Error floor prediction with Markov models for QC-MDPC codes

Sarah Arpin, Jun Bo Lau, Antoine Mesnard, **Ray Perlner**, Angela Robinson, Jean-Pierre Tillich, and Valentin Vasseur.

Crypto 2025 Santa Barbara ● August 18, 2025

BIKF²

BIKE (Bit-Flipping Key Encapsulation) is a code-based KEM (key encapsulation mechanism) based on QC-MDPC (Quasi-Cyclic Moderate-Density Parity-Check) codes. BIKE uses an *iterative decoder*, with a nonzero DFR (Decoding Failure Rate).

- ► BIKE in the NIST PQC Competition
 - ► Narrowly lost out to HQC in the 4th round.
 - ▶ BIKE has smaller keys and ciphertexts, but BIKE's DFR has long been uncertain.
- ► IND-CCA security
 - ▶ BIKE's security proof for IND-CCA2 requires a DFR below $2^{-\lambda}$ for λ bits of security.
 - ightharpoonup 2^{- λ} DFR is too low to measure need to model for cryptographic parameters.
 - ► The GJS¹ key-recovery attack shows security loss is real if DFR is too high.

We model the DFR of QC-MDPC codes with dramatically improved accuracy.

¹A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors, Qian Guo, Thomas Johansson, and Paul Stankovski (2016).

²BIKE: Bit flipping key encapsulation - https://bikesuite.org

BIKE at a high level

- ▶ Parity check matrix $\mathbf{H} = [\mathbf{H}_0 | \mathbf{H}_1]$ is composed of two sparse circulant blocks.
 - ightharpoonup each column \mathbf{h}_i of \mathbf{H} has Hamming weight $|\mathbf{h}_i| = d$
- ► Public key $\mathbf{H}_0^{-1}\mathbf{H}$
- ▶ Message encoded as error vector $\mathbf{e} \in \mathbb{F}_2^{2r}$ of weight t.
- ► Ciphertext is $\mathbf{c} = \mathbf{H}_0^{-1} \mathbf{H} \mathbf{e}^T \in \mathbb{F}_2^r$.
- ► To decrypt, compute syndrome $\mathbf{s} = \mathbf{He}^T$ as $\mathbf{s} = \mathbf{H}_0 \mathbf{c}$
- ► Then decode using Black-Grey-Flip (BGF) syndrome decoder.³
 - ► This is where decoding failures can happen.

³The BGF decoder: QC-MDPC decoders with several shades of gray, Drucker-Gueron-Kostic

Syndrome Decoding: Step-by-step

The BGF decoder used by BIKE is complicated enough to make explicit analysis challenging. Step-by-step is a simpler variant for analysis.

```
Input: A parity check matrix H and a syndrome vector s.
Output: An error pattern e' satisfying He'^T = s.
Initialize: \mathbf{e}' = 0. \Delta \mathbf{s} = \mathbf{s}.
While \Delta \mathbf{s} \neq 0:
       Assign threshold T := T(\Delta s).
       Sample a random column \mathbf{h}_i of \mathbf{H}, with j \in \{0, 1, ..., n-1\}.
       Compute counter \sigma = |\mathbf{h}_i \star s'|
       If \sigma \geqslant T, then: Flip bit j of \mathbf{e}' and set \Delta \mathbf{s} = \Delta \mathbf{s} + \mathbf{h}_i.
              (A flip reduces |\Delta \mathbf{s}| by 2\sigma - d)
Once \Delta \mathbf{s} = 0, return \mathbf{e}'.
```

Markov Approach: Previous work [SV18]⁴

State space: (S,t) where $S=|\Delta {f s}|$ and $t=|\Delta {f e}|=|{f e}'-{f e}|$.

L: blocked state.

► Problem: does not accurately model error floor.

⁴On the Decoding Failure Rate of QC-MDPC Bit-Flipping Decoders, Nicolas Sendrier and Valentin Vasseur (2018). Figure: Post-quantum cryptography: a study of the decoding of QC-MDPC codes, Valentin Vasseur PhD thesis (2021).

What is an error floor?

Graphs of DFRs on a log scale for low- to moderate-density parity check codes with iterative decoders display a phenomenon:

- ► Initial, rapid decrease of decoding failures (waterfall region)
- ► Eventual plateau, more linear decrease (error floor region)

To accurately predict the DFR for higher code length (signal-to-noise ratio), one must account for the error floor region.

