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R𝖱𝟣𝖢𝖲,𝔽 = {(x, w) ∈ 𝔽 n ∣ q1(x, w) = … = qm(x, w) = 0}

 is a public instance,  is a witnessx w

Often,  consists of algebraic equations over a finite field .R 𝔽
Example: the R1CS relation over :𝔽

(x; w) VP (x)

Where  are public quadratic polynomials.qi
Other examples: AIR, Plonkish constraints, CCS, M3 (Irreducible)
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Thesis:  There’s room for improvements here.
              A lot to be gained (10x speedups? Ease of implementations?)
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    Proving 33 SHA-256 compressions

    
    
    
  *  33 compressions https://hackmd.io/@clientsideproving/zkIDBenchmarks
 **  2^13 compressions, ran on my MacBook Air

Plonky3* Stwo* Binius (2^13)**
Prover (s) 12 21 0.33
Size (MB) 1.7 39 0.38
Verifier (s) 0.18 N/A 0.14

Binius is not necessarily better 
than the others:
• SHA-256 is native to it  

(not the AND and add mod 2^32)

https://hackmd.io/@clientsideproving/zkIDBenchmarks
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Based on Ligero/Brakedown with commitment on , but runs modulo a prime.
Incorporates a costless bit-size check to make sure elements have less than  bits.
Commitment is over . We use EA or RAA codes to keep the codeword entries small.

ℚ
B

ℚ
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First off. For technical reasons we set a bound  on the bit-size of witnesses.B
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This PIOP is sound against P* that send oracles to  with entries in . MLE(w), MLE(u) ℤB
(Assuming the PIOP in the last step is sound).
Why? Suppose  but that  modulo  for many 
primes . Then one can see that some entry in  is divisible by many primes.

Az ∘ Bz ≠ Cz + u ∘ μ Az ∘ Bz = Cz + u ∘ μ q
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We would like to use the mod-PIOP idea from Campanelli and Hall-Andersen. 
But reduction modulo a prime is not well-defined:  can contain rational entries.w, u
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Examples: 
• zkVM instruction sequences
• zkID: SHA-256 + RSA/ECDSA signature
• AES encryption, TLS
What to do then?
• Zinc handles multiple moduli, Z and Q at once
• But how about bitwise ops and modular 

arithmetic?
• If types of computation is clearly separated (e.g. hash+sign):

• Use two proof systems: binary field (SHA256), prime field 
(ECDSA) (e.g. Frigo and Shelat, Anonymous credentials for ECDSA, 2025)

• Something else.

Computation Native proof 
system

Rationals, fixed point, 
floating point

Zinc

Mult mod 2^n Zinc
Mult mod pq Zinc

Mult mod non-native q Zinc
XOR, NOT, etc. Binius

Lattices Dedicated SNARK 

Classic hash (SHA) Binius  
(partially)

Binius, Zinc?
Dedicated SNARK, 

Zinc? 
Binius, Zinc?  

(Both partially)
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Let  be public vectors with entries in .μ, η ℤ[X ]
Then  over  can encode “everything from 
everywhere all at once”

Az ∘ Bz = Cz + u ∘ ⃗μ +v ∘ ⃗η ℤ[X ]

I.e. each row can encode constraints over any of:
, , Cyclotomic rings, Galois rings, any finite field, .GF(2n) ℤ/2nℤ ℤ/nℤ

So: a SNARK for constraints over  or  has universal arithmetization 
properties

ℤ[X ] ℚ[X ]
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Commit to  over  (WIP)MLE(w), MLE(u), MLE(v) ℤ[X ]

Execute a SNARK over  for the constraint 
 modulo 

𝔽q
Az ∘ Bz = Cz + u ∘ ⃗μ +v ⋅ ⃗η (X − a, q)

When opening , 
reduce mod .

