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Witness Encryption [GGSW13, GKPVZ13]

Consider an NP relation: R ⊂ {0,1}* × {0,1}*

(Extractable) Witness Encryption: Encrypt to a statement .  
Can decrypt iff you know witness  such that .

x
w (x, w) ∈ R

Witness encryption for all of NP is very powerful — recent progress but no 
concretely efficient constructions. [CVW18,Tsa22,VWW22]

Today: Focus on efficient WE for special relations and applications.

Not going to build WE for NP
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Laconic PSI/OT 
[ALOS22], [DKL+23], [FHAS24], [BGJP25]

Registered Functional Encryption 
[FFM+23]

Registered Attribute Based Encryption  
[HLWW23], [FWW23], [ZZGQ23], [AT24], [GLWW24]

Batched Threshold Encryption  
[CGPP24], [CGPW24], [AFP24]

Silent Threshold Encryption  
[GKPW24]

*not an exhaustive list

Over the last 25 years:

At first glance, constructions seem “arbitrary” and unrelated 🫤 
Can we systematically study special purpose WE?
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Committed Value WE 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Gen 3Gen 2Gen 1

Today: A framework to build 
Gen 3 WE and applications
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What class of relations 
support efficient WE?
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Relations with “Linear” verifiers

Express the verification circuit for  as a set of PPEs.RL(x, w) = 1

∏e(xi, xj) ⋅ ∏e(xi, wj) ⋅ ∏e(wi, xj) ⋅ ∏e(wi, wj) = cT

Compiler [BC16, BL20, GKPW24]: Linear PPE  WE→
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The Missing Piece
Natural 
Relation ℛ = {(x, w) ∣ f(x, w) = 1}

How do we linearize natural relations? 
How do we leverage SNARK machinery for succinctness?

Linear 
Relation PPE Constraint System: ∏e(xi, xj) ⋅ ∏e(xi, wj) ⋅ ∏e(wi, xj) = cT

???
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Goal: Simplify the process of translating:

Natural Relations  Linear Relations→

• We provide “Gadgets” — Witness Encryption for useful relations: 
 
 

• Gadgets can be composed to build WE for larger relations!

• Gadgets fully capture succinctness!

• Easy to use and extend with new gadgets!

Our Framework
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3. Inner Product 
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5. Degree Check  

… and more!

16



Our Framework
Natural 
Relation ℛ = {(x, w) ∣ f(x, w) = 1}

17



Our Framework
Natural 
Relation ℛ = {(x, w) ∣ f(x, w) = 1}

Inner 
ProductThis Work Signature 

Check
Degree 
Check …

17



Our Framework
Natural 
Relation ℛ = {(x, w) ∣ f(x, w) = 1}

Linear 
Relation PPE Constraint System: ∏e(xi, xj) ⋅ ∏e(xi, wj) ⋅ ∏e(wi, xj) = cT

Inner 
ProductThis Work Signature 

Check
Degree 
Check …

17



Remainder of the Talk
Gadget-based framework for WE 
• Similar to ZK libraries: “glue” together 

gadgets written by experts


• No prior knowledge of SNARKs needed!


• Security in the GGM

Recover previous results 
• Registration Based Encryption


• Distributed Broadcast Encryption


• Silent/Batched Threshold Encryption


• … and more!

Improve best known result [GLWW24] 
Registered ABE with a Linear CRS

New feasibility results 
Registered Threshold Encryption

✅

18



Remainder of the Talk
Gadget-based framework for WE 
• Similar to ZK libraries: “glue” together 

gadgets written by experts


• No prior knowledge of SNARKs needed!


• Security in the GGM

Recover previous results 
• Registration Based Encryption


• Distributed Broadcast Encryption


• Silent/Batched Threshold Encryption


• … and more!

Improve best known result [GLWW24] 
Registered ABE with a Linear CRS

New feasibility results 
Registered Threshold Encryption

✅

18



Remainder of the Talk
Gadget-based framework for WE 
• Similar to ZK libraries: “glue” together 

gadgets written by experts


• No prior knowledge of SNARKs needed!


• Security in the GGM

Recover previous results 
• Registration Based Encryption


• Distributed Broadcast Encryption


• Silent/Batched Threshold Encryption


• … and more!

