = O(|R′￼|)
|𝖼𝗍 | = O(|R′￼|)

8

Classification

Identity-Based Encryption  
[BF01]

Hash-Proof Systems  
[CS02], [BC16]

Committed Value WE 
[GS17], [BL20]

Hash Encryption  
[CDG+17], [DG17]

Registration Based Encryption 
[GHMR18], [GKMR23], [FKdP23]

(Distributed) Broadcast Encryption 
[BGW05], [WQZD10], [KMW23]

Laconic PSI/OT 
[ALOS22], [DKL+23], [FHAS24], [BGJP25]

Registered Functional Encryption 
[FFM+23]

Registered Attribute Based Encryption 
[HLWW23], [FWW23], [ZZGQ23], [AT24], [GLWW24]

Silent Threshold Encryption 
[GKPW24]

Batched Threshold Encryption 
[CGPP24], [CGPW24], [AFP24]

Committed Value WE 
[CFK24]

Gen 3Gen 2Gen 1

9

Classification

Identity-Based Encryption  
[BF01]

Hash-Proof Systems  
[CS02], [BC16]

Committed Value WE 
[GS17], [BL20]

Hash Encryption  
[CDG+17], [DG17]

Registration Based Encryption 
[GHMR18], [GKMR23], [FKdP23]

(Distributed) Broadcast Encryption 
[BGW05], [WQZD10], [KMW23]

Laconic PSI/OT 
[ALOS22], [DKL+23], [FHAS24], [BGJP25]

Registered Functional Encryption 
[FFM+23]

Registered Attribute Based Encryption 
[HLWW23], [FWW23], [ZZGQ23], [AT24], [GLWW24]

Silent Threshold Encryption 
[GKPW24]

Batched Threshold Encryption 
[CGPP24], [CGPW24], [AFP24]

Committed Value WE 
[CFK24]

Gen 3Gen 2Gen 1

Today: A framework to build
Gen 3 WE and applications

9

Our Results

10

Our Results
Gadget-based framework for WE

11

Our Results
Gadget-based framework for WE
• Similar to ZK libraries: “glue” together

gadgets written by experts

11

Our Results
Gadget-based framework for WE
• Similar to ZK libraries: “glue” together

gadgets written by experts

• No prior knowledge of SNARKs needed!

11

Our Results
Gadget-based framework for WE
• Similar to ZK libraries: “glue” together

gadgets written by experts

• No prior knowledge of SNARKs needed!

• Security in the GGM

11

Our Results
Gadget-based framework for WE
• Similar to ZK libraries: “glue” together

gadgets written by experts

• No prior knowledge of SNARKs needed!

• Security in the GGM

Recover previous results
• Registration Based Encryption

• Distributed Broadcast Encryption

• Silent/Batched Threshold Encryption

• … and more!

11

Our Results
Gadget-based framework for WE
• Similar to ZK libraries: “glue” together

gadgets written by experts

• No prior knowledge of SNARKs needed!

• Security in the GGM

Recover previous results
• Registration Based Encryption

• Distributed Broadcast Encryption

• Silent/Batched Threshold Encryption

• … and more!

Improve best known result [GLWW24]
Registered ABE with a Linear CRS

11

Our Results
Gadget-based framework for WE
• Similar to ZK libraries: “glue” together

gadgets written by experts

• No prior knowledge of SNARKs needed!

• Security in the GGM

Recover previous results
• Registration Based Encryption

• Distributed Broadcast Encryption

• Silent/Batched Threshold Encryption

• … and more!

Improve best known result [GLWW24]
Registered ABE with a Linear CRS

New feasibility results
Registered Threshold Encryption

11

What class of relations
support efficient WE?

