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Overview

Full Row Reduction:

Circuit size:

• 3nκ (for [HSS17]-style)

• 3(n − 1)κ (for authenticated

garbling [WRK17,YZW20])

Improved Preprocessing:

Authenticated field triples with

O(n3
√

|C |) comm.

Mask preparation with O(2ρ|C |) comm.

Improved Preprocessing:
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O(n3
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Mask preparation with O(2ρ|C |) comm.

• previous schemes have 4nκ and

(4n − 6)κ circuit size

• solves open problem from

[WRK17]

• generalizes approach by

[DILO22] to n ≥ 3 parties

• improves communication for

large circuits

What will follow

• Two-Party Garbled Circuits

• Authenticated Multi-Party GC

• Our Construction

• Preprocessing

• Results
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Two-Party Garbled Circuits

Garbler

AND

a b

c

ka,1 = ka,0 ⊕∆ kb,1 = kb,0 ⊕∆

kc,1 = kc,0 ⊕∆

• ∆←$ {0, 1}κ for the

whole circuit

• ka,0, kb,0, kc,0 ←$ {0, 1}κ

for the gate

H(ka,0, kb,0)⊕ kc,0
H(ka,0, kb,1)⊕ kc,0
H(ka,1, kb,0)⊕ kc,0
H(ka,1, kb,1)⊕ kc,1

GC

Evaluator

AND

a b

c

ka,α kb,β

kc,α∧β

• knows ka,α = ka,0 ⊕ α ·∆ and

kb,β = kb,0 ⊕ β ·∆
• can decrypt one row correctly

with H(ka,α, kb,β)

• obtains kc,α∧β
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Row Reduction in Two-Party Setting [NPR99]

• Garbler sets kc,0 = H(ka,0, kb,0)

• only 3 rows left

H(ka,0, kb,1)⊕ kc,0
H(ka,1, kb,0)⊕ kc,0
H(ka,1, kb,1)⊕ kc,1

GC

Garbler Evaluator

! garbler can no longer choose kc,0 freely =⇒ cannot choose all kc,0 at the same time!
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Authenticated Garbling for Multi-Party Garbled Circuits [WRK17,YWZ20]

• all parties jointly create shares of garbled circuit(s)

P2

Pn

P1

...

⟨GC2⟩1, . . . , ⟨GCn⟩1, ⟨AC⟩

⟨GC2⟩2, . . . , ⟨GCn⟩2, ⟨AC⟩

⟨GC2⟩n, . . . , ⟨GCn⟩n, ⟨AC⟩

• Setting: active security,

dishonest majority

• in [WRK17]: n − 1 garblers, 1

evaluator

• (n − 1) GC’s to evaluate +

information for evaluator to

check correctness

5



AND Gate

• every wire k i
a,1 = k i

a,0 ⊕ (λa ⊕ α︸ ︷︷ ︸
â

)∆i

• use authenticated bit shares JλK =
(
λi , { ⟨λi∆j⟩, ⟨λj∆i ⟩ }j ̸=i

)
• same ∆ as MAC key and as FreeXOR offset

• parties hold Jrâb̂K = J(
α︷ ︸︸ ︷

λa ⊕ â)(

β︷ ︸︸ ︷
λb ⊕ b̂)⊕ λcK ∀(â, b̂) ∈ {0, 1}2

GCi [â, b̂] = H(k i
a,â, k

i
b,b̂

)⊕
(

r i
âb̂

, { ⟨k j
w ,0 ⊕ râb̂∆

j⟩
i
}j>1, ⟨râb̂∆1⟩

)
∀(â, b̂) ∈ {0, 1}2

masked output bit ⟨GCj⟩ ⟨AC ⟩
Evaluator P1:

• active key ka,â =
(
k2
a,0 ⊕ (λa ⊕ α)∆2, . . . , kn

a,0 ⊕ (λa ⊕ α)∆n
)
decrypts

GC2[â, b̂], . . . ,GCn[â, b̂]
• obtains râb̂ = ĉ and active key kc,ĉ and checks correctness of râb̂ = αβ ⊕ λc

sharing between Pi and Pj

Sending râb̂ and râb̂∆
1 can be removed at cost of additional online rounds [YWZ20]
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)
∀(â, b̂) ∈ {0, 1}2

masked output bit ⟨GCj⟩ ⟨AC ⟩
Evaluator P1:

• active key ka,â =
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λb ⊕ b̂)⊕ λcK ∀(â, b̂) ∈ {0, 1}2
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1 can be removed at cost of additional online rounds [YWZ20]

6



AND Gate

• every wire k i
a,1 = k i

a,0 ⊕ (λa ⊕ α︸ ︷︷ ︸
â
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Our Row Reduction

Split AND equation into three parts: αβ ⊕ λc

= (α⊕ λa)β︸ ︷︷ ︸
prod1

⊕ (β ⊕ λb)λa︸ ︷︷ ︸
prod2

⊕λaλb ⊕ λc︸ ︷︷ ︸
masks

AND

a b

c

prod1

a

prod2 ⊕ masks

b

⊕
c

apply row reduction here

correct offset here
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The prod1 gadget (α⊕ λa)β

