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An elephant of current cryptanalysis

So/too many attacks
® differential, linear, integral, diff-linear...
Need to resist all known attacks
® Where the confidence on security of a cipher comes
Tedious
® to test all known attacks
® Not enough

® Potential new attacks
® Example: Multiple-of-n property for 5-round AES [GRR, EC 17]. Division property [Todo, EC 15]

Possible explanation
e Imperical
Cryptanalysis is a task heavily based on the experience/intuition of cryptanalysts
e Rather than
Systematical methods

e Beneficial to have a unified method to describe/predict many attacks
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Geometric approach by Beyne [Beyne, thesis]

e K-Free vector space
® Regard elements in ] as 27 basis vectors, choose a field K

K[F]] = {Z kubu : u € Fi, ky € K}
u
® K[FJ] is a linear space, as

> kibu+ > Ky =D (kut+ K)oy EK[FS]; b>  kuby = (bky)dy € K[F]

e Linear extension
® For nonlinear E : F§ — 7, we define TE as

TEK[FS) — K[FS]; > kuu = > kug()

® TE is a linear map, as

E (Z aydy + Z bu6u> Z (au + bu) Og(u) <Z ay u> +TE (Z bu6u>
E (kz au6u> =k aulg) = kTE <Z au5u>
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Notations in this work

® Let f,(-) : F5 — K be a function.
® A vector f, = (fu(x),x=0,...,2" — 1)

® A basis (a set of basis vectors) (f,,u=0,...,2" — 1) is written as [f,(X)]xu
(if it can be written in such a compact way)

o= | Al x
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Functions used in this work

Let K:=Q
® 5u(-):F3 = Q du(x)= {

1 ifu=x
0 otherwise
. (_1)u-r(,) I Q; (_1)UT>< _ )1 if >, u.,-x,- =0 mod 2
—1 otherwise

1 ifx> = uiff x; > u; for all i
o () F S Q )&,_{ if x>=u (x= uiff x; > u; for all /)

0 otherwise

1 fu>x

() . . _
o ) —-Q; v=
2 Q {O otherwise

Remark. The monomial function x“ € F3, so we should apply a Teichmiiller lift to it
7:F;—-Q; 0—~0,1—1

Since this work only focuses on values in Q, we will omit 7
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Transition Matrix and change-of-basis [Beyne, thesis]

e TE: Q[F3] — Q[Fj] is a linear map. Fixing bases for the input/output spaces, we will get a matrix w.r.t
the bases

® Regard [04(X)]xu as the standard basis for the input and output spaces, the corresponding transition
matrix has elements as

Thw =0/ T5(8,) = 6,(E(1))

® What is the transition matrix when choosing another basis [f,(x)]x,.?

K[F3] = Span ([6u(x)]xu) r K[F3] = Span ([6u(x)]xu)

K[FZ] = Span ([fu(x)].) A= K[FZ] = Span ([fu(x)].)
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Transition Matrix and change-of-basis [Beyne, thesis]

e TE: Q[F3] — Q[F3] is a linear map. Fixing bases for the input/output spaces, we will get a matrix w.r.t
the bases

® Regard [04(x)]xu as the standard basis for the input and output spaces, the corresponding transition
matrix has elements as

Tow =0/ T5(8u) = 6,(E(1))

® What is the transition matrix when choosing another basis [f,(x)]x,4?

-,-E
[6u(X)]xu F* x > [6,(X)]u T F ' x
[fu(]ww = [0u(X)]xuF? (65050 = [fu(3)]xuF
X = [fu(x]ux A AFX = [fu())uF T FH x

® The transition matrix under [f,(X)]x,u is

A= F T8 F = [0l T ()]

AE is a similar matrix of TF
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Use different bases for input/output spaces (new)

® Choose [fy(x)]xu as the input basis, and [gu(x)]x,u as the output basis

K[F3] = Span ([6u(x)]xu) r K[F3] = Span ([64(x)]xu)