12

Relations with “Linear” verifiers

13

Relations with “Linear” verifiers

Express the verification circuit for as a set of PPEs.RL(x, w) = 1

13

Relations with “Linear” verifiers

Express the verification circuit for as a set of PPEs.RL(x, w) = 1

∏e(xi, xj) ⋅ ∏e(xi, wj) ⋅ ∏e(wi, xj) ⋅ ∏e(wi, wj) = cT

13

Relations with “Linear” verifiers

Express the verification circuit for as a set of PPEs.RL(x, w) = 1

∏e(xi, xj) ⋅ ∏e(xi, wj) ⋅ ∏e(wi, xj) ⋅ ∏e(wi, wj) = cT

13

Relations with “Linear” verifiers

Express the verification circuit for as a set of PPEs.RL(x, w) = 1

∏e(xi, xj) ⋅ ∏e(xi, wj) ⋅ ∏e(wi, xj) ⋅ ∏e(wi, wj) = cT

Compiler [BC16, BL20, GKPW24]: Linear PPE WE→

13

The Missing Piece

Linear
Relation PPE Constraint System: ∏e(xi, xj) ⋅ ∏e(xi, wj) ⋅ ∏e(wi, xj) = cT

14

The Missing Piece
Natural
Relation ℛ = {(x, w) ∣ f(x, w) = 1}

Linear
Relation PPE Constraint System: ∏e(xi, xj) ⋅ ∏e(xi, wj) ⋅ ∏e(wi, xj) = cT

14

The Missing Piece
Natural
Relation ℛ = {(x, w) ∣ f(x, w) = 1}

How do we linearize natural relations?
How do we leverage SNARK machinery for succinctness?

Linear
Relation PPE Constraint System: ∏e(xi, xj) ⋅ ∏e(xi, wj) ⋅ ∏e(wi, xj) = cT

???

14

Closing the gap:
Our Framework to build WE

15

Our Framework

16

Goal: Simplify the process of translating:

Our Framework

16

Goal: Simplify the process of translating:

Natural Relations Linear Relations→

Our Framework

16

Goal: Simplify the process of translating:

Natural Relations Linear Relations→

• We provide “Gadgets” — Witness Encryption for useful relations: 
 
 

Our Framework

16

Goal: Simplify the process of translating:

Natural Relations Linear Relations→

• We provide “Gadgets” — Witness Encryption for useful relations: 
 
 

Our Framework

1. Signatures
2. Algebraic PRF
3. Inner Product

4. Zero Check
5. Degree Check

… and more!

16

Goal: Simplify the process of translating:

Natural Relations Linear Relations→

• We provide “Gadgets” — Witness Encryption for useful relations: 
 
 

• Gadgets can be composed to build WE for larger relations!

Our Framework

1. Signatures
2. Algebraic PRF
3. Inner Product

4. Zero Check
5. Degree Check

… and more!

16

Goal: Simplify the process of translating:

Natural Relations Linear Relations→

• We provide “Gadgets” — Witness Encryption for useful relations: 
 
 

• Gadgets can be composed to build WE for larger relations!

• Gadgets fully capture succinctness!

Our Framework

1. Signatures
2. Algebraic PRF
3. Inner Product

4. Zero Check
5. Degree Check

… and more!

16

Goal: Simplify the process of translating:

Natural Relations Linear Relations→

• We provide “Gadgets” — Witness Encryption for useful relations: 
 
 

• Gadgets can be composed to build WE for larger relations!

• Gadgets fully capture succinctness!

• Easy to use and extend with new gadgets!

Our Framework

1. Signatures
2. Algebraic PRF
3. Inner Product

4. Zero Check
5. Degree Check

… and more!

16

Our Framework
Natural
Relation ℛ = {(x, w) ∣ f(x, w) = 1}

17

Our Framework
Natural
Relation ℛ = {(x, w) ∣ f(x, w) = 1}

Inner
ProductThis Work Signature

Check
Degree
Check …

17

Our Framework
Natural
Relation ℛ = {(x, w) ∣ f(x, w) = 1}

Linear
Relation PPE Constraint System: ∏e(xi, xj) ⋅ ∏e(xi, wj) ⋅ ∏e(wi, xj) = cT

Inner
ProductThis Work Signature

Check
Degree
Check …

17

Remainder of the Talk
Gadget-based framework for WE
• Similar to ZK libraries: “glue” together

gadgets written by experts

• No prior knowledge of SNARKs needed!

• Security in the GGM

Recover previous results
• Registration Based Encryption

• Distributed Broadcast Encryption

• Silent/Batched Threshold Encryption

• … and more!

