

Summary

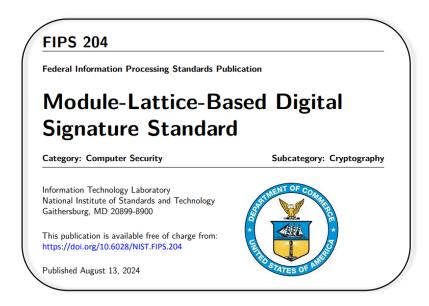
Attack methodology Practical results

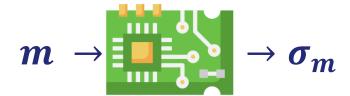
www.thalesgroup.com

Context

Dilithium is a signature algorithm recently standardized by NIST under the name ML-DSA.

Dilithium is recommended for computing quantum-secure signatures in most use cases.





It is necessary to investigate the security of embedded implementations. The security of Dilithium against Side-Channel Attacks (SCA) and Fault Attacks (FA) thus needs to be carefully assessed.

>

Dilithium in details

www.thalesgroup.com

Dilithium uses two rings:

$$\mathcal{R} = \mathbb{Z}[x]/(x^n + 1)$$

with: n = 256 and q = 8380417.

Algorithm KeyGen

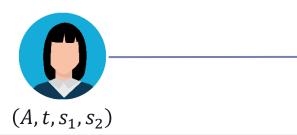
Ensure: (pk, sk)

1:
$$\mathbf{A} \leftarrow \mathcal{R}_q^{k \times l}$$

2:
$$(\mathbf{s}_1, \mathbf{s}_2) \leftarrow S_{\eta}^l \times S_{\eta}^k$$

3:
$$\mathbf{t} := \mathbf{A} \, \mathbf{s}_1 + \mathbf{s}_2$$

4: return
$$pk = (\mathbf{A}, \mathbf{t}), sk = (\mathbf{A}, \mathbf{t}, \mathbf{s}_1, \mathbf{s}_2)$$



 $\mathcal{R}_q = \mathbb{Z}_q[x]/(x^n+1)$

Dilithium uses two rings:

$$\mathcal{R} = \mathbb{Z}[x]/(x^n + 1)$$

with: n = 256 and q = 8380417.

Algorithm KeyGen

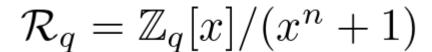
Ensure: (pk, sk)

1:
$$\mathbf{A} \leftarrow \mathcal{R}_{q}^{k \times l}$$

2:
$$(\mathbf{s}_1, \mathbf{s}_2) \leftarrow S_{\eta}^l \times S_{\eta}^k$$

3:
$$\mathbf{t} := \mathbf{A} \, \mathbf{s}_1 + \mathbf{s}_2$$

4: return
$$pk = (\mathbf{A}, \mathbf{t}), sk = (\mathbf{A}, \mathbf{t}, \mathbf{s}_1, \mathbf{s}_2)$$



 α an even integer which divides q-1 and:

$$r=r_1lpha+r_0$$
 with $r_0=r$ mod $^\pm(lpha)$ and $r_1=rac{r-r_0}{lpha}$

Possible values of
$$r_0$$
: $\left\{-\frac{\alpha}{2}+1,...,0,...,\frac{\alpha}{2}\right\}$

Possible values of
$$r_1\alpha$$
: $\{0, \alpha, 2\alpha, ..., q-1\}$

One note:

$$HighBits_q(r, \alpha) = r_1 \text{ and } LowBits_q(r, \alpha) = r_0$$

Dilithium uses two rings:

$$\mathcal{R} = \mathbb{Z}[x]/(x^n + 1)$$

with: n = 256 and q = 8380417.

Algorithm KeyGen

Ensure: (pk, sk)

1:
$$\mathbf{A} \leftarrow \mathcal{R}_{q}^{k \times l}$$

2:
$$(\mathbf{s}_1, \mathbf{s}_2) \leftarrow S_{\eta}^l \times S_{\eta}^k$$

3:
$$\mathbf{t} := \mathbf{A} \, \mathbf{s}_1 + \mathbf{s}_2$$

4: return
$$pk = (\mathbf{A}, \mathbf{t}), sk = (\mathbf{A}, \mathbf{t}, \mathbf{s}_1, \mathbf{s}_2)$$

$$\mathcal{R}_q = \mathbb{Z}_q[x]/(x^n + 1)$$

 $r = HighBits_q(r, \alpha) \times \alpha + LowBits_q(r, \alpha)$

$$P = (P_1, \dots, P_l)$$

$$P_i = \sum p_i x^i$$

$$HighBits_q(P_i, \alpha) = \sum HighBits_q(p_i, \alpha)x^i$$

 $HighBits_q(P, \alpha) = \Big(HighBits_q(P_1, \alpha), \dots, HighBits_q(P_l, \alpha) \Big)$

Algorithm Sig

Require: sk, M

|||||||||||

Ensure: $\sigma = (c, \mathbf{z})$

- 1: $\mathbf{z} = \perp$
- 2: while $z = \perp do$
- 3: $\mathbf{y} \leftarrow \tilde{S}_{\gamma_1}^l$
- 4: $\mathbf{w}_1 := \mathtt{HighBits}(\mathbf{Ay}, 2\gamma_2)$
- 5: $c \in B_{\tau} := H(M||\mathbf{w}_1)$
- 6: $\mathbf{z} := \mathbf{y} + c \, \mathbf{s}_1$
- 7: if $\|\mathbf{z}\|_{\infty} \geq \gamma_1 \beta$ or LowBits $(\mathbf{A}\mathbf{y} c\mathbf{s}_2, 2\gamma_2)|_{\infty} \geq \gamma_2 \beta$ then
- 8: $\mathbf{z} := \perp$
- 9: end if
- 10: end while
- 11: **return** $\sigma = (c, \mathbf{z})$

$$(M, \sigma = (c, \mathbf{z}))$$

Alice draws a polynomial vector at random:

$$y \in_R R^l$$
, $||y||_{\infty} \leq \gamma_1$.

She computes a random challenge that depends on the message:

$$c = H(M \mid HighBits_q(Ay, 2\gamma_2)).$$

She provides a response to the challenge:

$$z = y + cs_1$$
.