Improve best known result [GLWW24] 
Registered ABE with a Linear CRS

New feasibility results 
Registered Threshold Encryption

✅

18



Distributed Broadcast 
Encryption
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Distributed Broadcast Encryption [WQZD10,BZ14]

Goal: Send a message to  parties with 


No interaction during setup except for a PKI.


(Note: Can achieve  using public key encryption)

n |𝖼𝗍 | = O(1)

|𝖼𝗍 | = O(n)
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Distributed Broadcast Encryption [WQZD10,BZ14]

𝗉𝗄1 𝗉𝗄2 𝗉𝗄3

. . .

𝗉𝗄N−1 𝗉𝗄N
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Distributed Broadcast Encryption [WQZD10,BZ14]

𝗉𝗄1 𝗉𝗄2 𝗉𝗄3

. . .

𝖼𝗍 = 𝖤𝗇𝖼(m; S ⊂ ⃗pk)
|𝖼𝗍 | = O(1)
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Distributed Broadcast Encryption [WQZD10,BZ14]

𝗉𝗄1 𝗉𝗄2 𝗉𝗄3

. . .

𝖼𝗍 = 𝖤𝗇𝖼(m; S ⊂ ⃗pk)
|𝖼𝗍 | = O(1)

Semantic security against S′￼ = ⃗pk∖S

𝗉𝗄N−1 𝗉𝗄N
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Step #1: Identify a Relation
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Step #1: Identify a Relation

Let each party have a public key pair:

{𝗉𝗄i = g𝗌𝗄i}i∈[n] ∈ 𝔾1

Suppose we had a succinct ( ) WE for the following relation:|𝖼𝗍 | = O(1)

Goal: Send a message to  parties withn |𝖼𝗍 | = O(1)

You can decrypt my ciphertext iff you know a secret key
{𝗌𝗄𝗂 : (𝗉𝗄𝗂 = g𝗌𝗄𝗂) ∧ (𝗉𝗄𝗂 ∈ ⃗𝗉𝗄)}
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How do we build the WE?
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Inner-Product Gadget
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∏
i
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wi = v
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Inner-Product Gadget
Statement: ,  (u1, u2, …, un) ∈ 𝔾n v ∈ 𝔾

Witness:  such that . 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i
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You can decrypt my ciphertext iff you know  such that: ⃗w

∏
i

ui
wi = v
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Step #2: Reduce DBE  Inner-Product →
• Each user has a public key pair:

{𝗉𝗄i = g𝗌𝗄i}i∈[n] ∈ 𝔾

• :𝖤𝗇𝖼(m, ⃗𝗉𝗄)

• Encrypt using the Inner-Product gadget with  and ⃗u = ⃗𝗉𝗄 v = g

You can decrypt my ciphertext iff you know  such that: ⃗w

∏
i

𝗉𝗄i
wi = g

Honest users decrypt using ⃗w = (0,…, 𝗌𝗄−1
i , …,0)
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• Each user has a public key pair:





• :


• Encrypt using the Inner-Product gadget with  and 

{𝗉𝗄i = g𝗌𝗄i}i∈[n] ∈ 𝔾

𝖤𝗇𝖼(m, ⃗𝗉𝗄)

⃗u = ⃗𝗉𝗄 v = g

You can decrypt my ciphertext iff you know  such that: ⃗w

∏
i

𝗉𝗄i
wi = g

Adversary can be reduced to solving DLOG

Step #2: Reduce DBE  Inner-Product →
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Registered Attribute Based 
Encryption
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Registered Attribute Based Encryption [HLWW23]

Goal: Attribute Based Encryption without a Trusted Party


No interaction during setup except for a PKI 

+ some notions of efficiency
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Registered Attribute Based Encryption [HLWW23]

 usersM
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Registered Attribute Based Encryption [HLWW23]

Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

 usersM
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Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

Want to encrypt a message to “All cryptographers in EU region” … but:


1. Don’t want to read the entire bulletin board


2. , , and should be succinct —  (# of users)𝖤𝗇𝖼 𝖣𝖾𝖼 |𝖼𝗍 | 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(M)

 usersM

Will compress using a “helper”.  
Only trusted for integrity.
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 usersM

Will compress using a “helper”.  
Only trusted for integrity.