Improve best known result [GLWW24]
Registered ABE with a Linear CRS

New feasibility results
Registered Threshold Encryption

✅

18

Remainder of the Talk
Gadget-based framework for WE
• Similar to ZK libraries: “glue” together

gadgets written by experts

• No prior knowledge of SNARKs needed!

• Security in the GGM

Recover previous results
• Registration Based Encryption

• Distributed Broadcast Encryption

• Silent/Batched Threshold Encryption

• … and more!

Improve best known result [GLWW24]
Registered ABE with a Linear CRS

New feasibility results
Registered Threshold Encryption

✅

18

Remainder of the Talk
Gadget-based framework for WE
• Similar to ZK libraries: “glue” together

gadgets written by experts

• No prior knowledge of SNARKs needed!

• Security in the GGM

Recover previous results
• Registration Based Encryption

• Distributed Broadcast Encryption

• Silent/Batched Threshold Encryption

• … and more!

Improve best known result [GLWW24]
Registered ABE with a Linear CRS

New feasibility results
Registered Threshold Encryption

✅

18

Distributed Broadcast
Encryption

19

Distributed Broadcast Encryption [WQZD10,BZ14]

Goal: Send a message to parties with

No interaction during setup except for a PKI.

(Note: Can achieve using public key encryption)

n |𝖼𝗍 | = O(1)

|𝖼𝗍 | = O(n)

20

Distributed Broadcast Encryption [WQZD10,BZ14]

𝗉𝗄1 𝗉𝗄2 𝗉𝗄3

. . .

𝗉𝗄N−1 𝗉𝗄N

21

Distributed Broadcast Encryption [WQZD10,BZ14]

𝗉𝗄1 𝗉𝗄2 𝗉𝗄3

. . .

𝖼𝗍 = 𝖤𝗇𝖼(m; S ⊂ ⃗pk)
|𝖼𝗍 | = O(1)

𝗉𝗄N−1 𝗉𝗄N

22

Distributed Broadcast Encryption [WQZD10,BZ14]

𝗉𝗄1 𝗉𝗄2 𝗉𝗄3

. . .

𝖼𝗍 = 𝖤𝗇𝖼(m; S ⊂ ⃗pk)
|𝖼𝗍 | = O(1)

Semantic security against S′￼ = ⃗pk∖S

𝗉𝗄N−1 𝗉𝗄N

23

Step #1: Identify a Relation
Goal: Send a message to parties withn |𝖼𝗍 | = O(1)

24

Step #1: Identify a Relation

Let each party have a public key pair:

{𝗉𝗄i = g𝗌𝗄i}i∈[n] ∈ 𝔾1

Goal: Send a message to parties withn |𝖼𝗍 | = O(1)

24

Step #1: Identify a Relation

Let each party have a public key pair:

{𝗉𝗄i = g𝗌𝗄i}i∈[n] ∈ 𝔾1

Suppose we had a succinct () WE for the following relation:|𝖼𝗍 | = O(1)

Goal: Send a message to parties withn |𝖼𝗍 | = O(1)

24

Step #1: Identify a Relation

Let each party have a public key pair:

{𝗉𝗄i = g𝗌𝗄i}i∈[n] ∈ 𝔾1

Suppose we had a succinct () WE for the following relation:|𝖼𝗍 | = O(1)

Goal: Send a message to parties withn |𝖼𝗍 | = O(1)

You can decrypt my ciphertext iff you know a secret key
{𝗌𝗄𝗂 : (𝗉𝗄𝗂 = g𝗌𝗄𝗂) ∧ (𝗉𝗄𝗂 ∈ ⃗𝗉𝗄)}

24

How do we build the WE?

25

Inner-Product Gadget

26

Inner-Product Gadget
Statement: , (u1, u2, …, un) ∈ 𝔾n v ∈ 𝔾

26

Inner-Product Gadget
Statement: , (u1, u2, …, un) ∈ 𝔾n v ∈ 𝔾

Witness: such that . 