By definition of z:

$$Az - ct = Ay - cs_2.$$

z is chosen such that:

Rejection

$$HighBits_q(Ay, 2\gamma_2) = HighBits_q(Ay - cs_2, 2\gamma_2).$$

Algorithm Sig

Require: sk, MEnsure: $\sigma = (c, \mathbf{z})$

1: $\mathbf{z} = \perp$

2: while $z = \perp do$

3: $\mathbf{y} \leftarrow \tilde{S}_{\gamma_1}^l$

4: $\mathbf{w}_1 := \mathtt{HighBits}(\mathbf{Ay}, 2\gamma_2)$

5: $c \in B_{\tau} := H(M||\mathbf{w}_1)$

6: $\mathbf{z} := \mathbf{y} + c \, \mathbf{s}_1$

7: if $\|\mathbf{z}\|_{\infty} \geq \gamma_1 - \beta$ or LowBits $(\mathbf{A}\mathbf{y} - c\mathbf{s}_2, 2\gamma_2)|_{\infty} \geq \gamma_2 - \beta$ then

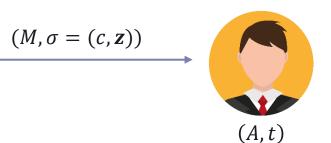
8: $\mathbf{z} := \perp$

9: end if

10: end while

11: **return** $\sigma = (c, \mathbf{z})$

$$(A, t, s_1, s_2)$$



By definition of z:

$$Az - ct = Ay - cs_2.$$

Algorithm 1 Ver

1: $\mathbf{w}_1' := \mathtt{HighBits}(\mathbf{Az} - c\mathbf{t}, 2\gamma_2)$

2: Accept if $||\mathbf{z}||_{\infty} \leq \gamma_1 - \beta$ and $c = H(M||\mathbf{w}_1')$

Bob can recompute w_1 :

$$w_1 = HighBits_q(Ay, 2\gamma_2)$$

$$= HighBits_q(Ay - cs_2, 2\gamma_2)$$

$$= HighBits_q(Az - ct, 2\gamma_2)$$

$$= w'_1$$

|||||||||||

Dilithium's public key is compressed:

$$t = t_1 \times 2^d + t_0.$$

The least significant bits of coefficients of t are not given, verification is no longer possible:

Algorithm Ver

1: $\mathbf{w}_1' := \mathtt{HighBits}(\mathbf{Az} - c\mathbf{t}, 2\gamma_2)$

2: Accept if $||\mathbf{z}||_{\infty} \leq \gamma_1 - \beta$ and $c = H(M||\mathbf{w}_1')$

Bob can only compute:

 $HighBits_q(Az-ct_1\ 2^d,2\gamma_2) \neq HighBits_q(Az-ct_1\ 2^d-ct_0,2\gamma_2).$

Dilithium's public key is compressed:

$$t = t_1 \times 2^d + t_0.$$

The least significant bits of coefficients of t are not given, verification is no longer possible:

Algorithm Ver

1: $\mathbf{w}_1' := \mathtt{HighBits}(\mathbf{Az} - c\mathbf{t}, 2\gamma_2)$

2: Accept if $||\mathbf{z}||_{\infty} \leq \gamma_1 - \beta$ and $c = H(M||\mathbf{w}_1')$

Bob can only compute:

$$HighBits_q(Az-ct_1\ 2^d,2\gamma_2) \neq HighBits_q(Az-ct_1\ 2^d-ct_0,2\gamma_2).$$

Lemma 1 $[LDK^+22]$ Let q and α be two positive integers such that $q>2\alpha,\ q\equiv 1\mod(\alpha)$ and α even. Let \mathbf{r} and \mathbf{z} be two vectors of \mathcal{R}_q such that $||\mathbf{z}||_\infty \leq \alpha/2$ and let \mathbf{h}, \mathbf{h}' be bit vectors. So the algorithms $\mathrm{HighBits}_q$, $\mathrm{MakeHint}_q$, $\mathrm{UseHint}_q$ satisfy the properties:

$$\mathtt{UseHint}_q(\mathtt{MakeHint}_q(\mathbf{z},\mathbf{r},\alpha),\mathbf{r},\alpha) = \mathtt{HighBits}_q(\mathbf{r}+\mathbf{z},\alpha).$$

The real Dilithium

Lemma 1 $[LDK^+22]$ Let q and α be two positive integers such that $q>2\alpha,\ q\equiv 1 \mod(\alpha)$ and α even. Let ${\bf r}$ and ${\bf z}$ be two vectors of \mathcal{R}_q such that $||{\bf z}||_\infty \leq \alpha/2$ and let ${\bf h}, {\bf h}'$ be bit vectors. So the algorithms $\operatorname{HighBits}_q$, $\operatorname{MakeHint}_q$, $\operatorname{UseHint}_q$ satisfy the properties:

 $\texttt{UseHint}_q(\texttt{MakeHint}_q(\mathbf{z},\mathbf{r},\alpha),\mathbf{r},\alpha) = \texttt{HighBits}_q(\mathbf{r}+\mathbf{z},\alpha).$

Algorithm KeyGen

Ensure: (pk, sk)

- 1: $\mathbf{A} \leftarrow \mathcal{R}_q^{k \times l}$
- 2: $(\mathbf{s}_1, \mathbf{s}_2) \leftarrow S_n^l \times S_n^k$
- 3: $\mathbf{t} := \mathbf{A} \, \mathbf{s}_1 + \mathbf{s}_2$
- 4: return $pk = (\mathbf{A}, \mathbf{t}), sk = (\mathbf{A}, \mathbf{t}, \mathbf{s}_1, \mathbf{s}_2)$

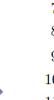
Algorithm KeyGen

Ensure: (pk, sk)

- 1: $\zeta \leftarrow \{0,1\}^{256}$
- 2: $(\rho, \rho', K) \in \{0, 1\}^{256} \times \{0, 1\}^{512} \times \{0, 1\}^{256} := H(\zeta)$
- $3: \ \mathbf{A} \in \mathcal{R}_q^{k imes l} := \mathtt{ExpandA}(
 ho)$
- 4: $(\mathbf{s}_1, \mathbf{s}_2) \in S^l_{\eta} \times S^k_{\eta} := \mathtt{ExpandS}(\rho')$
- 5: $\mathbf{t} := \mathbf{A} \, \mathbf{s}_1 + \mathbf{s}_2$
- 6: $(\mathbf{t}_1, \, \mathbf{t}_0) := \text{Power2Round}_q(\mathbf{t}, \, d)$
- 7: $tr \in \{0,1\}^{256} := H(\rho || \mathbf{t}_1)$
- 8: **return** $pk = (\rho, \mathbf{t}_1), sk = (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0)$

The real Dilithium

Algorithm Sig Require: sk, MEnsure: $\sigma = (c, \mathbf{z})$ 1: $\mathbf{z} = \perp$ 2: while $\mathbf{z} = \perp$ do 3: $\mathbf{y} \leftarrow \tilde{S}^l_{\gamma_1}$ 4: $\mathbf{w}_1 := \mathrm{HighBits}(\mathbf{A}\mathbf{y}, 2\gamma_2)$ 5: $c \in B_\tau := H(M||\mathbf{w}_1)$ 6: $\mathbf{z} := \mathbf{y} + c\,\mathbf{s}_1$ 7: if $\|\mathbf{z}\|_{\infty} \geq \gamma_1 - \beta$ or $\mathrm{LowBits}(\mathbf{A}\mathbf{y} - c\mathbf{s}_2, 2\gamma_2)||_{\infty} \geq \gamma_2 - \beta$ then 8: $\mathbf{z} := \perp$ 9: end if 10: end while