BIKE at Small Parameters: From [ABHLPR22]⁵

Fig. 7: Syndrome weights of random vectors with t=18 (red circles) and vectors causing decoding failures (blue diamonds).

Fig. 1: Decoding failure rates as in Table 1 on a semi-log graph, with a quadratic best fit (blue) in the waterfall region r<587 and a linear best fit (red) in the error floor region $r\geq587$.

How can we get closer to an analysis of BIKE decoding failures?

⁵A Study of Error Floor Behavior in QC-MDPC Codes, Sarah Arpin, Tyler Raven Billingsley, Daniel Rayor Hast, Jun Bo Lau, Ray Perlner, and Angela Robinson (2022)

Near codewords

Definition

Let **H** be a parity-check matrix describing a code C. A (u, v)-near codeword is an error vector **e** of weight u whose syndrome $\mathbf{s} = \mathbf{He}^T$ has weight v.

- McKay, Postol (2003): near codewords with small u, v and low-weight codewords cause high error floor for certain LDPC codes.
 - ▶ Basic intuition: Iterative decoders try to push Δe to 0 by decreasing $|\Delta s|$
 - ▶ But $|\Delta \mathbf{s}|$ can get stuck at a local minimum ($\Delta \mathbf{e}$ is codeword or near codeword)

Marco Baldi. QC-LDPC Code-Based Cryptography (2014)
David J.C. MacKay, Michael S. Postol. Weaknesses of Margulis & Ramanujan-Margulis Low-Density Parity-Check Codes (2003)
Tom Richardson. Error floors of LDPC codes (2003)
Gerd Richter. Finding small stopping sets in the Tanner graphs of LDPC codes (2006)

The set $\mathcal N$ of near codewords

 $[Vas21]^6$ defines an important set of (d, d)-near codewords for QC-MDPC codes:

Definition

Let $H = [\mathbf{H_0}|\mathbf{H_1}]$ have polynomial representation $(h_0(x), h_1(x))$.

$$\mathcal{N}:=\{(x^sh_0(x),0):s\in\{0,1,...,r-1\}\}\cup\{(0,x^sh_1(x)):s\in\{0,1,...,r-1\}\}\subseteq\mathbb{F}_2^n.$$

(Vectors of the form: half from a row of $\mathbf{H_i}^T$ and the other half 0's.)

[ABHLPR22]⁷ Finds convergence to $\mathcal N$ is dominant behavior in QC-MDPC error floors.

⁶Post-quantum cryptography: a study of the decoding of QC-MDPC codes Valentin Vasseur (2021)

⁷A Study of Error Floor Behavior in QC-MDPC Codes, Sarah Arpin, Tyler Raven Billingsley, Daniel

Rayor Hast, Jun Bo Lau, Ray Perlner, and Angela Robinson (2022)

How we add the effect of near codewords to the Markov Model

Fix a near codeword ν .

 $(S_i, t_i, t_{\nu,i}) = \text{state at iteration } i$ of decoder.

 t_{ν} keeps track of overlaps with a near codeword ν .

L = blocked state.

Our two Markov-based models for DFR

► Model 1:

- lacktriangle Extrapolates DFR from effect of a single arbitrarily chosen $\nu \in \mathcal{N}$.
- ▶ Retains a fudge factor $\xi = 0.955$ from [Vas21] refinement of [SV19b].
- ► Uses simplified heuristics to model "average key".
- State is $(s, t, u) = (|\Delta \mathbf{s}|, |\Delta \mathbf{e}|, |\Delta \mathbf{e} \star \nu|)$

► Model 2:

- ▶ Models DFR directly from effect of nearest $\nu \in \mathcal{N}$ to $\Delta \mathbf{e}$.
- ▶ Does not use ξ (equivalent to $\xi = 1$).
- ▶ Models DFR for specific key using "key shape" info collected from its Tanner Graph.
- State is (s, t, u, b), where b indicates which half of ν is nonzero.

Model 1 DFR vs experiment

Experiment vs. Model 2

Experiment vs. Model 2 (II)

BIKE parameter 1

Conclusion

- ► Our techniques allow for accurate predictions of QC-MDPC DFRs, including in the error floor region.
- ▶ Our model takes key shape into account which can enable filtering out weak keys.
- ► We show that only a small modification (block size + 10%) is needed to make BIKE1 parameters convincingly IND-CCA2 secure.
- ► Future work may extend these results to parallel decoders like BGF, which seem to perform better than the step-by-step decoders we consider.

Thank you!

