A Framework for WE from Linearly Verifiable SNARKs and Applications

Sanjam Garg, Mohammad Hajiabadi, Dimitris Kolonelos, Abhiram Kothapalli, and Guru-Vamsi Policharla

Consider an NP relation: $R \subset \{0,1\}^* \times \{0,1\}^*$

Consider an NP relation: $R \subset \{0,1\}^* \times \{0,1\}^*$

(Extractable) Witness Encryption: Encrypt to a statement x.

Can decrypt iff you know witness w such that $(x, w) \in R$.

Consider an NP relation: $R \subset \{0,1\}^* \times \{0,1\}^*$

(Extractable) Witness Encryption: Encrypt to a statement x.

Can decrypt iff you know witness w such that $(x, w) \in R$.

Witness encryption for <u>all of NP</u> is very powerful — recent progress but no concretely efficient constructions. [CVW18,Tsa22,VWW22]

Consider an NP relation: $R \subset \{0,1\}^* \times \{0,1\}^*$

(Extractable) Witness Encryption: Encrypt to a statement x.

Can decrypt iff you know witness w such that $(x, w) \in R$.

Witness encryption for <u>all of NP</u> is very powerful — recent progress but no concretely efficient constructions. [CVW18,Tsa22,VWW22]

Today: Focus on efficient WE for special relations and applications.

Not going to build WE for NP

Over the last 25 years:

Over the last 25 years:

Identity-Based Encryption [BF01]

Hash-Proof Systems [CS02], [BC16]

Over the last 25 years:

Hash Encryption [CDG+17], [DG17]

Identity-Based Encryption [BF01]

Committed Value WE [GS17], [BL20], [CFK24]

Hash-Proof Systems [CS02], [BC16]

Laconic PSI/OT
[ALOS22], [DKL+23], [FHAS24], [BGJP25]

Silent Threshold Encryption [GKPW24]

Registration Based Encryption [GHMR18], [GKMR23], [FKdP23]

(Distributed) Broadcast Encryption [BGW05], [WQZD10], [KMW23]

Registered Functional Encryption [FFM+23]

Registered Attribute Based Encryption [HLWW23], [FWW23], [ZZGQ23], [AT24], [GLWW24]

Batched Threshold Encryption [CGPP24], [CGPW24], [AFP24]

Over the last 25 years:

Hash Encryption

Identity-Based Encryption

Registration Based Encryption [GHMR18], [GKMR23], [FKdP23]

At first glance, constructions seem "arbitrary" and unrelated (2)

Can we systematically study special purpose WE?

Laconic PSI/OT [ALOS22], [DKL+23], [FHAS24], [BGJP25]

Silent Threshold Encryption [GKPW24]

Registered Attribute Based Encryption [HLWW23], [FWW23], [ZZGQ23], [AT24], [GLWW24]

Batched Threshold Encryption [CGPP24], [CGPW24], [AFP24]

Taxonomy of WE

$$(x, w) \in R$$

Gen 1

$$Enc(x, m) \rightarrow ct$$

$$Dec(w, ct) \rightarrow m$$

$$(x, w) \in R$$

Gen 1

$$Enc(x, m) \rightarrow ct$$

$$Dec(w, ct) \rightarrow m$$

$$T_E = T_D = O(|R|)$$

$$|\operatorname{ct}| = O(|R|)$$

 $(x, w) \in R$

Gen 1

<u>Gen 2</u>

$$Enc(x, m) \rightarrow ct$$

$$Dec(w, ct) \rightarrow m$$

$$T_E = T_D = O(|R|)$$

$$|\operatorname{ct}| = O(|R|)$$

$$(x, w) \in R$$

Gen 1

Gen 2

$$Enc(x, m) \rightarrow ct$$

 $h \leftarrow \mathsf{Hash}(x)$

$$Dec(w, ct) \rightarrow m$$

$$|h| \ll |x|$$

$$T_E = T_D = O(|R|)$$
$$|\operatorname{ct}| = O(|R|)$$

$$(x, w) \in R$$

Gen 1

Gen 2

 $Enc(x, m) \rightarrow ct$

 $h \leftarrow \mathsf{Hash}(x)$

 $Dec(w, ct) \rightarrow m$

$$|h| \ll |x|$$

 $Enc(h, m) \rightarrow ct$

$$T_E = T_D = O(|R|)$$
$$|\operatorname{ct}| = O(|R|)$$

$$(x, w) \in R$$

Gen 1

Gen 2

 $Enc(x, m) \rightarrow ct$

 $h \leftarrow \mathsf{Hash}(x)$

 $Dec(w, ct) \rightarrow m$

 $|h| \ll |x|$

 $Enc(h, m) \rightarrow ct$

$$T_E = T_D = O(|R|)$$
$$|\operatorname{ct}| = O(|R|)$$

$$(x, w) \in R$$

Gen 1

 $Enc(x, m) \rightarrow ct$

 $Dec(w, ct) \rightarrow m$

Gen 2

 $h \leftarrow \mathsf{Hash}(x)$

$$|h| \ll |x|$$

 $Enc(h, m) \rightarrow ct$

- Laconic OT: Hash the receiver's choice bits
- Laconic PSI: Hash the receiver's database