$\frac{\textbf{Algorithm Sig}}{\textbf{Require: } sk, M}$

Ensure:
$$\sigma = (\tilde{c}, \mathbf{z}, \mathbf{h})$$

1:
$$\mathbf{A} \in \mathcal{R}_q^{k \times l} := \mathtt{ExpandA}(\rho)$$

2:
$$\mu \in \{0,1\}^{512} := H(tr || M)$$

3:
$$\kappa := 0, (\mathbf{z}, \mathbf{h}) := \perp$$

4:
$$\rho' \in \{0,1\}^{512} := H(K || \mu)$$

5: while
$$(\mathbf{z}, \mathbf{h}) = \perp \mathbf{do}$$

6:
$$\mathbf{y} \in \tilde{S}_{\gamma_1}^l := \mathtt{ExpandMask}(\rho', \kappa)$$

7:
$$\mathbf{w} := \mathbf{A} \mathbf{y}$$

8:
$$\mathbf{w}_1 = \mathtt{HighBits}_a(\mathbf{w}, 2\gamma_2)$$

9:
$$\tilde{c} \in \{0, 1\}^{256} := H(\mu || \mathbf{w}_1)$$

10:
$$c \in B_{\tau} := \mathtt{SampleInBall}(\tilde{c})$$

11:
$$\mathbf{z} := \mathbf{y} + c \, \mathbf{s}_1$$

12:
$$\mathbf{r}_0 := \text{LowBits}_q(\mathbf{w} - c\mathbf{s}_2, 2\gamma_2)$$

13: if
$$\|\mathbf{z}\|_{\infty} \geq \gamma_1 - \beta$$
 or $\|\mathbf{r}_0\|_{\infty} \geq \gamma_2 - \beta$ then

14:
$$(\mathbf{z}, \mathbf{h}) := \perp$$

16:
$$\mathbf{h} := \mathtt{MakeHint}_q(-c\mathbf{t}_0, \mathbf{w} - c\mathbf{s}_2 + c\mathbf{t}_0, 2\gamma_2)$$

17: if
$$||c \mathbf{t}_0||_{\infty} \ge \gamma_2$$
 or $|\mathbf{h}|_{\mathbf{h}_j=1} > \omega$ then

18:
$$(\mathbf{z}, \mathbf{h}) := \perp$$

19:
$$\kappa := \kappa + l$$

20: **return**
$$\sigma = (\tilde{c}, \mathbf{z}, \mathbf{h})$$

11: **return** $\sigma = (c, \mathbf{z})$

The real Dilithium

Lemma 1 [LDK⁺22] Let q and α be two positive integers such that $q > 2\alpha$, $q \equiv 1 \mod(\alpha)$ and α even. Let \mathbf{r} and \mathbf{z} be two vectors of \mathcal{R}_q such that $||\mathbf{z}||_{\infty} \leq \alpha/2$ and let \mathbf{h}, \mathbf{h}' be bit vectors. So the algorithms $\mathrm{HighBits}_q$, $\mathrm{MakeHint}_q$, $\mathrm{UseHint}_q$ satisfy the properties:

 $\texttt{UseHint}_q(\texttt{MakeHint}_q(\mathbf{z},\mathbf{r},\alpha),\mathbf{r},\alpha) = \texttt{HighBits}_q(\mathbf{r}+\mathbf{z},\alpha).$

Algorithm 1 Ver

1: $\mathbf{w}_1' := \mathtt{HighBits}(\mathbf{Az} - c\mathbf{t}, 2\gamma_2)$

2: Accept if $||\mathbf{z}||_{\infty} \leq \gamma_1 - \beta$ and $c = H(M||\mathbf{w}_1')$

Algorithm 4 Ver

Require: pk, σ

1: $\mathbf{A} \in \mathcal{R}_q^{k imes l} := \mathtt{ExpandA}(
ho)$

2: $\mu \in \{0,1\}^{512} := H(H(\rho || \mathbf{t}_1) || M)$

3: $c := SampleInBall(\tilde{c})$

 $4: \mathbf{w}_1' := \mathtt{UseHint}_q(\mathbf{h}, \mathbf{Az} - c\mathbf{t}_1 \cdot 2^d, 2\gamma_2)$

5: **return** $[\![||\mathbf{z}||_{\infty} < \gamma_1 - \beta]\!]$ and $[\![\tilde{c} = H(\mu \mid |\mathbf{w}_1')]\!]$ and $[\![|\mathbf{h}|_{\mathbf{h}_j=1} \le \omega]\!]$

Natural question

www.thalesgroup.com

Formally, t_0 is part of the private key, but it is a performance optimization. The security proof considers it public, but what about side-channel attacks?

17

Formally, t_0 is part of the private key, but it is a performance optimization. The security proof considers it public, but what about side-channel attacks?

NIST

- thus producing the polynomial vector \mathbf{t}_1 . This compression is an optimization for performance, not security.
- The low order bits of t can be reconstructed from a small number of signatures and, therefore, need not be
- regarded as secret.

|||||||||||

Formally, t_0 is part of the private key, but it is a performance optimization. The security proof considers it public, but what about side-channel attacks?

NIST

- thus producing the polynomial vector \mathbf{t}_1 . This compression is an optimization for performance, not security.
- The low order bits of t can be reconstructed from a small number of signatures and, therefore, need not be
- regarded as secret.

|||||||||||

RRB+19

There is a subtle but considerable difference with respect to publicly revealed LWE instances in the Dilithium scheme. The public key reveals only \mathbf{t}_1 , the d higher order bits of \mathbf{t} , while \mathbf{t}_0 (the lower order component) is part of the secret key. Even on ensuring nonce-reuse, we would not be able to trivially solve for the secret \mathbf{s} from the faulty public key. But, note that the security analysis of DILITHIUM is done with the assumption that the whole of \mathbf{t} is declared as the public key. In addition to this, some information about \mathbf{t}_0 is leaked with every published signature and thus the whole of \mathbf{t} can be reconstructed by just observing several signatures generated using the same secret key [1]. Thus it

Formally, t_0 is part of the private key, but it is a performance optimization. The security proof considers it public, but what about side-channel attacks?

NIST

- thus producing the polynomial vector \mathbf{t}_1 . This compression is an optimization for performance, not security.
- The low order bits of t can be reconstructed from a small number of signatures and, therefore, need not be
- regarded as secret.