 
 
 
 

(w1, w2, …, wn) ∈ 𝔽n ∏
i

ui
wi = v

26

Inner-Product Gadget
Statement: , (u1, u2, …, un) ∈ 𝔾n v ∈ 𝔾

Witness: such that . 

 
 
 
 

(w1, w2, …, wn) ∈ 𝔽n ∏
i

ui
wi = v

You can decrypt my ciphertext iff you know such that: ⃗w

∏
i

ui
wi = v

26

Inner-Product Gadget
Statement: , (u1, u2, …, un) ∈ 𝔾n v ∈ 𝔾

Witness: such that . 

 
 
 
 

(w1, w2, …, wn) ∈ 𝔽n ∏
i

ui
wi = v

1. The above WE has !|𝖼𝗍 | = O(1)

You can decrypt my ciphertext iff you know such that: ⃗w

∏
i

ui
wi = v

26

Inner-Product Gadget
Statement: , (u1, u2, …, un) ∈ 𝔾n v ∈ 𝔾

Witness: such that . 

 
 
 
 

(w1, w2, …, wn) ∈ 𝔽n ∏
i

ui
wi = v

1. The above WE has !|𝖼𝗍 | = O(1)
2. takes as input a succinct commitment to , and runs in time𝖤𝗇𝖼 ⃗u O(1)

You can decrypt my ciphertext iff you know such that: ⃗w

∏
i

ui
wi = v

26

Step #2: Reduce DBE Inner-Product →

27

Step #2: Reduce DBE Inner-Product →
• Each user has a public key pair:

{𝗉𝗄i = g𝗌𝗄i}i∈[n] ∈ 𝔾

27

Step #2: Reduce DBE Inner-Product →
• Each user has a public key pair:

{𝗉𝗄i = g𝗌𝗄i}i∈[n] ∈ 𝔾

• :𝖤𝗇𝖼(m, ⃗𝗉𝗄)

• Encrypt using the Inner-Product gadget with and ⃗u = ⃗𝗉𝗄 v = g

27

Step #2: Reduce DBE Inner-Product →
• Each user has a public key pair:

{𝗉𝗄i = g𝗌𝗄i}i∈[n] ∈ 𝔾

• :𝖤𝗇𝖼(m, ⃗𝗉𝗄)

• Encrypt using the Inner-Product gadget with and ⃗u = ⃗𝗉𝗄 v = g

You can decrypt my ciphertext iff you know such that: ⃗w

∏
i

𝗉𝗄i
wi = g

27

Step #2: Reduce DBE Inner-Product →
• Each user has a public key pair:

{𝗉𝗄i = g𝗌𝗄i}i∈[n] ∈ 𝔾

• :𝖤𝗇𝖼(m, ⃗𝗉𝗄)

• Encrypt using the Inner-Product gadget with and ⃗u = ⃗𝗉𝗄 v = g

You can decrypt my ciphertext iff you know such that: ⃗w

∏
i

𝗉𝗄i
wi = g

Honest users decrypt using ⃗w = (0,…, 𝗌𝗄−1
i , …,0)

27

• Each user has a public key pair:

• :

• Encrypt using the Inner-Product gadget with and

{𝗉𝗄i = g𝗌𝗄i}i∈[n] ∈ 𝔾

𝖤𝗇𝖼(m, ⃗𝗉𝗄)

⃗u = ⃗𝗉𝗄 v = g

You can decrypt my ciphertext iff you know such that: ⃗w

∏
i

𝗉𝗄i
wi = g

Adversary can be reduced to solving DLOG

Step #2: Reduce DBE Inner-Product →

28

Registered Attribute Based
Encryption

29

Registered Attribute Based Encryption [HLWW23]

Goal: Attribute Based Encryption without a Trusted Party

No interaction during setup except for a PKI

+ some notions of efficiency

30

Registered Attribute Based Encryption [HLWW23]

 usersM

31

Registered Attribute Based Encryption [HLWW23]

Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

 usersM

31

Registered Attribute Based Encryption [HLWW23]

Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

Want to encrypt a message to “All cryptographers in EU region” … but:

 usersM

31

Registered Attribute Based Encryption [HLWW23]

Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

Want to encrypt a message to “All cryptographers in EU region” … but:

1. Don’t want to read the entire bulletin board

 usersM

31

Registered Attribute Based Encryption [HLWW23]

Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

Want to encrypt a message to “All cryptographers in EU region” … but:

1. Don’t want to read the entire bulletin board

2. , , and should be succinct — (# of users)𝖤𝗇𝖼 𝖣𝖾𝖼 |𝖼𝗍 | 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(M)

 usersM

31

Registered Attribute Based Encryption [HLWW23]

Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

Want to encrypt a message to “All cryptographers in EU region” … but:

1. Don’t want to read the entire bulletin board

2. , , and should be succinct — (# of users)𝖤𝗇𝖼 𝖣𝖾𝖼 |𝖼𝗍 | 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(M)

 usersM

Will compress using a “helper”.  
Only trusted for integrity.

32

Registered Attribute Based Encryption [HLWW23]

Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

Want to encrypt a message to “All cryptographers in EU region” … but:

1. Don’t want to read the entire bulletin board

2. , , and should be succinct — (# of users)𝖤𝗇𝖼 𝖣𝖾𝖼 |𝖼𝗍 | 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(M)

 usersM

Will compress using a “helper”.  
Only trusted for integrity.

Gen 3 WE
32

Registered Attribute Based Encryption [HLWW23]

Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

 usersM

Key Curator

Short 𝖺𝖯𝖪
33

Registered Attribute Based Encryption [HLWW23]

Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

 usersM

Key Curator𝖤𝗇𝖼(𝖺𝖯𝖪, m, "Crypto" ∧ "EU") → |𝖼𝗍 |

Short 𝖺𝖯𝖪
33

Registered Attribute Based Encryption [HLWW23]

Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

 usersM

Key Curator

Helper Key: hk1 hk2 hk3 hk4 hk5

𝖤𝗇𝖼(𝖺𝖯𝖪, m, "Crypto" ∧ "EU") → |𝖼𝗍 |

Short 𝖺𝖯𝖪
33

Registered Attribute Based Encryption [HLWW23]

Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

 usersM

Key Curator

Helper Key: hk1 hk2 hk3 hk4 hk5

𝖤𝗇𝖼(𝖺𝖯𝖪, m, "Crypto" ∧ "EU") → |𝖼𝗍 |

𝖣𝖾𝖼(𝖺𝖯𝖪, 𝗁𝗄2, 𝗌𝗄2, 𝖼𝗍) → m
Short 𝖺𝖯𝖪

33

Bulletin Board
USA: - - pk3 - pk5

EU: pk1 pk2 - pk4 -

Crypto: pk1 pk2 - - pk5

ML: - - pk3 pk4 -

Step #1: Identify a Relation
 usersM

34

Bulletin Board
USA: - - pk3 - pk5

EU: pk1 pk2 - pk4 -

Crypto: pk1 pk2 - - pk5

ML: - - pk3 pk4 -

Step #1: Identify a Relation
 usersM

You can decrypt my ciphertext iff you know a secret key
{𝗌𝗄 : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 ∈ 𝖢𝗋𝗒𝗉𝗍𝗈) ∧ (𝗉𝗄 ∈ 𝖤𝖴)}

34

Bulletin Board
EU: pk1 pk2 0 pk4 0

Crypto: pk1 pk2 0 0 pk5

How do we build it?

35

Bulletin Board
EU: pk1 pk2 0 pk4 0

Crypto: pk1 pk2 0 0 pk5

How do we build it?

You can decrypt my ciphertext iff you know a secret key
{𝗌𝗄 : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 ∈ 𝖢𝗋𝗒𝗉𝗍𝗈) ∧ (𝗉𝗄 ∈ 𝖤𝖴)}

35

Bulletin Board
EU: pk1 pk2 0 pk4 0

Crypto: pk1 pk2 0 0 pk5

How do we build it?

You can decrypt my ciphertext iff you know a secret key
{𝗌𝗄 : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 ∈ 𝖢𝗋𝗒𝗉𝗍𝗈) ∧ (𝗉𝗄 ∈ 𝖤𝖴)}

{𝗌𝗄, ⃗w : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 = ∏𝖢𝗋𝗒𝗉𝗍𝗈wi
i) ∧ (𝗉𝗄 = ∏𝖤𝖴wi

i)}

35

Bulletin Board
EU: pk1 pk2 0 pk4 0

Crypto: pk1 pk2 0 0 pk5

How do we build it?