$$T_E = T_D = O(|R|)$$

$$|\operatorname{ct}| = O(|R|)$$

$$(x, w) \in R$$

Gen 1

Gen 2

Gen 3

$$Enc(x, m) \rightarrow ct$$

 $h \leftarrow \mathsf{Hash}(x)$

$$Dec(w, ct) \rightarrow m$$

$$|h| \ll |x|$$

$$Enc(h, m) \rightarrow ct$$

$$Dec(w, ct) \rightarrow m$$

$$T_E = T_D = O(|R|)$$
$$|\operatorname{ct}| = O(|R|)$$

$$(x, w) \in R$$

Gen 1

Gen 2

Gen 3

 $Enc(x, m) \rightarrow ct$

 $h \leftarrow \mathsf{Hash}(x)$

 $(h,\pi)\in R'$

 $Dec(w, ct) \rightarrow m$

 $|h| \ll |x|$

 $|R'| \ll |R|$

 $Enc(h, m) \rightarrow ct$

$$T_E = T_D = O(|R|)$$
$$|\operatorname{ct}| = O(|R|)$$

Computational Reduction $(x, w) \in R$ (SNARK the relation!) <u>Gen 3</u> Gen 2 $(h,\pi) \in R'$ $h \leftarrow \mathsf{Hash}(x)$ $|h| \ll |x|$ $|R'| \ll |R|$ $Enc(h, m) \rightarrow ct$ $Dec(w, ct) \rightarrow m$

$$T_E = T_D = O(|R|)$$

$$|\operatorname{ct}| = O(|R|)$$

Gen 1

 $Enc(x, m) \rightarrow ct$

Computational Reduction $(x, w) \in R$ (SNARK the relation!) <u>Gen 3</u> Gen 2 $(h,\pi) \in R'$ $h \leftarrow \mathsf{Hash}(x)$ $|h| \ll |x|$ $|R'| \ll |R|$ $Enc(h, m) \rightarrow ct$

Gen 1

 $Enc(x, m) \rightarrow ct$

$$\mathsf{Enc}(h,m) \to \mathsf{ct}$$

$$Dec(w, ct) \rightarrow m$$

$$T_E = T_D = O(|R|)$$
$$|\operatorname{ct}| = O(|R|)$$

 $(x, w) \in R$

Computational Reduction (SNARK the relation!)

Gen 1

 $Enc(x, m) \rightarrow ct$

 $Dec(w, ct) \rightarrow m$

Gen 2

 $h \leftarrow \mathsf{Hash}(x)$

$$|h| \ll |x|$$

 $Enc(h, m) \rightarrow ct$

 $Dec(w, ct) \rightarrow m$

<u>Gen 3</u>

$$(h,\pi) \in R'$$

$$|R'| \ll |R|$$

 $Enc(h, m) \rightarrow ct$

$$T_E = T_D = O(|R|)$$

$$|\operatorname{ct}| = O(|R|)$$

 $(x, w) \in R$

Computational Reduction (SNARK the relation!)

Gen 1

 $Enc(x, m) \rightarrow ct$

 $Dec(w, ct) \rightarrow m$

Gen 2

 $h \leftarrow \mathsf{Hash}(x)$

$$|h| \ll |x|$$

 $Enc(h, m) \rightarrow ct$

$$(h,\pi) \in R'$$

$$|R'| \ll |R|$$

$$Enc(h, m) \rightarrow ct$$

$$Dec(\pi, ct) \rightarrow m$$

$$T_E = T_D = O(|R|)$$
$$|\operatorname{ct}| = O(|R|)$$

$$T_E = T_D = O(|R'|)$$

 $|ct| = O(|R'|)$

Classification

Gen 1

Gen 2

Gen 3

Identity-Based Encryption [BF01]

Hash-Proof Systems [CS02], [BC16]

Committed Value WE [GS17], [BL20]

Hash Encryption [CDG+17], [DG17]

(Distributed) Broadcast Encryption [BGW05], [WQZD10], [KMW23]

Registration Based Encryption [GHMR18], [GKMR23], [FKdP23]

Registered Attribute Based Encryption [HLWW23], [FWW23], [ZZGQ23], [AT24], [GLWW24]