RRB+19

There is a subtle but considerable difference with respect to publicly revealed LWE instances in the Dilithium scheme. The public key reveals only \mathbf{t}_1 , the d higher order bits of \mathbf{t} , while \mathbf{t}_0 (the lower order component) is part of the secret key. Even on ensuring nonce-reuse, we would not be able to trivially solve for the secret \mathbf{s} from the faulty public key. But, note that the security analysis of DILITHIUM is done with the assumption that the whole of \mathbf{t} is declared as the public key. In addition to this, some information about \mathbf{t}_0 is leaked with every published signature and thus the whole of \mathbf{t} can be reconstructed by just observing several signatures generated using the same secret key [1]. Thus it

References

1. Suppressed for blind review

Formally, t_0 is part of the private key, but it is a performance optimization. The security proof considers it public, but what about side-channel attacks?

EAB+23

Dilithium [BBK16, RJH⁺19]. In our attack, the knowledge of $\mathbf{t_0}$ is not required for the MLWE to RLWE reduction part of our attack as $\mathbf{t_0}$ can be embedded into the additive noise vector (moving $\mathbf{t_0}$ to the right part of Equation 6). However, it has an impact on the resulting security of the RLWE problem making it harder to solve. As it is unclear if $\mathbf{t_0}$ must be considered secret or public (it has been hinted that $\mathbf{t_0}$ can be recovered from enough signatures in [Lyu22, RJH⁺18, RRB⁺19]), we take a worst-case approach for the rest of this work. If not specified in the following sections, the full \mathbf{t} is assumed to be public. In Subsection 5.3, we derive the impact of fully secret $\mathbf{t_0}$ on the complexity of the (reduced) RLWE instance. We hope that this approach gives a complete view to the reader about the applicability of the attack to Dilithium.

Formally, t_0 is part of the private key, but it is a performance optimization. The security proof considers it public, but what about side-channel attacks?

EAB+23

Dilithium [BBK16, RJH⁺19]. In our attack, the knowledge of $\mathbf{t_0}$ is not required for the MLWE to RLWE reduction part of our attack as $\mathbf{t_0}$ can be embedded into the additive noise vector (moving $\mathbf{t_0}$ to the right part of Equation 6). However, it has an impact on the resulting security of the RLWE problem making it harder to solve. As it is unclear if $\mathbf{t_0}$ must be considered secret or public (it has been hinted that $\mathbf{t_0}$ can be recovered from enough signatures in [Lyu22, RJH⁺18, RRB⁺19]), we take a worst-case approach for the rest of this work. If not specified in the following sections, the full \mathbf{t} is assumed to be public. In Subsection 5.3, we derive the impact of fully secret $\mathbf{t_0}$ on the complexity of the (reduced) RLWE instance. We hope that this approach gives a complete view to the reader about the applicability of the attack to Dilithium.

RJH+18

Thus, it might indeed be possible that the whole of \bar{t} leaks as part of the signature and observations of sufficiently many signatures might lead to the recovery of the complete LWE instance, \bar{t} . But again, we expect the number of signatures and the computational effort to be very high, which cannot be expected in a practical SCA setting.

Formally, t_0 is part of the private key, but it is a performance optimization. The security proof considers it public, but what about side-channel attacks?

EAB+23

Dilithium [BBK16, RJH⁺19]. In our attack, the knowledge of $\mathbf{t_0}$ is not required for the MLWE to RLWE reduction part of our attack as $\mathbf{t_0}$ can be embedded into the additive noise vector (moving $\mathbf{t_0}$ to the right part of Equation 6). However, it has an impact on the resulting security of the RLWE problem making it harder to solve. As it is unclear if $\mathbf{t_0}$ must be considered secret or public (it has been hinted that $\mathbf{t_0}$ can be recovered from enough signatures in [Lyu22, RJH⁺18, RRB⁺19]), we take a worst-case approach for the rest of this work. If not specified in the following sections, the full \mathbf{t} is assumed to be public. In Subsection 5.3, we derive the impact of fully secret $\mathbf{t_0}$ on the complexity of the (reduced) RLWE instance. We hope that this approach gives a complete view to the reader about the applicability of the attack to Dilithium.

WNGD23

ferent from profiling device is non-negligible (9%). The success rate approaches 100% if multiple traces are available for the attack. Our results demonstrate the necessity of protecting the secret key of CRYSTALS-Dilithium from single-trace attacks and call for a reassessment of the role of compression of the public key vector t in the security of CRYSTALS-Dilithium implementations.

RJH+18

Thus, it might indeed be possible that the whole of \bar{t} leaks as part of the signature and observations of sufficiently many signatures might lead to the recovery of the complete LWE instance, \bar{t} . But again, we expect the number of signatures and the computational effort to be very high, which cannot be expected in a practical SCA setting.

Formally, t_0 is part of the private key, but it is a performance optimization. The security proof considers it public, but what about side-channel attacks?

EAB+23

Dilithium [BBK16, RJH⁺19]. In our attack, the knowledge of $\mathbf{t_0}$ is not required for the MLWE to RLWE reduction part of our attack as $\mathbf{t_0}$ can be embedded into the additive noise vector (moving $\mathbf{t_0}$ to the right part of Equation 6). However, it has an impact on the resulting security of the RLWE problem making it harder to solve. As it is unclear if $\mathbf{t_0}$ must be considered secret or public (it has been hinted that $\mathbf{t_0}$ can be recovered from enough signatures in [Lyu22, RJH⁺18, RRB⁺19]), we take a worst-case approach for the rest of this work. If not specified in the following sections, the full \mathbf{t} is assumed to be public. In Subsection 5.3, we derive the impact of fully secret $\mathbf{t_0}$ on the complexity of the (reduced) RLWE instance. We hope that this approach gives a complete view to the reader about the applicability of the attack to Dilithium.

WNGD23

ferent from profiling device is non-negligible (9%). The success rate approaches 100% if multiple traces are available for the attack. Our results demonstrate the necessity of protecting the secret key of CRYSTALS-Dilithium from single-trace attacks and call for a reassessment of the role of compression of the public key vector t in the security of CRYSTALS-Dilithium implementations.

RJH+18

Thus, it might indeed be possible that the whole of \bar{t} leaks as part of the signature and observations of sufficiently many signatures might lead to the recovery of the complete LWE instance, \bar{t} . But again, we expect the number of signatures and the computational effort to be very high, which cannot be expected in a practical SCA setting.

In the context of side-channel attacks, the role of t_0 is unclear

Can t_0 be used or not?

>0<

www.thalesgroup.com

How to recover t_0 ?

Each Dilithium signature provides inequalities on the coefficients of t_0 .