MLE(w), MLE(u)
(X − a, q)

Reduction mod  is the same as replacing  by  and reducing mod .
This gets you to 

(X − a, q) X a q
𝔽q
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= \left\{({\color{blue} x};{\color{red}w}) \left| \ \begin{aligned} & {\color{blue}x}\in \mathbb{F}^n, \ {\color{red}w}\in 
\mathbb{F}^m\\ &A{\color{red}z} \circ B{\color{red}z} = C{\color{red}z},\quad {\color{red}z}=({\color{red}w},
{\color{blue}x},1)\end{aligned}\right.\right\}



28

Zinc+



28

Zinc+
• Zinc+ will be a SNARK for constraints over  or .ℤ[X ] ℚ[X ]



28

Zinc+
• Zinc+ will be a SNARK for constraints over  or .ℤ[X ] ℚ[X ]
• Again we can run our schemes by making a random projection



28

Zinc+
• Zinc+ will be a SNARK for constraints over  or .ℤ[X ] ℚ[X ]
• Again we can run our schemes by making a random projection

ℤ[X ] → 𝔽



28

Zinc+
• Zinc+ will be a SNARK for constraints over  or .ℤ[X ] ℚ[X ]
• Again we can run our schemes by making a random projection

ℤ[X ] → 𝔽
   where  is a prime field.𝔽



28

Zinc+
• Zinc+ will be a SNARK for constraints over  or .ℤ[X ] ℚ[X ]
• Again we can run our schemes by making a random projection

ℤ[X ] → 𝔽
   where  is a prime field.𝔽
• Technically, we mod  out by an ideal  generated by a random prime 

 and  where  is a random integer. 
ℤ[X ] (q, X − a)

q X − a a



28

Zinc+
• Zinc+ will be a SNARK for constraints over  or .ℤ[X ] ℚ[X ]
• Again we can run our schemes by making a random projection

ℤ[X ] → 𝔽
   where  is a prime field.𝔽
• Technically, we mod  out by an ideal  generated by a random prime 

 and  where  is a random integer. 
ℤ[X ] (q, X − a)

q X − a a
• In other words, replace  by  and reduce mod .X a q



28

Zinc+
• Zinc+ will be a SNARK for constraints over  or .ℤ[X ] ℚ[X ]
• Again we can run our schemes by making a random projection

ℤ[X ] → 𝔽
   where  is a prime field.𝔽
• Technically, we mod  out by an ideal  generated by a random prime 

 and  where  is a random integer. 
ℤ[X ] (q, X − a)

q X − a a
• In other words, replace  by  and reduce mod .X a q
• The parts of the scheme that occur in  need to be handled with care.ℤ[X ]



28

Zinc+
• Zinc+ will be a SNARK for constraints over  or .ℤ[X ] ℚ[X ]
• Again we can run our schemes by making a random projection

ℤ[X ] → 𝔽
   where  is a prime field.𝔽
• Technically, we mod  out by an ideal  generated by a random prime 

 and  where  is a random integer. 
ℤ[X ] (q, X − a)

q X − a a
• In other words, replace  by  and reduce mod .X a q
• The parts of the scheme that occur in  need to be handled with care.ℤ[X ]
• But it seems that we don’t have blowouts on the witness size (i.e. costs stay always 

close to the witness bit-size, with a small constant).



28

Zinc+
• Zinc+ will be a SNARK for constraints over  or .ℤ[X ] ℚ[X ]
• Again we can run our schemes by making a random projection

ℤ[X ] → 𝔽
   where  is a prime field.𝔽
• Technically, we mod  out by an ideal  generated by a random prime 

 and  where  is a random integer. 
ℤ[X ] (q, X − a)

q X − a a
• In other words, replace  by  and reduce mod .X a q
• The parts of the scheme that occur in  need to be handled with care.ℤ[X ]
• But it seems that we don’t have blowouts on the witness size (i.e. costs stay always 

close to the witness bit-size, with a small constant).
• We hope to have a PoC implementation of Zinc+ in about 3 months.
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WIP: More improvements
Avoid V sampling a prime. Sample just an integer
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R𝖱𝟣𝖢𝖲ℓ,ℤ

