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BIKE2

BIKE (Bit-Flipping Key Encapsulation) is a code-based KEM (key encapsulation
mechanism) based on QC-MDPC (Quasi-Cyclic Moderate-Density Parity-Check)
codes. BIKE uses an iterative decoder, with a nonzero DFR (Decoding Failure Rate).

▶ BIKE in the NIST PQC Competition
▶ Narrowly lost out to HQC in the 4th round.
▶ BIKE has smaller keys and ciphertexts, but BIKE’s DFR has long been uncertain.

▶ IND-CCA security
▶ BIKE’s security proof for IND-CCA2 requires a DFR below 2−λ for λ bits of security.
▶ 2−λ DFR is too low to measure – need to model for cryptographic parameters.
▶ The GJS1 key-recovery attack shows security loss is real if DFR is too high.

We model the DFR of QC-MDPC codes with dramatically improved accuracy.
1A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors, Qian Guo, Thomas

Johansson, and Paul Stankovski (2016).
2BIKE: Bit flipping key encapsulation - https://bikesuite.org
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BIKE at a high level

▶ Parity check matrix H = [H0|H1] is composed of two sparse circulant blocks.
▶ each column hj of H has Hamming weight |hj | = d

▶ Public key H−1
0 H

▶ Message encoded as error vector e ∈ F2r
2 of weight t.

▶ Ciphertext is c = H−1
0 HeT ∈ Fr

2.

▶ To decrypt, compute syndrome s = HeT as s = H0c
▶ Then decode using Black-Grey-Flip (BGF) syndrome decoder.3

▶ This is where decoding failures can happen.

3The BGF decoder: QC-MDPC decoders with several shades of gray, Drucker–Gueron–Kostic
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Syndrome Decoding: Step-by-step

The BGF decoder used by BIKE is complicated enough to make explicit analysis
challenging. Step-by-step is a simpler variant for analysis.

Input: A parity check matrix H and a syndrome vector s.
Output: An error pattern e′ satisfying He′T = s.
Initialize: e′ = 0, ∆s = s.
While ∆s ̸= 0:

Assign threshold T := T (∆s).

Sample a random column hj of H, with j ∈ {0, 1, ..., n − 1}.
Compute counter σ = |hj ⋆ s ′|
If σ ⩾ T , then: Flip bit j of e′ and set ∆s = ∆s+ hj .

(A flip reduces |∆s| by 2σ − d)

Once ∆s = 0, return e′.
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Markov Approach: Previous work [SV18]4

State space: (S , t) where S = |∆s| and t = |∆e| = |e′ − e| .
L: blocked state.

▶ Problem: does not accurately model error floor.
4On the Decoding Failure Rate of QC-MDPC Bit-Flipping Decoders, Nicolas Sendrier and Valentin

Vasseur (2018). Figure: Post-quantum cryptography: a study of the decoding of QC-MDPC codes,
Valentin Vasseur PhD thesis (2021).
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What is an error floor?

Graphs of DFRs on a log scale for low- to moderate-density parity check codes with
iterative decoders display a phenomenon:

▶ Initial, rapid decrease of decoding failures (waterfall region)

▶ Eventual plateau, more linear decrease (error floor region)

To accurately predict the DFR for higher
code length (signal-to-noise ratio), one
must account for the error floor region. lo

g
2
(D

F
R
)

Block length

Waterfall

Error floor

6 / 17



BIKE at Small Parameters: From [ABHLPR22]5

How can we get closer to an analysis of BIKE decoding failures?
5A Study of Error Floor Behavior in QC-MDPC Codes, Sarah Arpin,Tyler Raven Billingsley, Daniel

Rayor Hast, Jun Bo Lau, Ray Perlner, and Angela Robinson (2022)
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Near codewords

Definition

Let H be a parity-check matrix describing a code C. A (u, v)-near codeword is an error
vector e of weight u whose syndrome s = HeT has weight v .

▶ McKay, Postol (2003): near codewords with small u, v and low-weight codewords
cause high error floor for certain LDPC codes.
▶ Basic intuition: Iterative decoders try to push ∆e to 0 by decreasing |∆s|
▶ But |∆s| can get stuck at a local minimum (∆e is codeword or near codeword)

Marco Baldi. QC-LDPC Code-Based Cryptography (2014)
David J.C. MacKay, Michael S. Postol. Weaknesses of Margulis & Ramanujan-Margulis Low-Density Parity-Check Codes (2003)
Tom Richardson. Error floors of LDPC codes (2003)
Gerd Richter. Finding small stopping sets in the Tanner graphs of LDPC codes (2006)
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The set N of near codewords

[Vas21]6 defines an important set of (d , d)-near codewords for QC-MDPC codes:

Definition

Let H = [H0|H1] have polynomial representation (h0(x), h1(x)).

N := {(x sh0(x), 0) : s ∈ {0, 1, ..., r − 1}} ∪ {(0, x sh1(x)) : s ∈ {0, 1, ..., r − 1}} ⊆ Fn
2.

(Vectors of the form: half from a row of Hi
T and the other half 0’s.)

[ABHLPR22]7 Finds convergence to N is dominant behavior in QC-MDPC error floors.

6Post-quantum cryptography: a study of the decoding of QC-MDPC codes Valentin Vasseur (2021)
7A Study of Error Floor Behavior in QC-MDPC Codes, Sarah Arpin,Tyler Raven Billingsley, Daniel

Rayor Hast, Jun Bo Lau, Ray Perlner, and Angela Robinson (2022)
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How we add the effect of near codewords to the Markov Model

Fix a near codeword ν.
(Si , ti , tν,i ) = state at iteration i
of decoder.
tν keeps track of overlaps with a
near codeword ν.
L = blocked state.
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Our two Markov-based models for DFR

▶ Model 1:
▶ Extrapolates DFR from effect of a single arbitrarily chosen ν ∈ N .
▶ Retains a fudge factor ξ = 0.955 from [Vas21] refinement of [SV19b].
▶ Uses simplified heuristics to model “average key”.
▶ State is (s, t, u) = (|∆s|, |∆e|, |∆e ⋆ ν|)

▶ Model 2:
▶ Models DFR directly from effect of nearest ν ∈ N to ∆e.
▶ Does not use ξ (equivalent to ξ = 1).
▶ Models DFR for specific key using “key shape” info collected from its Tanner Graph.
▶ State is (s, t, u, b), where b indicates which half of ν is nonzero.
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Model 1 DFR vs experiment
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Experiment vs. Model 2
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Figure: DFR vs. error weight (r = 1723, d = 17), experiments vs. model.
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Experiment vs. Model 2 (II)
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Figure: DFR vs. error weight (r = 1723, d = 17), experiments vs. model.
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BIKE parameter 1
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Conclusion

▶ Our techniques allow for accurate predictions of QC-MDPC DFRs, including in
the error floor region.

▶ Our model takes key shape into account which can enable filtering out weak keys.

▶ We show that only a small modification (block size + 10%) is needed to make
BIKE1 parameters convincingly IND-CCA2 secure.

▶ Future work may extend these results to parallel decoders like BGF, which seem to
perform better than the step-by-step decoders we consider.
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Thank you!
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