Batched Threshold Encryption Committed Value WE [CGPP24], [CGPW24], [AFP24] [CFK24]

Laconic PSI/OT [ALOS22], [DKL+23], [FHAS24], [BGJP25]

Registered Functional Encryption [FFM+23]

Silent Threshold Encryption [GKPW24]

Classification

Gen 1

Identity-Based Encryption [BF01]

Hash-Proof Systems [CS02], [BC16]

Committed Value WE [GS17], [BL20]

Gen 2

Today: A framework to build Gen 3 WE and applications

Hash Encryption [CDG+17], [DG17]

Gen 3

(Distributed) Broadcast Encryption [BGW05], [WQZD10], [KMW23]

Registration Based Encryption [GHMR18], [GKMR23], [FKdP23]

Registered Attribute Based Encryption [HLWW23], [FWW23], [ZZGQ23], [AT24], [GLWW24]

Batched Threshold Encryption Committed Value WE [CGPP24], [CGPW24], [AFP24] [CFK24]

Laconic PSI/OT

[ALOS22], [DKL+23], [FHAS24], [BGJP25]

Registered Functional Encryption [FFM+23]

Silent Threshold Encryption [GKPW24]

Gadget-based framework for WE

Gadget-based framework for WE

 Similar to ZK libraries: "glue" together gadgets written by experts

Gadget-based framework for WE

- Similar to ZK libraries: "glue" together gadgets written by experts
- No prior knowledge of SNARKs needed!

Gadget-based framework for WE

- Similar to ZK libraries: "glue" together gadgets written by experts
- No prior knowledge of SNARKs needed!
- Security in the GGM

Gadget-based framework for WE

- Similar to ZK libraries: "glue" together gadgets written by experts
- No prior knowledge of SNARKs needed!
- Security in the GGM

Recover previous results

- Registration Based Encryption
- Distributed Broadcast Encryption
- Silent/Batched Threshold Encryption
- ... and more!

Gadget-based framework for WE

- Similar to ZK libraries: "glue" together gadgets written by experts
- No prior knowledge of SNARKs needed!
- Security in the GGM

Improve best known result [GLWW24]

Registered ABE with a Linear CRS

Recover previous results

- Registration Based Encryption
- Distributed Broadcast Encryption
- Silent/Batched Threshold Encryption
- ... and more!

Gadget-based framework for WE

- Similar to ZK libraries: "glue" together gadgets written by experts
- No prior knowledge of SNARKs needed!
- Security in the GGM

Improve best known result [GLWW24]

Registered ABE with a Linear CRS

Recover previous results

- Registration Based Encryption
- Distributed Broadcast Encryption
- Silent/Batched Threshold Encryption
- ... and more!

New feasibility results

Registered Threshold Encryption

What class of relations support <u>efficient</u> WE?

Relations with "Linear" verifiers

Express the verification circuit for $R_L(x, w) = 1$ as a set of PPEs.

Express the verification circuit for $R_L(x, w) = 1$ as a set of PPEs.

$$\prod e(x_i, x_j) \cdot \prod e(x_i, w_j) \cdot \prod e(w_i, x_j) \cdot \prod e(w_i, w_j) = c_T$$

Express the verification circuit for $R_L(x, w) = 1$ as a set of PPEs.

$$\prod e(x_i, x_j) \cdot \prod e(x_i, w_j) \cdot \prod e(w_i, x_j) \cdot \prod e(w_i, x_j) \cdot e(w_i, x_j) \cdot e(w_i, x_j) \cdot e(w_i, x_j) = c_T$$

Express the verification circuit for $R_L(x, w) = 1$ as a set of PPEs.

$$\prod e(x_i, x_j) \cdot \prod e(x_i, w_j) \cdot \prod e(w_i, x_j) \cdot \prod e(w_i, x_j) \cdot e(w_i, x_j) \cdot e(w_i, x_j) \cdot e(w_i, x_j) = c_T$$

Compiler [BC16, BL20, GKPW24]: Linear PPE → WE

The Missing Piece

Linear Relation

PPE Constraint System: $\prod e(x_i, x_j) \cdot \prod e(x_i, w_j) \cdot \prod e(w_i, x_j) = c_T$

The Missing Piece

Natural Relation

$$\mathcal{R} = \{(x, w) | f(x, w) = 1\}$$

Linear Relation

PPE Constraint System: $\prod e(x_i, x_j) \cdot \prod e(x_i, w_j) \cdot \prod e(w_i, x_j) = c_T$

The Missing Piece

Natural Relation

$$\mathcal{R} = \{(x, w) | f(x, w) = 1\}$$

How do we *linearize* natural relations? How do we leverage SNARK machinery for *succinctness*?