(adapted multi-party version of the length-2 one-hot garbling construction [HK21])

• the parties hold Jr1K = JλaK and compute

C i
1 = H(k i

a,0)⊕ H(k i
a,1)⊕

(
r i1, {⟨k

j
b,0 ⊕ r1∆

j⟩}j>1, ⟨r1∆1⟩i
)

• evaluator P1 computes H(k i
a,â)⊕ âC i

1 ⊕ âk i
b,b̂

= ⟨prod1⟩i , {⟨k j⟩i}j>1, ⟨prod1∆1⟩i
• but: k j = prod1∆

j ⊕
∑

i H(k i
a,0) with undesired offset

• the offset will be corrected in the prod2 gadget

8
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a,â)⊕ âC i

1 ⊕ âk i
b,b̂

= ⟨prod1⟩i , {⟨k j⟩i}j>1, ⟨prod1∆1⟩i
• but: k j = prod1∆

j ⊕
∑

i H(k i
a,0) with undesired offset

• the offset will be corrected in the prod2 gadget
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The prod2 gadget

is a regular unary gate with added masks and offset terms

• the parties hold Jr2,b̂K = Jb̂ · λa ⊕ λaλb ⊕ λcK for b̂ ∈ {0, 1}

C i
2,0 = H(k i

b,0)⊕ H(k i
a,0)⊕ (r i2,0, {⟨k

j
c,0 ⊕ r2,0∆

j⟩
i
}j>1, ⟨r2,0∆1⟩i )

C i
2,1 = H(k i

b,1)⊕ H(k i
a,0)⊕ (r i2,1, {⟨k

j
c,1 ⊕ r2,1∆

j⟩
i
}j>1, ⟨r2,1∆1⟩i )

• evaluator P1 computes regular decryption of C i
2,b̂

as H(k i
b,b̂

)⊕ C i
2,b̂

Finally: XORing the prod1 and prod2 gadgets yields: ⟨ĉ⟩i , k i
c,ĉ and ⟨ĉ∆1⟩i

9



The prod2 gadget

is a regular unary gate with added masks and offset terms

• the parties hold Jr2,b̂K = Jb̂ · λa ⊕ λaλb ⊕ λcK for b̂ ∈ {0, 1}

C i
2,0 = H(k i

b,0)⊕ H(k i
a,0)⊕ (r i2,0, {⟨k

j
c,0 ⊕ r2,0∆

j⟩
i
}j>1, ⟨r2,0∆1⟩i )

C i
2,1 = H(k i

b,1)⊕ H(k i
a,0)⊕ (r i2,1, {⟨k

j
c,1 ⊕ r2,1∆

j⟩
i
}j>1, ⟨r2,1∆1⟩i )

• evaluator P1 computes regular decryption of C i
2,b̂

as H(k i
b,b̂

)⊕ C i
2,b̂

Finally: XORing the prod1 and prod2 gadgets yields: ⟨ĉ⟩i , k i
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9



Summary

The general idea:

Split AND equation into three parts: αβ ⊕ λc = (α+ λa)β︸ ︷︷ ︸
prod1

⊕ (β ⊕ λb)λa︸ ︷︷ ︸
prod2

⊕λaλb ⊕ λc︸ ︷︷ ︸
masks

AND

a b

c

prod1

a

prod2 ⊕ masks

b

⊕
c

apply row reduction here

C1

correct offset here

C2,0,C2,1
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Improved Preprocessing

we extend the approach of [DILO22] from 2 to n ≥ 3 parties

Func. Dep. Prep.

beaver multiplication

of JλaK× JλbK

Func. Indep. Prep.

authenticated mult.

triples in F2

Garble/Eval

use JλaλbK to

construct GC

[YWZ20] expensive O(κ|C |) cheap |C |

[DILO22]

(and ours)

cheap

(sublinear in |C |)
ok ρ|C |
ρ < κ

for this we

1 design a PCG for correlation ⟨x⟩, ⟨y⟩, ⟨xy⟩ with authentication

values {⟨xαi ⟩, ⟨yαi ⟩, ⟨xyαi ⟩}i in F2ρ

2 perform a “large field” multiplication for JλaK× JλbK

3 “key switch” to authentication in F2κ using n-party VOLE

see full paper for details
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Results

Full Row Reduction:

Circuit size:

• 3nκ (for [HSS17]-style)

• 3(n − 1)κ (for authenticated

garbling [WRK17,YWZ20])

Improved Preprocessing:

Authenticated field triples with

O(n3
√

|C |) comm.

Mask preparation with O(2ρ|C |) comm.

• 25% to 43% smaller circuit

compared to [HSS17], [WRK17]

and [YWZ20]

Execution time in ms for AES-128 circuit

Parties 4 8 12

[WRK17] 223 423 629

Ours 168 359 540

• ×6 lower comm. cost compared

to [HSS17]

• ×2.2 lower comm. cost

compared to [YWZ20]
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Thank you!

eprint 2025/829

github.com/zama-ai/copz25-code

erik.pohle@esat.kuleuven.be
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