Proposition 2 Let $j \in \{0, ..., k-1\}$ and $i \in \{0, ..., 255\}$ and $\sigma = (\tilde{c}, \mathbf{z}, \mathbf{h})$ be a signature of Sig.

$$- If \mathbf{h}_i^{[j]} = 0:$$

$$|(-c\mathbf{t}_0)_i^{[j]} + \mathtt{LowBits}_q(\mathbf{Az} - c\mathbf{t}_1 \cdot 2^d, 2\gamma_2)_i^{[j]}| \leq \gamma_2 - \beta - 1.$$

$$-\ \mathit{If}\ \mathbf{h}_i^{[j]} = 1\ \mathit{and}\ \mathtt{LowBits}_q(\mathbf{Az} - c\mathbf{t}_1 \cdot 2^d, 2\,\gamma_2)_i^{[j]} > 0 \colon$$

$$(-c\mathbf{t}_0)_i^{[j]} \geq \gamma_2 + \beta + 1 - \mathsf{LowBits}_q(\mathbf{Az} - c\mathbf{t}_1 \cdot 2^d, 2\gamma_2)_i^{[j]} \geq 0.$$

$$-\ \mathit{If}\ \mathbf{h}_i^{[j]} = 1\ \mathit{and}\ \mathtt{LowBits}_q(\mathbf{Az} - c\mathbf{t}_1 \cdot 2^d, 2\,\gamma_2)_i^{[j]} < 0 \colon$$

$$(-c\mathbf{t}_0)_i^{[j]} \le -(\gamma_2 + \beta + 1) - \text{LowBits}_q(\mathbf{Az} - c\mathbf{t}_1 \cdot 2^d, 2\gamma_2)_i^{[j]} \le 0.$$

Each Dilithium signature provides inequalities on the coefficients of t_0 .

Proposition 2 Let $j \in \{0, ..., k-1\}$ and $i \in \{0, ..., 255\}$ and $\sigma = (\tilde{c}, \mathbf{z}, \mathbf{h})$ be a signature of Sig.

$$- If \mathbf{h}_i^{[j]} = 0:$$

$$|(-c\mathbf{t}_0)_i^{[j]} + \mathtt{LowBits}_q(\mathbf{Az} - c\mathbf{t}_1 \cdot 2^d, 2\gamma_2)_i^{[j]}| \leq \gamma_2 - \beta - 1.$$

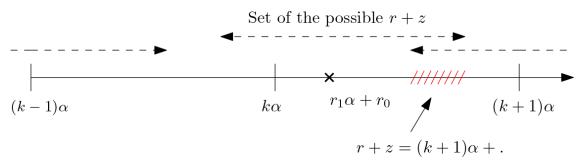
$$-\ If\ \mathbf{h}_i^{[j]}=1\ and\ \mathtt{LowBits}_q(\mathbf{Az}-c\mathbf{t}_1\cdot 2^d,2\,\gamma_2)_i^{[j]}>0\colon$$

$$(-c\mathbf{t}_0)_i^{[j]} \geq \gamma_2 + \beta + 1 - \mathtt{LowBits}_q(\mathbf{Az} - c\mathbf{t}_1 \cdot 2^d, 2\,\gamma_2)_i^{[j]} \geq 0.$$

 $-\ If\ \mathbf{h}_i^{[j]}=1\ and\ \mathtt{LowBits}_q(\mathbf{Az}-c\mathbf{t}_1\cdot 2^d,2\,\gamma_2)_i^{[j]}<0:$

$$(-c\mathbf{t}_0)_i^{[j]} \leq -(\gamma_2+\beta+1) - \mathtt{LowBits}_q(\mathbf{Az} - c\mathbf{t}_1 \cdot 2^d, 2\,\gamma_2)_i^{[j]} \leq 0.$$

Proof (idea):



The value of h provides information on the size of the polynomial ct_0 .

$$? \\ HighBits_q(Az-ct_1\ 2^d,2\gamma_2) \neq HighBits_q(Az-ct_1\ 2^d-ct_0,2\gamma_2)$$

Naive method: We retrieve inequalities and solve them using an LP solver.

Number of signatures	Number of inequalities	$ \mathbf{t}_0^{[0]} - ilde{\mathbf{t}}_0^{[0]} _{\infty}$	Attack time
24	9953 + 389	5649	0 h0 m23 s
117	48456 + 1915	1 031	0 h3m52s
583	241541 + 9378	247	1 h55 m47 s

Table 4. Attack times and size of the (LP) system on \mathbf{t}_0 .

Naive method: We retrieve inequalities and solve them using an LP solver.

Number of signatures	Number of inequalities	$ \mathbf{t}_0^{[0]} - ilde{\mathbf{t}}_0^{[0]} _{\infty}$	Attack time
24	9953 + 389	5649	0 h0 m23 s
117	48456 + 1915	1 031	0 h3m52s
583	241541 + 9378	247	1 h55 m47 s

Table 4. Attack times and size of the (LP) system on \mathbf{t}_0 .

First problem: There are far too many inequalities per signature.

NIST Level	II	III	V
Average inequation obtained	1922 + 63	2996 + 38	3984 + 56

Table 1. Average number of inequalities per signature, over 10 000 signatures, for different security levels.

|||||||||||

Naive method: We retrieve inequalities and solve them using an LP solver.

Number of signatures	Number of inequalities	$ \mathbf{t}_0^{[0]} - ilde{\mathbf{t}}_0^{[0]} _{\infty}$	Attack time
24	9953 + 389	5649	0 h0 m23 s
117	48456 + 1915	1 031	$0\mathrm{h}3\mathrm{m}52\mathrm{s}$
583	241541 + 9378	247	1 h55 m47 s

Table 4. Attack times and size of the (LP) system on \mathbf{t}_0 .

Second problem: Most of the inequalities collected are useless.

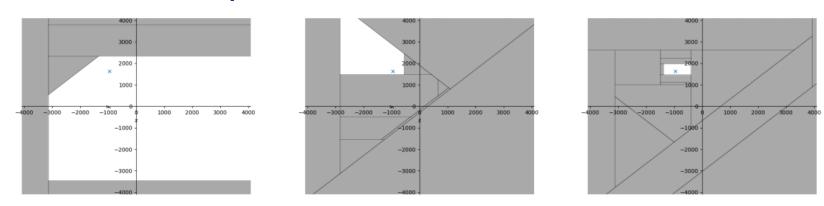


Fig. 4. Polytope containing $(\mathbf{t}_{0,0}^{[0]}, \mathbf{t}_{0,1}^{[0]})$ for 10, 50 and 100 inequalities.

