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An elephant of current cryptanalysis

• So/too many attacks
• differential, linear, integral, diff-linear...

• Need to resist all known attacks
• Where the confidence on security of a cipher comes

• Tedious
• to test all known attacks

• Not enough
• Potential new attacks
• Example: Multiple-of-n property for 5-round AES [GRR, EC 17]. Division property [Todo, EC 15]

• Possible explanation
• Imperical

Cryptanalysis is a task heavily based on the experience/intuition of cryptanalysts
• Rather than

Systematical methods

• Beneficial to have a unified method to describe/predict many attacks
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Geometric approach by Beyne [Beyne, thesis]

• K-Free vector space
• Regard elements in Fn

2 as 2n basis vectors, choose a field K

K[Fn
2] =

{∑
u

kuδu : u ∈ Fn
2, ku ∈ K

}
• K[Fn

2] is a linear space, as∑
u

kuδu +
∑

u
k′uδu =

∑
u
(ku + k′u)δu ∈ K[Fn

2]; b
∑

u
kuδu =

∑
u

(bku) δu ∈ K[Fn
2]

• Linear extension
• For nonlinear E : Fn

2 −→ Fn
2, we define TE as

TE : K[Fn
2] → K[Fn

2];
∑

u
kuδu 7→

∑
u

kuδE(u)

• TE is a linear map, as

TE
(∑

u
auδu +

∑
u

buδu

)
=
∑

u
(au + bu) δE(u) = TE

(∑
u

auδu

)
+ TE

(∑
u

buδu

)

TE
(

k
∑

u
auδu

)
= k

∑
u

auδE(u) = kTE
(∑

u
auδu

)
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Notations in this work

• Let fu(·) : Fn
2 → K be a function.

• A vector fu = (fu(x), x = 0, . . . , 2n − 1)
• A basis (a set of basis vectors) (fu, u = 0, . . . , 2n − 1) is written as [fu(x)]x,u

(if it can be written in such a compact way)

[fu(x)]x,u =


. . .

fu(x)
. . .



u

x
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Functions used in this work

Let K := Q

• δu(·) : Fn
2 → Q; δu(x) =

{
1 if u = x
0 otherwise

• (−1)u⊤(·) : Fn
2 → Q; (−1)u⊤x =

{
1 if

∑
i uixi ≡ 0 mod 2

−1 otherwise

• (·)u : Fn
2 → Q; xu =

{
1 if x � u (x � u iff xi ≥ ui for all i)
0 otherwise

• u(·) : Fn
2 → Q; ux =

{
1 if u � x
0 otherwise

Remark. The monomial function xu ∈ Fn
2, so we should apply a Teichmüller lift to it

τ : Fn
2 → Q; 0 7→ 0, 1 7→ 1

Since this work only focuses on values in Q, we will omit τ
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Transition Matrix and change-of-basis [Beyne, thesis]

• TE : Q[Fn
2] → Q[Fn

2] is a linear map. Fixing bases for the input/output spaces, we will get a matrix w.r.t
the bases

• Regard [δu(x)]x,u as the standard basis for the input and output spaces, the corresponding transition
matrix has elements as

TE
v,u = δ⊤v TE(δu) = δv(E(u))

• What is the transition matrix when choosing another basis [fu(x)]x,u?

K[Fn
2] = Span ([δu(x)]x,u) K[Fn

2] = Span ([δu(x)]x,u)TE

K[Fn
2] = Span ([fu(x)]x,u) K[Fn

2] = Span ([fu(x)]x,u)AE =?
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• TE : Q[Fn
2] → Q[Fn

2] is a linear map. Fixing bases for the input/output spaces, we will get a matrix w.r.t
the bases

• Regard [δu(x)]x,u as the standard basis for the input and output spaces, the corresponding transition
matrix has elements as

TE
v,u = δ⊤v TE(δu) = δv(E(u))

• What is the transition matrix when choosing another basis [fu(x)]x,u?

[δu(x)]x,u F−1 x [δu(x)]x,u TE F−1 xTE

X = [fu(x)]x,ux AEX = [fu(x)]x,uF TE(u) F−1 xAE =?

[fu(x)]x,u = [δu(x)]x,uF−1 [δu(x)]x,u = [fu(x)]x,uF

• The transition matrix under [fu(x)]x,u is

AE = F TE F−1 = [fu(x)]−1
x,u TE [fu(x)]x,u

AE is a similar matrix of TE
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Use different bases for input/output spaces (new)
• Choose [fu(x)]x,u as the input basis, and [gu(x)]x,u as the output basis

K[Fn
2] = Span ([δu(x)]x,u) K[Fn

2] = Span ([δu(x)]x,u)TE

K[Fn
2] = Span ([fu(x)]x,u) K[Fn

2] = Span ([gu(x)]x,u)AE =?