Linear Relation

PPE Constraint System: $\prod e(x_i, x_j) \cdot \prod e(x_i, w_j) \cdot \prod e(w_i, x_j) = c_T$

Closing the gap: Our Framework to build WE

Goal: Simplify the process of translating:

Goal: Simplify the process of translating:

Natural Relations → **Linear Relations**

Goal: Simplify the process of translating:

Natural Relations → **Linear Relations**

• We provide "Gadgets" — Witness Encryption for useful relations:

Goal: Simplify the process of translating:

Natural Relations → **Linear Relations**

• We provide "Gadgets" — Witness Encryption for useful relations:

1. Signatures	4. Zero Check
2. Algebraic PRF	5. Degree Check
3. Inner Product	and more!

Goal: Simplify the process of translating:

Natural Relations → **Linear Relations**

We provide "Gadgets" — Witness Encryption for useful relations:

Signatures
 Zero Check
 Algebraic PRF
 Degree Check
 Inner Product
 and more!

Gadgets can be <u>composed</u> to build WE for larger relations!

Goal: Simplify the process of translating:

Natural Relations → **Linear Relations**

• We provide "Gadgets" — Witness Encryption for useful relations:

- Signatures
 Algebraic PRF
 Degree Check
 Inner Product
 and more!
- Gadgets can be <u>composed</u> to build WE for larger relations!
- Gadgets fully capture <u>succinctness</u>!

Goal: Simplify the process of translating:

Natural Relations → **Linear Relations**

• We provide "Gadgets" — Witness Encryption for useful relations:

- Signatures
 Zero Check
 Algebraic PRF
 Degree Check
 Inner Product
 and more!
- Gadgets can be <u>composed</u> to build WE for larger relations!
- Gadgets fully capture <u>succinctness</u>!
- Easy to use and extend with new gadgets!

Natural Relation

$$\mathcal{R} = \{(x, w) \mid f(x, w) = 1\}$$

Remainder of the Talk

Gadget-based framework for WE

- Similar to ZK libraries: "glue" together gadgets written by experts
- No prior knowledge of SNARKs needed!
- Security in the GGM

Recover previous results

- Registration Based Encryption
- Distributed Broadcast Encryption
- Silent/Batched Threshold Encryption
- ... and more!

Improve best known result [GLWW24]

Registered ABE with a Linear CRS

New feasibility results

Registered Threshold Encryption

Remainder of the Talk

Gadget-based framework for WE

- Similar to ZK libraries: "glue" together gadgets written by experts
- No prior knowledge of SNARKs needed!
- Security in the GGM

Recover previous results

- Registration Based Encryption
- Distributed Broadcast Encryption
- Silent/Batched Threshold Encryption
- ... and more!

Improve best known result [GLWW24]

Registered ABE with a Linear CRS

New feasibility results

Registered Threshold Encryption

Remainder of the Talk

Gadget-based framework for WE

- Similar to ZK libraries: "glue" together gadgets written by experts
- No prior knowledge of SNARKs needed!
- Security in the GGM

Recover previous results

- Registration Based Encryption
- Distributed Broadcast Encryption
- Silent/Batched Threshold Encryption
- ... and more!

Improve best known result [GLWW24]

Registered ABE with a Linear CRS

New feasibility results

Registered Threshold Encryption

Distributed Broadcast Encryption

Goal: Send a message to n parties with |ct| = O(1)

No interaction during setup except for a PKI.

(Note: Can achieve |ct| = O(n) using public key encryption)

Semantic security against $S' = \overrightarrow{pk} \backslash S$

Goal: Send a message to n parties with |ct| = O(1)

Goal: Send a message to n parties with |ct| = O(1)

Let each party have a public key pair:

$$\{\operatorname{pk}_i = g^{\operatorname{sk}_i}\}_{i \in [n]} \in \mathbb{G}_1$$

Goal: Send a message to n parties with |ct| = O(1)

Let each party have a public key pair:

$$\{\operatorname{pk}_i = g^{\operatorname{sk}_i}\}_{i \in [n]} \in \mathbb{G}_1$$

Suppose we had a <u>succinct</u> (|ct| = O(1)) WE for the following relation:

Goal: Send a message to n parties with |ct| = O(1)

Let each party have a public key pair:

$$\{\operatorname{pk}_i = g^{\operatorname{sk}_i}\}_{i \in [n]} \in \mathbb{G}_1$$

Suppose we had a <u>succinct</u> (|ct| = O(1)) WE for the following relation:

You can decrypt my ciphertext iff you know a secret key $\{ sk_i : (pk_i = g^{sk_i}) \land (pk_i \in \overrightarrow{pk}) \}$

$$[sk_i:(pk_i=g^{sk_i}) \land (pk_i \in pk)]$$

How do we build the WE?

