

T-Spoon: Tightly Secure 2-Round Multi-Signatures with Key Aggregation

*IACR CRYPTO 2025*Renas Bacho, Benedikt Wagner

pk₁, pk₂, pk₃

list of public keys

verification

verify signature σ

list of public keys

verify signature σ

Key Aggregation

Security: Unforgeability

Can not forge signatures!

This talk: Pairing-free, discrete logarithm setting

Our Goal

Our Goal

State-of-the-Art

3 Rounds

[BN '06] DDH Tight [MuSig '19]
DLOG
Key Agg

[MuSig-T '21]
DDH
Tight
Key Agg

2 Rounds

State-of-the-Art

3 Rounds

[BN '06] DDH Tight [MuSig '19]
DLOG
Key Agg

[MuSig-T '21]
DDH
Tight
Key Agg

2 Rounds

[MuSig2 '21]
AOMDL
Key Agg

[TZ '23]
DLOG
Key Agg

[Chopsticks '23]
DDH
Tight/Key Agg

What should we do?

Can we design such a tightly secure 2-round MS?

Our Results

T-Spoon Multi-Signature

Our Results

2 Rounds Efficiency Key Aggregation

Tight Security Security DDH Assumption

Comparison

2-Round Multi-Signatures

Scheme	Key Agg	Assumption	Loss	Communication	Signature
Musig2 [NRS21] HBMS [BD21] TZ [TZ23]	✓ ✓	AOMDL DLOG DLOG	$\begin{array}{c} \Theta(Q_H^3/\epsilon^3) \\ \Theta(Q_S^4Q_H^3/\epsilon^3) \\ \Theta(Q_H^3/\epsilon^3) \end{array}$	$4\langle \mathbb{G} \rangle + 1\langle \mathbb{Z}_p \rangle$ $1\langle \mathbb{G} \rangle + 2\langle \mathbb{Z}_p \rangle$ $4\langle \mathbb{G} \rangle + 2\langle \mathbb{Z}_p \rangle$	$ \frac{1\langle \mathbb{G} \rangle + 1\langle \mathbb{Z}_p \rangle}{1\langle \mathbb{G} \rangle + 2\langle \mathbb{Z}_p \rangle} 1\langle \mathbb{G} \rangle + 2\langle \mathbb{Z}_p \rangle $
TSSHO [TSS+23] Chopsticks I [PW23] Toothpicks I [PW24]	✓ ✓ ✓	DDH DDH DDH	$\Theta(Q_S)$ $\Theta(Q_S)$ $\Theta(Q_S)$	$ 2\langle \mathbb{G} \rangle + 2\langle \mathbb{Z}_p \rangle 3\langle \mathbb{G} \rangle + 2\langle \mathbb{Z}_p \rangle 2\langle \mathbb{G} \rangle + 2\langle \mathbb{Z}_p \rangle $	$\frac{3\langle \mathbb{Z}_p \rangle}{3\langle \mathbb{G} \rangle + 4\langle \mathbb{Z}_p \rangle}$ $\frac{4\langle \mathbb{Z}_p \rangle}{2}$
Chopsticks II [PW23] Toothpicks II [PW24]	×	DDH DDH	$\Theta(1)$ $\Theta(1)$	$ \begin{array}{c} -6\langle \mathbb{G} \rangle + 3\langle \mathbb{Z}_p \rangle \\ 2\langle \mathbb{G} \rangle + 2\langle \mathbb{Z}_p \rangle \end{array} $	$\frac{6\langle \mathbb{G} \rangle + 8\langle \mathbb{Z}_p \rangle + n}{4\langle \mathbb{Z}_p \rangle + n}$
T-Spoon (ours)	✓	DDH	$\Theta(1)$	$3\langle \mathbb{G} \rangle + 2\langle \mathbb{Z}_p \rangle$	$2\langle \mathbb{G} \rangle + 9\langle \mathbb{Z}_p \rangle$

Our Techniques

Commitment

Response

 $\mathsf{com}(R_i)$

Reduction idea:

Reduction idea:

There is no secret key!

Reduction idea:

Guessing: security loss of $O(q_s)$!

Construction

Commitment

Response

Simulation

Commitment

Response

Forgery m*

Commitment

Response

How to aggregate different sides?

How to aggregate different sides?

signer partition technique!

Our Results

Multi-Signature

- o 2 rounds
- o Tightly secure
- o DDH assumption
- o Key aggregation