[δu(x)]x,u = [fu(x)]x,uF [δu(x)]x,u = [gu(x)]x,uG

• The transition matrix can be constructed in a similar way

[δu(x)]x,u F−1 x [δu(x)]x,u TE F−1 xTE

X = [fu(x)]x,ux AEX = [gu(x)]x,uG TE(u) F−1 xAE

[fu(x)]x,u = [δu(x)]x,uF−1 [δu(x)]x,u = [gu(x)]x,uG

• The transition matrix under [fu(x)]x,u and [gu(x)]x,u: AE = G TE F−1 = [gu(x)]−1
x,u TE [fu(x)]x,u.

Remark. The possibility of using different bases in geometric approach had been mentioned in Beyne’s
thesis, but no one really explored it in cryptanalysis.
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Calculate coordinates of a transition matrix

Assume that [gu(x)]−1
x,u = [g⋆

u(x)]x,u (only for a compact representation).
• The specific coordinate of AE:

AE
v,u = δ⊤v [g⋆

u(x)]x,u TE [fu(x)]x,u δu

= [g⋆
x (v), 0 ≤ x < 2n]⊤TE [fu(x), 0 ≤ x < 2n]

=

[∑
x

g⋆
x (v)δx(E(y)), 0 ≤ y < 2n

]⊤

[fu(x), 0 ≤ x < 2n]

=
∑
x∈Fn

2

g⋆
E(x)(v)fu(x)
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Known bases and rules for generating new ones

• Three known bases for Q[Fn
2]

• Standard basis [δu(x)]x,u [Beyne, AC 21]
• Linear basis [(−1)u⊤x]x,u [Beyne, AC 21]
• Ultrametric integral basis [(−1)wt(x⊕u)ux] [BV, AC 24]

• Three rules for generating new bases (any preserving-rank operation can be a rule)
• Inverse: If [αu(x)]x,u is a basis, [αu(x)]−1

x,u is also a basis
• Transpose: If [αu(x)]x,u is a basis, [αu(x)]⊤x,u is also a basis
• Scale: If [αu(x)]x,u is a basis, [kαu(x)]x,u is a basis, where k ∈ K\{0}

• Four new bases
• Inverse of linear basis: [2−n(−1)u⊤x]x,u
• Inverse of ultrametric integral basis: [ux]x,u
• Transpose of ultrametric integral basis: [(−1)wt(u⊕x)xu]x,u
• Inverse and transpose of ultrametric integral basis: [xu]x,u

11 / 19



Seven Bases and effects
Choose different bases, we get different attacks

AE
v,u =

∑
x∈Fn

2

g⋆
E(x)(v)fu(x)

Index Basis Effect of input
fu(x)

Effect of output
g⋆

E(x)(v)
0 [δu(v)]v,u δu(x) δE(x)(v)

1 [(−1)u⊤v]v,u (−1)u⊤x 2−n(−1)E(x)⊤v

2 [2−n(−1)u⊤v]v,u 2−n(−1)u⊤x (−1)E(x)⊤v

3 [uv]v,u ux (−1)wt(v⊕E(x))Ev(x)
4 [(−1)wt(u⊕v)uv]v,u (−1)wt(u⊕x)ux Ev(x)
5 [vu]v,u xu (−1)wt(v⊕E(x))vE(x)

6 [(−1)wt(u⊕v)vu]v,u (−1)wt(u⊕x)xu vE(x)
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Same-basis and Mix-basis Attacks

Definition (Same-basis and mix-basis attack)
An attack on E : Fn

2 → Fn
2 is called a same-basis attack if the bases for the input/output spaces are the

same; otherwise, a mix-basis attack.

• Divide E = E2 ◦ E1 ◦ E0. [fu(x)]x,u/[fu(x)]x,u for E0, [fu(x)]x,u/[gu(x)]x,u for E1, [gu(x)]x,u/[gu(x)]x,u for E2

Q[(Fn
2 )

d] Q[(Fn
2 )

d] Q[(Fn
2 )

d] Q[(Fn
2 )

d]
T E0 T E1 T E2

Q[(Fn
2 )] Q[(Fn

2 )] Q[(Fn
2 )] Q[(Fn

2 )]

AE0 = [fu(x)]
−1
x,uT

E0 [fu(x)]x,u

AE1 = [gu(x)]
−1
x,uT

E1 [fu(x)]x,u

AE2 = [gu(x)]
−1
x,uT

E2 [gu(x)]x,u

Finally,

AE = AE2 AE1 AE0 = [gu(x)]−1
x,uTE2

(
[gu(x)]x,u[gu(x)]−1

x,u

)
TE1

(
[fu(x)]x,u[fu(x)]−1

x,u

)
TE0 [fu(x)]x,u

= [gu(x)]−1
x,uTE2 TE1 TE0 [fu(x)]x,u
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Several Examples

• Linear cryptanalysis (same-basis) [Beyne, AC 21]. Input basis: [(−1)u⊤x]x,u, output basis [(−1)u⊤x]x,u

AE
v,u =

∑
x∈Fn

2

(−1)u⊤x2−n(−1)v⊤E(x) = 2−n ∑
x∈Fn

2

(−1)u⊤x⊕v⊤E(x)