00w = [fu(3)]uF [0u(]xu = [gu(x)]x.uG

K[F3] = Span ([£.(x)].) — K[F3] = Span ([gu(x)]x.)
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Use different bases for input/output spaces (new)

® Choose [fy(x)]xu as the input basis, and [gu(x)]x,u as the output basis

-,-E

K[F3] = Span ([0u(x)]x.u) K[F3] = Span ([0u(x)]x.u)
[0 ()] = [ uF 0,09 = [8()].uG
K[F3] = Span ([f.(x)]«.) A= K[F3] = Span ([gu(x)]x..)
e The transition matrix can be constructed in a similar way
(e F x r B TE L x
[fu()]xw = [6u(X)]uF [6u(¥)]xu = [gu(x)]xuG
X = [fu(X)]xux A AEX = [gu(X)]xuG TEW F~1 x

® The transition matrix under [£,(x)]x.s and [gu(X)]xu: A" = G TF F' = [gu(X)]xi TF [fu(X)]xu-

Remark. The possibility of using different bases in geometric approach had been mentioned in Beyne's
thesis, but no one really explored it in cryptanalysis. 9/19



Calculate coordinates of a transition matrix

Assume that [gu(x)]xs = [g5(X)]xu (only for a compact representation).

® The specific coordinate of AF:

AL =0) [80)xu T° [fu(9]cu b

= [g(v),0 < x < 2" T [£(x),0 < x < 2]

ng (VI(E(y),0 <y<2"|  [fu(x),0 < x< 27

Z gE(x) (V) fu(x)

x€FY
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Known bases and rules for generating new ones

® Three known bases for Q[F5]
® Standard basis [d4(x)]x,u [Beyne, AC 21]
® Linear basis [(—1)“T¥]xu [Beyne, AC 21]
e Ultrametric integral basis [(—1)"t®4)yX] [BV, AC 24]

® Three rules for generating new bases (any preserving-rank operation can be a rule)

® Inverse: If [au(X)]x,u is a basis, [au(x)])zb is also a basis
® Transpose: If [au(x)]x,u is a basis, [au(x)]lu is also a basis

® Scale: If [ay(X)]x,u is a basis, [kaw(x)]x,u is a basis, where k € K\{0}

® Four new bases
. . _ T
® Inverse of linear basis: [27"(—1)" *]xu
Inverse of ultrametric integral basis: [t¥]x,u

°
® Transpose of ultrametric integral basis: [(—1)"t{u®) ],
® |nverse and transpose of ultrametric integral basis: [XU]XW
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Seven Bases and effects

Choose different bases, we get different attacks

ALu= Y g(Vfulx)

x€Fy

Effect of input Effect of output

\ I W
0 | [Bu(Mlve | Ju(x) | 5E(x)(V)
1 ‘ [(71)uTv]V’u ‘ (—1)"'* ‘ 27"(— l)E(x) v
2 ‘ [27n(_1)uTv]VYu ‘ 27n(_1)uTx ‘ (-1) EG)Tv
30 | [u)vw | u | (L)"EERIE(x)
4 | IE)TE, | (e E'(x)
5 ‘ V]v.u ‘ X ‘ (— 1)wt(v@E(x))‘ﬁ( x)
6 ‘ [(—l)Wt(@V)v”]V,u ‘ (_1)wt(ueax)xu ‘ VX
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Same-basis and Mix-basis Attacks

Definition (Same-basis and mix-basis attack)

An attack on E : F5 — [ is called a same-basis attack if the bases for the input/output spaces are the
same; otherwise, a mix-basis attack.