You can decrypt my ciphertext iff you know a secret key
{𝗌𝗄 : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 ∈ 𝖢𝗋𝗒𝗉𝗍𝗈) ∧ (𝗉𝗄 ∈ 𝖤𝖴)}

{𝗌𝗄, ⃗w : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 = ∏𝖢𝗋𝗒𝗉𝗍𝗈wi
i) ∧ (𝗉𝗄 = ∏𝖤𝖴wi

i)}

Almost works… but adversary can use “empty” slots

35

Zero-Check Gadget

36

Zero-Check Gadget
Statement: S ⊂ [n]

36

Zero-Check Gadget
Statement: S ⊂ [n]

Witness: such that  
 
 
 
 

(w1, w2, …, wn) ∈ 𝔽n {wi = 0}i∈S

36

Zero-Check Gadget
Statement: S ⊂ [n]

Witness: such that  
 
 
 
 

(w1, w2, …, wn) ∈ 𝔽n {wi = 0}i∈S

You can decrypt my ciphertext iff you know such that: ⃗w
{wi = 0}i∈S

36

Zero-Check Gadget
Statement: S ⊂ [n]

Witness: such that  
 
 
 
 

(w1, w2, …, wn) ∈ 𝔽n {wi = 0}i∈S

1. The above WE has !|𝖼𝗍 | = O(1)

You can decrypt my ciphertext iff you know such that: ⃗w
{wi = 0}i∈S

36

Zero-Check Gadget
Statement: S ⊂ [n]

Witness: such that  
 
 
 
 

(w1, w2, …, wn) ∈ 𝔽n {wi = 0}i∈S

1. The above WE has !|𝖼𝗍 | = O(1)
2. takes as input a succinct commitment to , and runs in time𝖤𝗇𝖼 S O(1)

You can decrypt my ciphertext iff you know such that: ⃗w
{wi = 0}i∈S

36

Bulletin Board
EU: pk1 pk2 0 pk4 0

Crypto: pk1 pk2 0 0 pk5

Inner-Product + Zero-Check rABE→

37

Bulletin Board
EU: pk1 pk2 0 pk4 0

Crypto: pk1 pk2 0 0 pk5

Inner-Product + Zero-Check rABE→

You can decrypt my ciphertext iff you know a secret key
{𝗌𝗄 : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 ∈ 𝖢𝗋𝗒𝗉𝗍𝗈) ∧ (𝗉𝗄 ∈ 𝖤𝖴)}

37

Bulletin Board
EU: pk1 pk2 0 pk4 0

Crypto: pk1 pk2 0 0 pk5

Inner-Product + Zero-Check rABE→

You can decrypt my ciphertext iff you know a secret key
{𝗌𝗄 : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 ∈ 𝖢𝗋𝗒𝗉𝗍𝗈) ∧ (𝗉𝗄 ∈ 𝖤𝖴)}

 {𝗌𝗄, ⃗w : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 = ∏𝖢𝗋𝗒𝗉𝗍𝗈wi
i) ∧ (𝗉𝗄 = ∏𝖤𝖴wi

i)
∧ {wi = 0}i ∈ Z 𝖢𝗋𝗒𝗉𝗍𝗈

∧ {wi = 0}i ∈ Z 𝖤𝖴
∧ ⃗w ≠ 0}

37

 {𝗌𝗄, ⃗w : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 = ∏𝖢𝗋𝗒𝗉𝗍𝗈wi
i) ∧ (𝗉𝗄 = ∏𝖤𝖴wi

i)
∧ {wi = 0}i ∈ Z 𝖢𝗋𝗒𝗉𝗍𝗈

∧ {wi = 0}i ∈ Z 𝖤𝖴
∧ ⃗w ≠ 0}

Efficiency Analysis
 ⃗Crypto = (𝗉𝗄1, 𝗉𝗄2,0,0,𝗉𝗄5) ⃗EU = (𝗉𝗄1, 𝗉𝗄2,0,𝗉𝗄4,0)