• Ultrametric integral cryptanalysis (same-basis) [BV, AC 24]. Input basis [(−1)wt(u⊕x)ux]x,u, output basis
[(−1)wt(u⊕x)ux]x,u

AE
v,u =

∑
x∈Fn

2

(−1)wt(u⊕x)uxEv(x) =
∑
x⪯u

(−1)wt(u⊕x)Ev(x)

• Subspace propagation (mix-basis, new). Input basis [ux]x,u, output basis [(−1)wt(u⊕x)xu]x,u

AE
v,u =

∑
x∈Fn

2

uxvE(x) =
∑

x⪯u,E(x)⪯v
1
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Orders of Attacks

Definition (Order)
Suppose a space S ∼= (Fn

2)
d, we call the smallest d the order of S. If an attack on E : Fn

2 → Fn
2 take

plaintext/ciphertext samples from d-th-order space, we call this attack a d-th-order attack.

• A d-th-attack works on

E×d : (Fn
2)

d → (Fn
2)

d; (x,∆1, . . . ,∆d−1) 7→
(
E(x),D∆1(E(x)),D∆2(E(x)), . . . ,D∆d−1(E(x))

)
• [fu(x)](i)x,u is a basis for the i-th K[Fn

2], a basis for K[(Fn
2)

d] is
⊗

0≤i<d[fu(x)](i)x,u.
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Several Examples
• Differential attack (same-basis, 2nd order) [BR, C 22]. Input basis [(−1)u⊤x]x,u ⊗ [δu(x)]x,u, output basis

[(−1)u⊤x]x,u ⊗ [δu(x)]x,u

AE
(v0,v1),(u0,u1) =

∑
x∈Fn

2,∆∈Fn
2

(−1)u⊤0 xδu1(∆)2−n(−1)v⊤0 E(x)δv1(D∆(x))

=
∑
x∈Fn

2
E(x)⊕E(x⊕u1)=v1

(−1)u⊤0 x⊕v⊤0 E(x) u0=v0=0−−−−−→
∑
x∈Fn

2
E(x)⊕E(x⊕u1)=v1

1

• d-differential (same-basis, d-th order) [WSW+, TIT 23]. Input/output basis [(−1)u⊤x]x,u
⊗

1≤i≤d[δu(x)]x,u

AE
(v0,...,vd),(u0,...ud) = =

∑
x∈Fn

2
E(x)⊕E(x⊕ui)=vi,0≤i≤d

(−1)u⊤i x⊕v⊤0 E(x) u0=v0=0−−−−−→
∑
x∈Fn

2
E(x)⊕E(x⊕ui)=vi,0≤i≤d

1

• Differential-linear attack (mix-basis, 2nd order, new). Input/output basis
[(−1)u⊤x]x,u ⊗ [δu(x)]x,u/2−n[(−1)u⊤x]x,u ⊗ [(−1)u⊤x]x,u

AE
(v0,v1),(u0,u1) = 2−n ∑

x∈Fn
2,∆=u1

(−1)u⊤0 x⊕v⊤0 E(x)⊕v⊤1 D∆(x) u0=v0=0−−−−−→ 2−n ∑
x∈Fn

2,∆=u1

(−1)v⊤1 D∆(x)
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Example applications
• An alternative method of studying the same property in ultrametric integral cryptanalysis [BV, AC 24]

• Choose [ux]x,u/[(−1)wt(u⊕x)ux]x,u for input/output spaces
• Attacking expression: AE

v,u =
∑

x⪯u Ev(x)

• Automatic search models for the multiple-of-n property for SKINNY-64 [GRR, EC 17][BCC, ToSC 19]
• (First-order method) Choose [ux]x,u/[(−1)wt(u⊕x)xu]x,u for input/output spaces

Attacking expression:
AE

v,u =
∑

x⪯u,E(x)⪯v
1

AE
v,u(AE

v,u − 1)/2 is the number of unordered pairs
• (Second-order method) Choose [ux]x,u ⊗ [ux]x,u/[(−1)wt(u⊕x)xu]x,u ⊗ [(−1)wt(u⊕x)xu]x,u for input/output

spaces
Attacking expression:

AE
(v0,v1),(u0,u1)

=
∑

x⪯u0,∆⪯u1,E(x)⪯v0,D∆(E(x))⪯v1

1

(Set u0 = u1 = u, v0 = 1, AE
(v0,v1),(u0,u1)

is the number of unordered pairs)
• Verification for 2 differential-linear distinguishers of SIMON-32 and -48 [HDE, C 24] without the round

independence assumption
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Summary

• We explored the possibility to use different bases in Beyne’s geometric approach
• The geometric approach becomes more flexible, and can be applied to more attacks, especially

combined ones
• All attacks can be studied in the unified automatic search method
• We applied mix-basis geometric approach to several known attacks, and provided new methods to study

them

Thank you for your attention!
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