Gen 3 WE
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Registered Attribute Based Encryption [HLWW23]

Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

 usersM

Key Curator

Short 𝖺𝖯𝖪
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Registered Attribute Based Encryption [HLWW23]

Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

 usersM

Key Curator𝖤𝗇𝖼(𝖺𝖯𝖪, m, "Crypto" ∧ "EU") → |𝖼𝗍 |

Short 𝖺𝖯𝖪
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Registered Attribute Based Encryption [HLWW23]

Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

 usersM

Key Curator

Helper Key: hk1 hk2 hk3 hk4 hk5
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Registered Attribute Based Encryption [HLWW23]

Bulletin Board
Public Key: pk1 pk2 pk3 pk4 pk5

Region: EU EU USA EU USA

Area: Crypto Crypto ML ML Crypto

 usersM

Key Curator

Helper Key: hk1 hk2 hk3 hk4 hk5

𝖤𝗇𝖼(𝖺𝖯𝖪, m, "Crypto" ∧ "EU") → |𝖼𝗍 |

𝖣𝖾𝖼(𝖺𝖯𝖪, 𝗁𝗄2, 𝗌𝗄2, 𝖼𝗍) → m
Short 𝖺𝖯𝖪
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Bulletin Board
USA: - - pk3 - pk5

EU: pk1 pk2 - pk4 -

Crypto: pk1 pk2 - - pk5

ML: - - pk3 pk4 -

Step #1: Identify a Relation
 usersM
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Bulletin Board
USA: - - pk3 - pk5

EU: pk1 pk2 - pk4 -

Crypto: pk1 pk2 - - pk5

ML: - - pk3 pk4 -

Step #1: Identify a Relation
 usersM

You can decrypt my ciphertext iff you know a secret key
{𝗌𝗄 : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 ∈ 𝖢𝗋𝗒𝗉𝗍𝗈) ∧ (𝗉𝗄 ∈ 𝖤𝖴)}
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Bulletin Board
EU: pk1 pk2 0 pk4 0

Crypto: pk1 pk2 0 0 pk5

How do we build it?
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You can decrypt my ciphertext iff you know a secret key
{𝗌𝗄 : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 ∈ 𝖢𝗋𝗒𝗉𝗍𝗈) ∧ (𝗉𝗄 ∈ 𝖤𝖴)}

{𝗌𝗄, ⃗w : (𝗉𝗄 = g𝗌𝗄) ∧ (𝗉𝗄 = ∏𝖢𝗋𝗒𝗉𝗍𝗈wi
i ) ∧ (𝗉𝗄 = ∏𝖤𝖴wi

i )}

Almost works… but adversary can use “empty” slots
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Zero-Check Gadget
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Zero-Check Gadget
Statement: S ⊂ [n]
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Witness:  such that  
 
 
 
 

(w1, w2, …, wn) ∈ 𝔽n {wi = 0}i∈S

1. The above WE has !|𝖼𝗍 | = O(1)
2.  takes as input a succinct commitment to , and runs in  time𝖤𝗇𝖼 S O(1)

You can decrypt my ciphertext iff you know  such that: ⃗w
{wi = 0}i∈S
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Efficiency Analysis
 ⃗Crypto = (𝗉𝗄1, 𝗉𝗄2,0,0,𝗉𝗄5) ⃗EU = (𝗉𝗄1, 𝗉𝗄2,0,𝗉𝗄4,0)
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Efficiency Analysis
 ⃗Crypto = (𝗉𝗄1, 𝗉𝗄2,0,0,𝗉𝗄5) ⃗EU = (𝗉𝗄1, 𝗉𝗄2,0,𝗉𝗄4,0)

Key Curator computes:
1. Succinct commitments to , , and , ⃗𝖢𝗋𝗒𝗉𝗍𝗈 ⃗𝖤𝖴 Z 𝖢𝗋𝗒𝗉𝗍𝗈 Z 𝖤𝖴

2. Helper key: Witness for Inner Product and Zero Check

Avoid reading entire bulletin board AND  are succinct(𝖤𝗇𝖼, |𝖼𝗍 | , 𝖣𝖾𝖼)
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Line of Work on Improving CRS

 users and  attributesM |𝕌 |
Matches CRS size of “weaker” primitives like RBE
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Thank you!
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