Statement: $(u_1, u_2, ..., u_n) \in \mathbb{G}^n$, $v \in \mathbb{G}$

Statement: $(u_1, u_2, ..., u_n) \in \mathbb{G}^n$, $v \in \mathbb{G}$

Witness:
$$(w_1, w_2, ..., w_n) \in \mathbb{F}^n$$
 such that $\prod_i u_i^{w_i} = v$.

Statement: $(u_1, u_2, ..., u_n) \in \mathbb{G}^n$, $v \in \mathbb{G}$

Witness:
$$(w_1, w_2, ..., w_n) \in \mathbb{F}^n$$
 such that $\prod_i u_i^{w_i} = v$.

You can decrypt my ciphertext iff you know \overrightarrow{w} such that:

$$\prod_{i} u_{i}^{w_{i}} = v$$

Inner-Product Gadget

Statement: $(u_1, u_2, ..., u_n) \in \mathbb{G}^n$, $v \in \mathbb{G}$

Witness:
$$(w_1, w_2, ..., w_n) \in \mathbb{F}^n$$
 such that $\prod_i u_i^{w_i} = v$.

You can decrypt my ciphertext iff you know w such that:

$$\prod_{i} u_{i}^{w_{i}} = v$$

1. The above WE has $|\mathbf{ct}| = O(1)!$

Inner-Product Gadget

Statement: $(u_1, u_2, ..., u_n) \in \mathbb{G}^n$, $v \in \mathbb{G}$

Witness:
$$(w_1, w_2, ..., w_n) \in \mathbb{F}^n$$
 such that $\prod_i u_i^{w_i} = v$.

You can decrypt my ciphertext iff you know \overrightarrow{w} such that:

$$\prod_{i} u_{i}^{w_{i}} = v$$

- 1. The above WE has $|\mathbf{ct}| = O(1)!$
- 2. Enc takes as input a succinct commitment to \vec{u} , and runs in O(1) time

Each user has a public key pair:

$$\{\operatorname{pk}_i = g^{\operatorname{sk}_i}\}_{i \in [n]} \in \mathbb{G}$$

Each user has a public key pair:

$$\{\mathsf{pk}_i = g^{\mathsf{sk}_i}\}_{i \in [n]} \in \mathbb{G}$$

- $\operatorname{Enc}(m, \overrightarrow{pk})$:
 - Encrypt using the Inner-Product gadget with $\vec{u} = \vec{pk}$ and $\vec{v} = g$

Each user has a public key pair:

$$\{\operatorname{pk}_i = g^{\operatorname{sk}_i}\}_{i \in [n]} \in \mathbb{G}$$

- $Enc(m, \overrightarrow{pk})$:
 - Encrypt using the Inner-Product gadget with $\vec{u} = \vec{pk}$ and $\vec{v} = g$

You can decrypt my ciphertext iff you know \overrightarrow{w} such that:

$$\prod_{i} \mathsf{pk}_{i}^{w_{i}} = g$$

Each user has a public key pair:

$$\{\operatorname{pk}_i = g^{\operatorname{sk}_i}\}_{i \in [n]} \in \mathbb{G}$$

- $\operatorname{Enc}(m, \overrightarrow{pk})$:
 - Encrypt using the Inner-Product gadget with $\vec{u} = \vec{pk}$ and $\vec{v} = g$

You can decrypt my ciphertext iff you know \overrightarrow{w} such that:

$$\prod_{i} \mathsf{pk}_{i}^{w_{i}} = g$$

Honest users decrypt using $\overrightarrow{w} = (0, ..., sk_i^{-1}, ..., 0)$

Each user has a public key pair:

$$\{\mathsf{pk}_i = g^{\mathsf{sk}_i}\}_{i \in [n]} \in \mathbb{G}$$

- $Enc(m, \overrightarrow{pk})$:
 - Encrypt using the Inner-Product gadget with $\vec{u} = \vec{pk}$ and $\vec{v} = g$

You can decrypt my ciphertext iff you know \overrightarrow{w} such that:

$$\prod_{i} \mathsf{pk}_{i}^{w_{i}} = g$$

Adversary can be reduced to solving DLOG

Registered Attribute Based Encryption

Goal: Attribute Based Encryption without a Trusted Party

No interaction during setup except for a PKI

+ some notions of efficiency

M users

M users

Bulletin Board							
Public Key:	pk ₁	pk ₂	pk ₃	pk ₄	pk ₅		
Region:	EU	EU	USA	EU	USA		
Area:	Crypto	Crypto	ML	ML	Crypto		