Naive method result:

|||||||||||

Number of signatures	Number of inequalities	$ \mathbf{t}_0^{[0]} - ilde{\mathbf{t}}_0^{[0]} _{\infty}$	Attack time
24	9953 + 389	5 649	0 h0 m23 s
117	48456 + 1915	1 031	0 h3m52s
583	241541 + 9378	247	1h55m47s

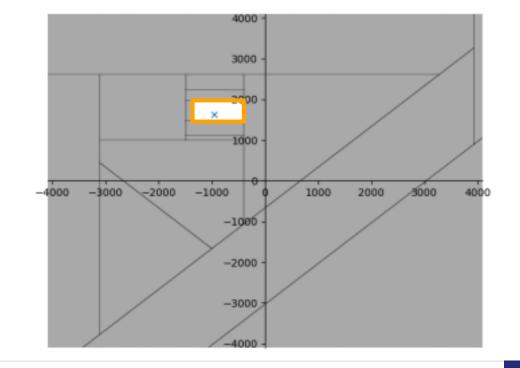
Table 4. Attack times and size of the (LP) system on \mathbf{t}_0 .

Idea:

We have a complex algebraic representation (a lot of inequalities) of a simple geometric object (a polytope with a few faces).

The complexity of the LP solver depends on the number of inequalities:

We must filter useful inequalities.



How to recover t_0 ? Filtrations

Assume known $\mathcal C$ and a polynome $\widetilde{t_0}$ such that $t_0 \in B_\infty(\widetilde{t_0}, \mathcal C)$.

Definition 11 Let $\tilde{\mathbf{t}}_0^{[0]} \in \mathcal{R}_q$ and $C \in \mathbb{R}_+$. We say that an inequation on $\mathbf{t}_0^{[0]}$ of the form $\{\mathbf{a}^{\mathsf{T}}\mathbf{x} - b \geq 0\}$ (resp. $\{\mathbf{a}^{\mathsf{T}}\mathbf{x} - b \leq 0\}$) is useful according to $\tilde{\mathbf{t}}_0^{[0]}$ and C if and only if:

$$B_{\infty}(\tilde{\mathbf{t}}_0^{[0]}, C) \not\subset \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^{\mathsf{T}}\mathbf{x} - b \ge 0 \} \ (resp. \ \mathbf{a}^{\mathsf{T}}\mathbf{x} - b \le 0)$$

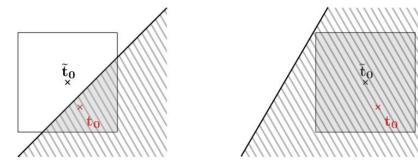


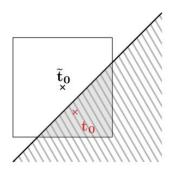
Fig. 6. On the left, a useful inequation. On the right a useless inequation.

How to recover t_0 ? Filtrations

Assume known $\mathcal C$ and a polynome $\widetilde{t_0}$ such that $t_0 \in B_\infty(\widetilde{t_0}, \mathcal C)$.

Definition 11 Let $\tilde{\mathbf{t}}_0^{[0]} \in \mathcal{R}_q$ and $C \in \mathbb{R}_+$. We say that an inequation on $\mathbf{t}_0^{[0]}$ of the form $\{\mathbf{a}^{\mathsf{T}}\mathbf{x} - b \geq 0\}$ (resp. $\{\mathbf{a}^{\mathsf{T}}\mathbf{x} - b \leq 0\}$) is useful according to $\tilde{\mathbf{t}}_0^{[0]}$ and C if and only if:

$$B_{\infty}(\tilde{\mathbf{t}}_0^{[0]}, C) \not\subset \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^{\mathsf{T}}\mathbf{x} - b \ge 0 \} \ (resp. \ \mathbf{a}^{\mathsf{T}}\mathbf{x} - b \le 0)$$



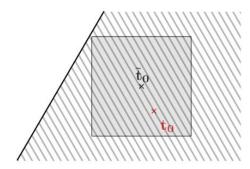


Fig. 6. On the left, a useful inequation. On the right a useless inequation.

It possible to efficently compute if an inequality is useful:

Proposition 3 An inequation on $\mathbf{t}_0^{[0]}$ of the form $\{\mathbf{a}^\mathsf{T}\mathbf{x} - b \geq 0\}$ is useful according to $\tilde{\mathbf{t}}_0^{[0]}$ and C if and only if:

$$\mathbf{a}^{\mathsf{T}} \tilde{\mathbf{t}}_0^{[0]} - C ||\mathbf{a}^{\mathsf{T}}||_{\infty}^* < b.$$

An inequation on $\mathbf{t}_0^{[0]}$ of the form $\{\mathbf{a}^{\mathsf{T}}\mathbf{x} - b \leq 0\}$ is useful according to $\tilde{\mathbf{t}}_0^{[0]}$ and C if and only if:

$$\mathbf{a}^{\mathsf{T}} \tilde{\mathbf{t}}_0^{[0]} + C ||\mathbf{a}^{\mathsf{T}}||_{\infty}^* > b,$$

where $||.||_{\infty}^*$ denote the operator norm.

|||||||||||

We use the strategy « Collect, guess, filter, repeat. »

Algorithm 6 Recovering $\mathbf{t}_0^{[0]}$ heuristically

Ensure: A candidate for $\mathbf{t}_0^{[0]}$

Require: An inequation step sequence $(\delta_i)_{i \in \{1,...,m\}}$, a radius sequence $C_m < C_{m-1} < \cdots < C_1 = 2^{12}$.

1:
$$\tilde{\mathbf{t}}_0^{[0]} = 0$$

$$2: i = 1$$

3:
$$P = \{-2^{12} + 1 \le x_i \le 2^{12}\}_{i=1,\dots,256}$$

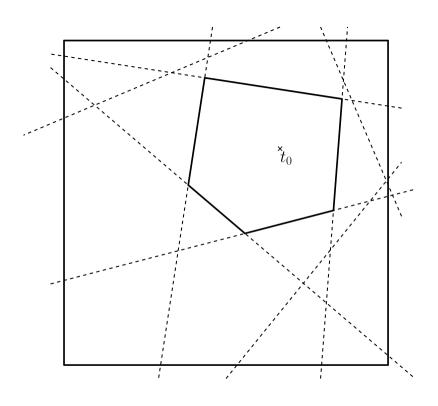
4: while
$$i \leq m$$
 do

5:
$$P = \texttt{generate_useful_ineq}(\delta_i, \tilde{\mathbf{t}}_0^{[0]}, C_i)$$

6:
$$i = i + 1$$

$$ilde{\mathbf{t}}_0^{[0]} = ext{round(lp_guess(P))}$$

8: **return**
$$\tilde{\mathbf{t}}_0^{[0]}$$



We use the strategy « Collect, guess, filter, repeat. »

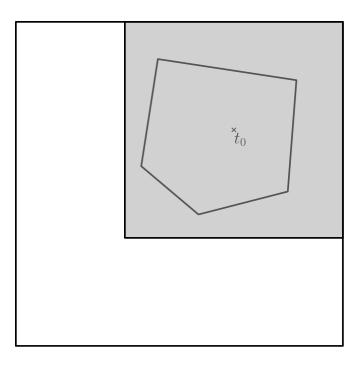
f Algorithm~6~ Recovering ${f t}_0^{[0]}$ heuristically

Ensure: A candidate for $\mathbf{t}_0^{[0]}$

Require: An inequation step sequence $(\delta_i)_{i \in \{1,...,m\}}$, a radius sequence $C_m < C_{m-1} < \cdots < C_1 = 2^{12}$.