38

 {𝗌𝗄, ⃗w : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 = ∏𝖢𝗋𝗒𝗉𝗍𝗈wi
i) ∧ (𝗉𝗄 = ∏𝖤𝖴wi

i)
∧ {wi = 0}i ∈ Z 𝖢𝗋𝗒𝗉𝗍𝗈

∧ {wi = 0}i ∈ Z 𝖤𝖴
∧ ⃗w ≠ 0}

Efficiency Analysis
 ⃗Crypto = (𝗉𝗄1, 𝗉𝗄2,0,0,𝗉𝗄5) ⃗EU = (𝗉𝗄1, 𝗉𝗄2,0,𝗉𝗄4,0)

Key Curator computes:

38

 {𝗌𝗄, ⃗w : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 = ∏𝖢𝗋𝗒𝗉𝗍𝗈wi
i) ∧ (𝗉𝗄 = ∏𝖤𝖴wi

i)
∧ {wi = 0}i ∈ Z 𝖢𝗋𝗒𝗉𝗍𝗈

∧ {wi = 0}i ∈ Z 𝖤𝖴
∧ ⃗w ≠ 0}

Efficiency Analysis
 ⃗Crypto = (𝗉𝗄1, 𝗉𝗄2,0,0,𝗉𝗄5) ⃗EU = (𝗉𝗄1, 𝗉𝗄2,0,𝗉𝗄4,0)

Key Curator computes:
1. Succinct commitments to , , and , ⃗𝖢𝗋𝗒𝗉𝗍𝗈 ⃗𝖤𝖴 Z 𝖢𝗋𝗒𝗉𝗍𝗈 Z 𝖤𝖴

38

 {𝗌𝗄, ⃗w : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 = ∏𝖢𝗋𝗒𝗉𝗍𝗈wi
i) ∧ (𝗉𝗄 = ∏𝖤𝖴wi

i)
∧ {wi = 0}i ∈ Z 𝖢𝗋𝗒𝗉𝗍𝗈

∧ {wi = 0}i ∈ Z 𝖤𝖴
∧ ⃗w ≠ 0}

Efficiency Analysis
 ⃗Crypto = (𝗉𝗄1, 𝗉𝗄2,0,0,𝗉𝗄5) ⃗EU = (𝗉𝗄1, 𝗉𝗄2,0,𝗉𝗄4,0)

Key Curator computes:
1. Succinct commitments to , , and , ⃗𝖢𝗋𝗒𝗉𝗍𝗈 ⃗𝖤𝖴 Z 𝖢𝗋𝗒𝗉𝗍𝗈 Z 𝖤𝖴

2. Helper key: Witness for Inner Product and Zero Check

38

 {𝗌𝗄, ⃗w : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 = ∏𝖢𝗋𝗒𝗉𝗍𝗈wi
i) ∧ (𝗉𝗄 = ∏𝖤𝖴wi

i)
∧ {wi = 0}i ∈ Z 𝖢𝗋𝗒𝗉𝗍𝗈

∧ {wi = 0}i ∈ Z 𝖤𝖴
∧ ⃗w ≠ 0}

Efficiency Analysis
 ⃗Crypto = (𝗉𝗄1, 𝗉𝗄2,0,0,𝗉𝗄5) ⃗EU = (𝗉𝗄1, 𝗉𝗄2,0,𝗉𝗄4,0)

Key Curator computes:
1. Succinct commitments to , , and , ⃗𝖢𝗋𝗒𝗉𝗍𝗈 ⃗𝖤𝖴 Z 𝖢𝗋𝗒𝗉𝗍𝗈 Z 𝖤𝖴

2. Helper key: Witness for Inner Product and Zero Check

Avoid reading entire bulletin board AND are succinct(𝖤𝗇𝖼, |𝖼𝗍 | , 𝖣𝖾𝖼)
38

Line of Work on Improving CRS

 users and attributesM |𝕌 |
Matches CRS size of “weaker” primitives like RBE

39

Thank you!

40