M users

Bulletin Board							
Public Key:	pk ₁	pk ₂	pk ₃	pk ₄	pk ₅		
Region:	EU	EU	USA	EU	USA		
Area:	Crypto	Crypto	ML	ML	Crypto		

M users

Bulletin Board							
Public Key:	pk ₁	pk ₂	pk ₃	pk ₄	pk ₅		
Region:	EU	EU	USA	EU	USA		
Area:	Crypto	Crypto	ML	ML	Crypto		

Want to encrypt a message to "All cryptographers in EU region" ... but:

1. Don't want to read the entire bulletin board

M users

Bulletin Board							
Public Key:	pk ₁	pk ₂	pk ₃	pk ₄	pk ₅		
Region:	EU	EU	USA	EU	USA		
Area:	Crypto	Crypto	ML	ML	Crypto		

- 1. Don't want to read the entire bulletin board
- 2. Enc, Dec, and |ct| should be succinct polylog(M) (# of users)

M users

Bulletin Board							
Public Key:	pk ₁	pk ₂	pk ₃	pk ₄	pk ₅		
Region:	EU	EU	USA	EU	USA		
Area:	Crypto	Crypto	ML	ML	Crypto		

- 1. Don't want to read the entire bulletin board Only trusted for integrity.
- 2. Enc, Dec, and |ct| should be succinct polylog(M) (# of users)

M users

Bulletin Board							
Public Key:	pk ₁	pk ₂	pk ₃	pk ₄	pk ₅		
Region:	EU	EU	USA	EU	USA		
Area:	Crypto	Crypto	ML	ML	Crypto		

- 1. Don't want to read the entire bulletin board Only trusted for integrity.
- 2. Enc, Dec, and |ct| should be succinct polylog(M) (# of users) \longrightarrow Gen 3 WE

M users

Bulletin Board							
Public Key:	pk ₁	pk ₂	pk ₃	pk ₄	pk ₅		
Region:	EU	EU	USA	EU	USA		
Area:	Crypto	Crypto	ML	ML	Crypto		

M users

Bulletin Board							
Public Key:	pk ₁	pk ₂	pk ₃	pk ₄	pk ₅		
Region:	EU	EU	USA	EU	USA		
Area:	Crypto	Crypto	ML	ML	Crypto		

M users

Bulletin Board							
Public Key:	pk ₁	pk ₂	pk ₃	pk ₄	pk ₅		
Region:	EU	EU	USA	EU	USA		
Area:	Crypto	Crypto	ML	ML	Crypto		
Helper Key:	hk ₁	hk ₂	hk ₃	hk ₄	hk ₅		

 $Enc(aPK, m, "Crypto" \land "EU") \rightarrow |ct|$

M users

Bulletin Board							
Public Key:	pk ₁	pk ₂	pk ₃	pk ₄	pk ₅		
Region:	EU	EU	USA	EU	USA		
Area:	Crypto	Crypto	ML	ML	Crypto		
Helper Key:	hk ₁	hk ₂	hk ₃	hk ₄	hk ₅		

Step #1: Identify a Relation

Bulletin Board							
USA:	-	_	pk ₃	-	pk ₅		
EU:	pk ₁	pk ₂	-	pk ₄	_		
Crypto:	pk ₁	pk ₂	_	-	pk ₅		
ML:	_	_	рkз	pk ₄	_		

Step #1: Identify a Relation

M users

Bulletin Board							
USA:	_	_	pk ₃	_	pk ₅		
EU:	pk ₁	pk ₂	_	pk ₄	_		
Crypto:	pk ₁	pk ₂	_	_	pk ₅		
ML:	_	_	pk ₃	pk ₄	_		

You can decrypt my ciphertext iff you know a secret key

 $\{sk : (pk = g^{sk}) \land (pk \in Crypto) \land (pk \in EU)\}$

Bulletin Board						
EU:	pk ₁	pk ₂	0	pk ₄	O	
Crypto: pk ₁ pk ₂ 0 0 pk ₅						

		Bulletin	Board		
EU:	pk ₁	pk ₂	0	pk ₄	0
Crypto:	pk ₁	pk ₂	0	Ο	pk ₅

You can decrypt my ciphertext iff you know a secret key

$$\{sk : (pk = g^{sk}) \land (pk \in Crypto) \land (pk \in EU)\}$$

Bulletin Board					
EU:	pk ₁	pk ₂	0	pk ₄	0
Crypto:	pk ₁	pk ₂	0	0	pk ₅

You can decrypt my ciphertext iff you know a secret key

$$\{sk : (pk = g^{sk}) \land (pk \in Crypto) \land (pk \in EU)\}$$

$$\{\mathsf{sk}, \overrightarrow{w} : (\mathsf{pk} = g^{\mathsf{sk}}) \land (\mathsf{pk} = \prod \mathsf{Crypto}_i^{w_i}) \land (\mathsf{pk} = \prod \mathsf{EU}_i^{w_i})\}$$