1: $\tilde{\mathbf{t}}_0^{[0]} = 0$

- 2: i = 1
- 3: $P = \{-2^{12} + 1 \le x_i \le 2^{12}\}_{i=1,\dots,256}$
- 4: while $i \leq m$ do
- 5: $P = \mathtt{generate_useful_ineq}(\delta_i, ilde{\mathbf{t}}_0^{[0]}, C_i)$
- 6: i = i + 1
- 7: $\tilde{\mathbf{t}}_0^{[0]} = \mathtt{round}(\mathtt{lp_guess}(\mathtt{P}))$
- 8: return $\tilde{\mathbf{t}}_0^{[0]}$



We use the strategy « Collect, guess, filter, repeat. »

Algorithm 6 Recovering $\mathbf{t}_0^{[0]}$ heuristically

Ensure: A candidate for $\mathbf{t}_0^{[0]}$

Require: An inequation step sequence $(\delta_i)_{i \in \{1,...,m\}}$, a radius sequence $C_m < C_{m-1} < \cdots < C_1 = 2^{12}$.

1:
$$\tilde{\mathbf{t}}_0^{[0]} = 0$$

$$2: i = 1$$

3:
$$P = \{-2^{12} + 1 \le x_i \le 2^{12}\}_{i=1,\dots,256}$$

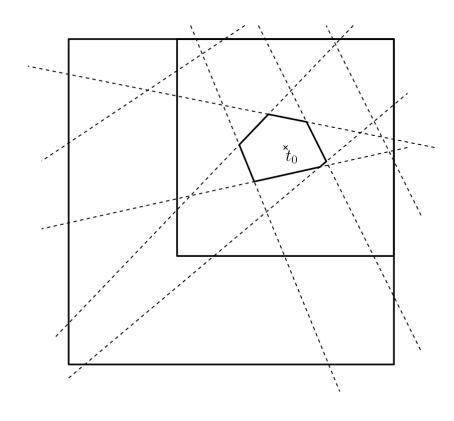
4: while
$$i \leq m$$
 do

5:
$$P = \texttt{generate_useful_ineq}(\delta_i, \tilde{\mathbf{t}}_0^{[0]}, C_i)$$

6:
$$i = i + 1$$

$$7: \qquad ilde{\mathbf{t}}_0^{[0]} = ext{round(lp_guess(P))}$$

8: **return**
$$\tilde{\mathbf{t}}_0^{[0]}$$



We use the strategy « Collect, guess, filter, repeat. »

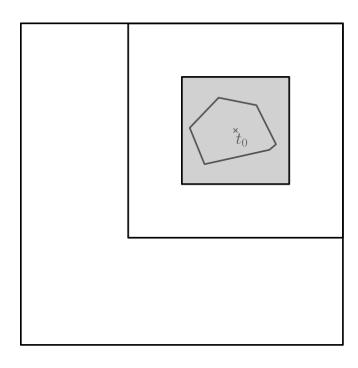
${\bf Algorithm} \ {\bf 6} \ {\tt Recovering} \ {\bf t}_0^{[0]} \ {\tt heuristically}$

Ensure: A candidate for $\mathbf{t}_0^{[0]}$

Require: An inequation step sequence $(\delta_i)_{i \in \{1,...,m\}}$, a radius sequence $C_m < C_{m-1} < \cdots < C_1 = 2^{12}$.

1: $\tilde{\mathbf{t}}_0^{[0]} = 0$

- 2: i = 1
- 3: $P = \{-2^{12} + 1 \le x_i \le 2^{12}\}_{i=1,\dots,256}$
- 4: while $i \leq m$ do
- 5: $P = \mathtt{generate_useful_ineq}(\delta_i, ilde{\mathbf{t}}_0^{[0]}, C_i)$
- 6: i = i + 1
- 7: $\tilde{\mathbf{t}}_0^{[0]} = \mathtt{round}(\mathtt{lp_guess}(\mathtt{P}))$
- 8: return $\tilde{\mathbf{t}}_0^{[0]}$



We use the strategy « Collect, guess, filter, repeat. »

Algorithm 6 Recovering $\mathbf{t}_0^{[0]}$ heuristically

Ensure: A candidate for $\mathbf{t}_0^{[0]}$

Require: An inequation step sequence $(\delta_i)_{i \in \{1,...,m\}}$, a radius sequence $C_m < C_{m-1} < \cdots < C_1 = 2^{12}$.

1:
$$\tilde{\mathbf{t}}_0^{[0]} = 0$$

$$2: i = 1$$

3:
$$P = \{-2^{12} + 1 \le x_i \le 2^{12}\}_{i=1,\dots,256}$$

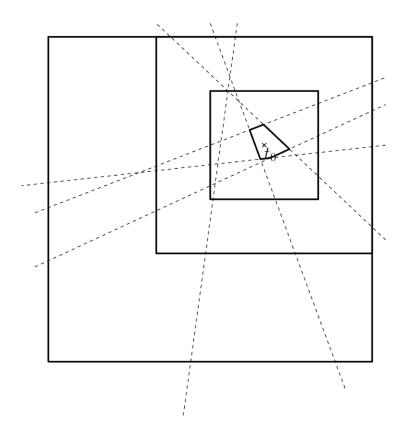
4: while
$$i \leq m$$
 do

5:
$$P = \texttt{generate_useful_ineq}(\delta_i, \tilde{\mathbf{t}}_0^{[0]}, C_i)$$

6:
$$i = i + 1$$

$$7: \qquad ilde{\mathbf{t}}_0^{[0]} = ext{round(lp_guess(P))}$$

8: **return**
$$\tilde{\mathbf{t}}_0^{[0]}$$



We use the strategy « Collect, guess, filter, repeat. »

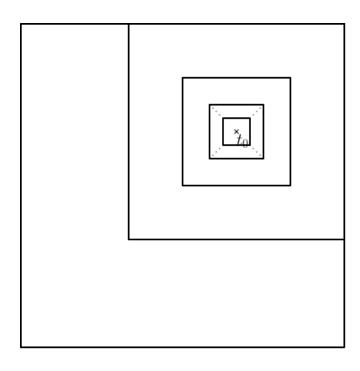
${f Algorithm~6}$ Recovering ${f t}_0^{[0]}$ heuristically

Ensure: A candidate for $\mathbf{t}_0^{[0]}$

Require: An inequation step sequence $(\delta_i)_{i \in \{1,...,m\}}$, a radius sequence $C_m < C_{m-1} < \cdots < C_1 = 2^{12}$.