® Divide E = Ex 0 E1 0 Eq. [fu(X)]x,u/[fu(X)]xu for Eo, [fu(xX)]xu/[gu(x)]xu for E1, [gu(X)]xu/[gu(X)]xu for E2
TEo TE TE:

Q[(F3)%] ———— Q[(F$)] ———— QI(F%)Y] ————— QI(F3)]

AF = [gu (@) T [ful(@)]a
Q[(F3)] Q[(F3)] Q[(F3)] Q[(F3)]
AR = [fu(@))zu T [fu(@))a A" = [gu(2)]7 W T [gu (@)

Finally,
A" = A A% = [ ()]s T (l8uleolgolles) T (IOl ) TG
= [gu(x)];,l% TEZ TEl TEO[fu(X)]X,u
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Several Examples

® Linear cryptanalysis (same-basis) [Beyne, AC 21]. Input basis: [(—1)“TX]X,U, output basis [(—1)“TX]X,U

AE,U _ Z(il)uszfn(il)vTE(x) — " Z(*l)UTXG}VTE(X)

x€F3 xEFy
e Ultrametric integral cryptanalysis (same-basis) [BV, AC 24]. Input basis [(—1)*"“®9 ¥, ,, output basis

[(_l)wt(u@x) lf(]x,u
A= 2 ()RR = Y (-1 PIE ()
x€F] x=u
® Subspace propagation (mix-basis, new). Input basis [t]x4, output basis [(—1)"(“®9x], ,

ZxE(xi Z 1

x€F7 x=2u,E(x) v
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Orders of Attacks

Definition (Order)

Suppose a space S 2 (F5)9, we call the smallest d the order of S. If an attack on E : Fj — F3 take

plaintext/ciphertext samples from d-th-order space, we call this attack a d-th-order attack.
® A d-th-attack works on
EX?: (1) — (F3)%; (% A, Ag1) = (E(x), Day (E(x), Day(E(x)); - Dy, (E(¥)))

® [£fu(x)]{, is a basis for the i-th K[FZ], a basis for K[(F2)] is ®q - 4lfu(x)]%%.
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Several Examples

® Differential attack (same-basis, 2nd order) [BR, C 22]. Input basis [(—1)”TX]X,U ® [0u(X)]xu, output basis
UTX
[(=1)" “Txw @ [8u(x)]xu

UTX —n V-r X
Al ) = 2, (=176, (8)27"(=1)" 595, (Da(x))

x€F],ACF)

_ Z (_1)U(;I—X@VJE(X) up=vo=0 Z 1
XG]F; XE]FS
E(x)DE(xDur)=v E(x)DE(x®u1)=v1

® d-differential (same-basis, d-th order) [WSW+, TIT 23]. Input/output basis [(—1)”Tx]x,u 1 <i<qldu(X)]xu

E _ u xBvg E(x) Uo=v0=0
A(Vo,~~~7Vd),(U07~~Ud) - - § : (=1)% ” E 1
XE]F; XE]F';
E(x)BE(x®u;)=v;,0<i<d E(X)BE(x®uj)=v;,0<i<d

e Differential-linear attack (mix-basis, 2nd order, new). Input/output basis
T

ul x —n ul x u'x
[(=1)" Txw @ [6u()]xu/27" (1) "Lu @ [(=1)*
—n ug xBvy E(x)Bv] x) Up=v=0 —n v X
A(Evoyvl)y(uo,m) =2 Z (_1) 0 X0 E(IDv Palx) D=0 2 Z (_1) 1 Pakd

xe]F;,A:ul xe]Fg,A:ul
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Example applications

® An alternative method of studying the same property in ultrametric integral cryptanalysis [BV, AC 24]
® Choose [t¥]x,u/[(—1)"#®X) ¥, , for input/output spaces
® Attacking expression: AEU => <, E(x)
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xZu,E(x)2v
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Attacking expression:
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® Verification for 2 differential-linear distinguishers of SIMON-32 and -48 [HDE, C 24] without the round
independence assumption
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Summary

We explored the possibility to use different bases in Beyne's geometric approach

® The geometric approach becomes more flexible, and can be applied to more attacks, especially
combined ones

® All attacks can be studied in the unified automatic search method

We applied mix-basis geometric approach to several known attacks, and provided new methods to study
them
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Summary

We explored the possibility to use different bases in Beyne's geometric approach

® The geometric approach becomes more flexible, and can be applied to more attacks, especially
combined ones

® All attacks can be studied in the unified automatic search method

We applied mix-basis geometric approach to several known attacks, and provided new methods to study
them

Thank you for your attention!
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