Bulletin Board					
EU:	pk ₁	pk ₂	0	pk ₄	0
Crypto:	pk ₁	pk ₂	0	0	pk ₅

You can decrypt my ciphertext iff you know a secret key

$$\{sk : (pk = g^{sk}) \land (pk \in Crypto) \land (pk \in EU)\}$$

$$\{\mathsf{sk}, \overrightarrow{w} : (\mathsf{pk} = g^{\mathsf{sk}}) \land (\mathsf{pk} = \prod \mathsf{Crypto}_i^{w_i}) \land (\mathsf{pk} = \prod \mathsf{EU}_i^{w_i})\}$$

Almost works... but adversary can use "empty" slots

Statement: $S \subset [n]$

Statement: $S \subset [n]$

Witness: $(w_1, w_2, ..., w_n) \in \mathbb{F}^n$ such that $\{w_i = 0\}_{i \in S}$

Statement: $S \subset [n]$

Witness: $(w_1, w_2, ..., w_n) \in \mathbb{F}^n$ such that $\{w_i = 0\}_{i \in S}$

You can decrypt my ciphertext iff you know \overrightarrow{w} such that:

$$\{w_i = 0\}_{i \in S}$$

Statement: $S \subset [n]$

Witness: $(w_1, w_2, ..., w_n) \in \mathbb{F}^n$ such that $\{w_i = 0\}_{i \in S}$

You can decrypt my ciphertext iff you know \overrightarrow{w} such that:

$$\{w_i = 0\}_{i \in S}$$

1. The above WE has |ct| = O(1)!

Statement: $S \subset [n]$

Witness: $(w_1, w_2, ..., w_n) \in \mathbb{F}^n$ such that $\{w_i = 0\}_{i \in S}$

You can decrypt my ciphertext iff you know \overrightarrow{w} such that:

$$\{w_i = 0\}_{i \in S}$$

- 1. The above WE has $|\mathbf{ct}| = O(1)!$
- 2. Enc takes as input a succinct commitment to S, and runs in O(1) time

Inner-Product + Zero-Check → rABE

Bulletin Board					
EU:	pk ₁	pk ₂	0	pk ₄	0
Crypto:	pk ₁	pk ₂	0	0	pk ₅

Inner-Product + Zero-Check → rABE

		Bulletin	Board		
EU:	pk ₁	pk ₂	0	pk ₄	0
Crypto:	pk ₁	pk ₂	0	Ο	pk ₅

You can decrypt my ciphertext iff you know a secret key

$$\{sk : (pk = g^{sk}) \land (pk \in Crypto) \land (pk \in EU)\}$$

Inner-Product + Zero-Check -> rABE

Bulletin Board					
EU:	pk ₁	pk ₂	0	pk ₄	0
Crypto:	pk ₁	pk ₂	O	O	pk ₅

You can decrypt my ciphertext iff you know a secret key

$$\{sk : (pk = g^{sk}) \land (pk \in Crypto) \land (pk \in EU)\}$$

$$\{\mathsf{sk}, \overrightarrow{w} : (\mathsf{pk} = g^{\mathsf{sk}}) \land (\mathsf{pk} = \prod \mathsf{Crypto}_i^{w_i}) \land (\mathsf{pk} = \prod \mathsf{EU}_i^{w_i}) \\ \land \{w_i = 0\}_{i \in Z_{\mathsf{Crypto}}} \land \{w_i = 0\}_{i \in Z_{\mathsf{EU}}} \land \overrightarrow{w} \neq 0 \}$$

$$\overrightarrow{\text{Crypto}} = (\mathsf{pk}_1, \mathsf{pk}_2, 0, 0, \mathsf{pk}_5)$$
 $\overrightarrow{\text{EU}} = (\mathsf{pk}_1, \mathsf{pk}_2, 0, \mathsf{pk}_4, 0)$

$$\{\mathsf{sk}, \overrightarrow{w} : (\mathsf{pk} = g^{\mathsf{sk}}) \land (\mathsf{pk} = \prod \mathsf{Crypto}_{i}^{w_{i}}) \land (\mathsf{pk} = \prod \mathsf{EU}_{i}^{w_{i}}) \\ \land \{w_{i} = 0\}_{i \in Z_{\mathsf{Crypto}}} \land \{w_{i} = 0\}_{i \in Z_{\mathsf{EU}}} \land \overrightarrow{w} \neq 0\}$$