1: $\tilde{\mathbf{t}}_0^{[0]} = 0$

- 2: i = 1
- 3: $P = \{-2^{12} + 1 \le x_i \le 2^{12}\}_{i=1,\dots,256}$
- 4: while $i \leq m$ do
- 5: $P = exttt{generate_useful_ineq}(\delta_i, ilde{\mathbf{t}}_0^{[0]}, C_i)$
- 6: i = i + 1
- 7: $\tilde{\mathbf{t}}_0^{[0]} = \text{round(lp_guess(P))}$
- 8: **return** $\tilde{\mathbf{t}}_0^{[0]}$



We use the strategy « Collect, guess, filter, repeat. »

Algorithm 6 Recovering $\mathbf{t}_0^{[0]}$ heuristically

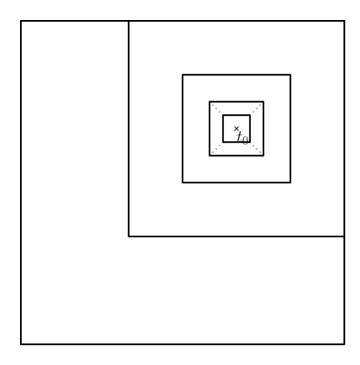
Ensure: A candidate for $\mathbf{t}_0^{[0]}$

Require: An inequation step sequence $(\delta_i)_{i \in \{1,...,m\}}$, a radius sequence $C_m < C_{m-1} < \cdots < C_1 = 2^{12}$.

1: $\tilde{\mathbf{t}}_0^{[0]} = 0$

- 2: i = 1
- 3: $P = \{-2^{12} + 1 \le x_i \le 2^{12}\}_{i=1,\dots,256}$
- 4: while $i \leq m$ do
- $F = exttt{generate_useful_ineq}(\delta_i, ilde{\mathbf{t}}_0^{[0]}, C_i)$
- 6: i = i + 1
- 7: $\tilde{\mathbf{t}}_0^{[0]} = \text{round(lp_guess(P))}$
- 8: return $\tilde{\mathbf{t}}_0^{[0]}$

How to choose the radius sequence? And the number of inequalities?



Practical results

www.thalesgroup.com

How to recover t_0 ? Results

We chose $C_i = (4096, 2048, 1024, ..., 16, 8)$ and a constant number of inequalities equal to 50 000. To understand what append, one can suppose t_0 known:

Round	C_i	Signatures	Inequalities selected	$ \mathbf{t}_0 - ilde{\mathbf{t}}_0 _{\infty}$	Time
1	4096	117	48456 + 1915	1031	4m16s
2	2048	234	46612 + 3731	495	4m2s
3	1024	468	43112 + 7433	262	3 m48 s
4	512	937	37172 + 13540	135	3 m 44 s
5	256	1879	32057 + 18844	62	3 m 53 s
6	128	3 743	28787 + 21863	37	3 m 53 s
7	64	7485	27125 + 23434	19	$4 \mathrm{m} 7 \mathrm{s}$
8	32	14989	26250 + 23434	10	4 m 48 s
9	16	30023	26055 + 24700	4	5m27s
10	8	179515	76487 + 74192	0	47m5s
Total	-	179515	392113 + 213853	-	1h25m3s

Table 8. Detailed results of the attack on the first KAT key.

How to recover t_0 ? Results

We chose $C_i = (4096, 2048, 1024, ..., 16, 8)$ and a constant number of inequalities equal to 50 000. To understand what append, one can suppose t_0 known:

Round	C_i	Signatures	Inequalities selected	$ \mathbf{t}_0 - ilde{\mathbf{t}}_0 _{\infty}$	Time
1	4096	117	48456 + 1915	1031	4m16s
2	2048	234	46612 + 3731	495	4m2s
3	1024	468	43112 + 7433	262	3m48s
4	512	937	37172 + 13540	135	3m44s
5	256	1879	32057 + 18844	62	3m53s
6	128	3 743	28787 + 21863	37	3m53s
7	64	7485	27125 + 23434	19	$4 \mathrm{m} 7 \mathrm{s}$
8	32	14989	26250 + 23434	10	4m48s
9	16	30 023	26055 + 24700	4	5m27s
10	8	179515	76487 + 74192	0	47m5s
Total	-	179515	392113 + 213853	-	1 h25 m3s

Table 8. Detailed results of the attack on the first KAT key.

Without filtration: Each signature gives arround 500 inequalities on each polynmial of t_0 . It would be necessary to solve a problem (LP) of about 100 000 000 inequalities in 256 variables. It is a complicated problem even for modern solvers.

How to recover t_0 ? Results

Conclusion:

Signatures	inequalities selected	Recovery probability	Average time	Median time
179354	392696 + 213943	1	1h26m53s	1 h24 m8s

Table 7. Average results of the attack on \mathbf{t}_0

- It is possible to recover t_0 from Dilithium signatures, with less than 500 000 signatures for all security levels.
- Using t_0 in attacks is a <u>sound</u> assumption.
- Papers that use t_0 for attacks are realistic, and implementations must be protected against them.

The code is publicly available: GitHub - anders1901/Attack_t0

Thank you!

www.thalesgroup.com

References:

||||||||||

[NIST] NIST. Fips 204 (draft): Module-lattice-based digital signature standard. Federal Inf. Process. Stds. (NIST FIPS), National Institute of Standards and Technology, Gaithersburg, MD, 2023. https://nvlpubs.nist.gov/ nistpubs/FIPS/NIST.FIPS.204.ipd.pdf.

[RRB+19]: Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay, and Debdeep Mukhopadhyay. Number "not used" once - practical fault attack on pqm4 implementations of NIST candidates. In Ilia Polian and Marc Stöttinger, editors, COSADE 2019, volume 11421 of LNCS, pages 232–250. Springer, Heidelberg, April 2019.

[EAB+23]: Mohamed ElGhamrawy, Melissa Azouaoui, Olivier Bronchain, Joost Renes, Tobias Schneider, Markus Schönauer, Okan Seker, and Christine van Vredendaal. From MLWE to RLWE: A differential fault attack on randomized & deterministic dilithium. IACR TCHES, 2023(4):262–286, 2023.

[RJH+18]: sanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay, and Shivam Bhasin. Side-channel assisted existential forgery attack on dilithium - a nist pac candidate. Cryptology ePrint Archive, Paper 2018/821, 2018.

[WNDG23]: Ruize Wang, Kalle Ngo, Joel Gärtner, and Elena Dubrova. Single-trace side-channel attacks on CRYSTALS-dilithium: Myth or reality? Cryptology ePrint Archive, Paper 2023/1931, 2023.