$$\overrightarrow{\text{Crypto}} = (\mathsf{pk}_1, \mathsf{pk}_2, 0, 0, \mathsf{pk}_5)$$
 $\overrightarrow{\text{EU}} = (\mathsf{pk}_1, \mathsf{pk}_2, 0, \mathsf{pk}_4, 0)$

$$\{\mathsf{sk}, \overrightarrow{w} : (\mathsf{pk} = g^{\mathsf{sk}}) \land (\mathsf{pk} = \prod \mathsf{Crypto}_i^{w_i}) \land (\mathsf{pk} = \prod \mathsf{EU}_i^{w_i}) \\ \land \{w_i = 0\}_{i \in Z_{\mathsf{Crypto}}} \land \{w_i = 0\}_{i \in Z_{\mathsf{EU}}} \land \overrightarrow{w} \neq 0\}$$

Key Curator computes:

$$\overrightarrow{\text{Crypto}} = (\mathsf{pk}_1, \mathsf{pk}_2, 0, 0, \mathsf{pk}_5)$$
 $\overrightarrow{\text{EU}} = (\mathsf{pk}_1, \mathsf{pk}_2, 0, \mathsf{pk}_4, 0)$

$$\{\mathsf{sk}, \overrightarrow{w} : (\mathsf{pk} = g^{\mathsf{sk}}) \land (\mathsf{pk} = \prod \mathsf{Crypto}_{i}^{w_{i}}) \land (\mathsf{pk} = \prod \mathsf{EU}_{i}^{w_{i}}) \land \{w_{i} = 0\}_{i \in Z_{\mathsf{Crypto}}} \land \{w_{i} = 0\}_{i \in Z_{\mathsf{EU}}} \land \overrightarrow{w} \neq 0\}$$

Key Curator computes:

1. Succinct commitments to Crypto, \overrightarrow{EU} , and Z_{Crypto} , Z_{EU}

$$\overrightarrow{\text{Crypto}} = (\text{pk}_1, \text{pk}_2, 0, 0, \text{pk}_5)$$
 $\overrightarrow{\text{EU}} = (\text{pk}_1, \text{pk}_2, 0, \text{pk}_4, 0)$

$$\{\mathsf{sk}, \overrightarrow{w} : (\mathsf{pk} = g^{\mathsf{sk}}) \land (\mathsf{pk} = \prod \mathsf{Crypto}_{i}^{w_{i}}) \land (\mathsf{pk} = \prod \mathsf{EU}_{i}^{w_{i}}) \land \{w_{i} = 0\}_{i \in Z_{\mathsf{Crypto}}} \land \{w_{i} = 0\}_{i \in Z_{\mathsf{EU}}} \land \overrightarrow{w} \neq 0\}$$

Key Curator computes:

- 1. Succinct commitments to Crypto, EU, and Z_{Crypto} , Z_{EU}
- 2. Helper key: Witness for Inner Product and Zero Check

$$\overrightarrow{\text{Crypto}} = (\text{pk}_1, \text{pk}_2, 0, 0, \text{pk}_5)$$
 $\overrightarrow{\text{EU}} = (\text{pk}_1, \text{pk}_2, 0, \text{pk}_4, 0)$

$$\{\mathsf{sk}, \overrightarrow{w} : (\mathsf{pk} = g^{\mathsf{sk}}) \land (\mathsf{pk} = \prod \mathsf{Crypto}_i^{w_i}) \land (\mathsf{pk} = \prod \mathsf{EU}_i^{w_i}) \\ \land \{w_i = 0\}_{i \in Z_{\mathsf{Crypto}}} \land \{w_i = 0\}_{i \in Z_{\mathsf{EU}}} \land \overrightarrow{w} \neq 0\}$$

Key Curator computes:

- 1. Succinct commitments to Crypto, EU, and Z_{Crypto} , Z_{EU}
- 2. Helper key: Witness for Inner Product and Zero Check

Avoid reading entire bulletin board AND (Enc, ct, Dec) are succinct

Line of Work on Improving CRS

	crs	Policy	Setting
[HLWW23, §5]	1	Circuit	iO
[FWW23]	1	Circuit	\mathbf{WE}
[HLWW23, §7]	$ \mathbb{U} M^2$	MSP	Composite, static
[ZZGQ23]	$ \mathbb{U} M^2$	ABP	Prime, static
[AT24]	M^2	SP	Prime, static
[GLWW24, §4]	$M^{1+o(1)}$	MSP	Prime, q -type
[GLWW24, §5]	$ \mathbb{U} M^{1+o(1)}$	MSP	Composite, static
Our Scheme	M	DNF	Prime, GGM

M users and |U| attributes

Matches CRS size of "weaker" primitives like RBE

Thank you!