R𝖱𝟣𝖢𝖲ℓ,𝔽q

Lift Mod random prime q

Prove with

PIOP over 𝔽q PCS over ℚ

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ∘ ⃗n  over ℤ, z = (w, x,1)}

Similar to Ligero/Brakedown
But some parts run on 
Others on 

ℚ
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Table 1
Polygon Zisk

Using lookups  to avoid  arithmetization

Check Binius mult  use case for the above 

Tessel

Invite people  to colla b in research and engineering
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Let’s limit to  for simplicity.R𝖱𝟣𝖢𝖲ℓ,ℤ
First off. For technical reasons we set a bound  on the bit-size of witnesses.B

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = (x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ  over ℤ,
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Based on the DARK scheme. Uses hidden order groups. Is very slow in practice.
Let’s modify our naïve attempt so as to address these issues.
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x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ  over ℚ, z = (w, x,1)}
We would like to use the mod-PIOP idea from Campanelli and Hall-Andersen. 
But reduction modulo a prime is not well-defined:  can contain rational entries.w, u
We use the concept of local subrings of .ℚ
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If this happens for many primes, then some entry in  has huge size. z, u
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Oracles to MLE(w), MLE(u)
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If  have entries in ,  
execute a PIOP for  modulo .
Otherwise, abort.

z, u ℤ(q)
Az ∘ Bz = Cz + u ∘ μ q(x; w, u)

VP
(x)

Oracles to MLE(w), MLE(u)

Soundness: Similarly as in mod-PIOPs over the integers (with some technical subtleties). 
If P* has large success probability, then some witness entry has large bit-size. 



49

Where are we?



49

Where are we?
PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B



49

Where are we?
Soundness holds against  that 
use polys over 

P*
ℚBPIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B



49

Where are we?
Soundness holds against  that 
use polys over 

P*
ℚBPIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB



49

Where are we?
Soundness holds against  that 
use polys over 

P*
ℚBPIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB



49

Where are we?
Soundness holds against  that 
use polys over 

P*
ℚB

Compile into succinct 
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB



49

Where are we?

Next, we design Zip, a PCS for polynomials over .ℚB

Soundness holds against  that 
use polys over 

P*
ℚB

Compile into succinct 
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB



49

Where are we?

Next, we design Zip, a PCS for polynomials over .ℚB
Zip is based on the Brakedown PCS.

Soundness holds against  that 
use polys over 

P*
ℚB

Compile into succinct 
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB



49

Where are we?

Next, we design Zip, a PCS for polynomials over .ℚB
Zip is based on the Brakedown PCS.
Uses error correcting codes and hash functions.

Soundness holds against  that 
use polys over 

P*
ℚB

Compile into succinct 
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB



49

Where are we?

Next, we design Zip, a PCS for polynomials over .ℚB
Zip is based on the Brakedown PCS.
Uses error correcting codes and hash functions.
This is the most involved part of our work.

Soundness holds against  that 
use polys over 

P*
ℚB

Compile into succinct 
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB



49

Where are we?

Next, we design Zip, a PCS for polynomials over .ℚB
Zip is based on the Brakedown PCS.
Uses error correcting codes and hash functions.
This is the most involved part of our work.
Zip features both

Soundness holds against  that 
use polys over 

P*
ℚB

Compile into succinct 
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB



49

Where are we?

Next, we design Zip, a PCS for polynomials over .ℚB
Zip is based on the Brakedown PCS.
Uses error correcting codes and hash functions.
This is the most involved part of our work.
Zip features both
• IOP of proximity to a linear code

Soundness holds against  that 
use polys over 

P*
ℚB

Compile into succinct 
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB



49

Where are we?

Next, we design Zip, a PCS for polynomials over .ℚB
Zip is based on the Brakedown PCS.
Uses error correcting codes and hash functions.
This is the most involved part of our work.
Zip features both
• IOP of proximity to a linear code
• IOP of proximity to the integers

Soundness holds against  that 
use polys over 

P*
ℚB

Compile into succinct 
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

New!
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Zip guarantees P committed to multilinear .f ∈ ℚB′￼[X1, …, Xμ]
But we expect the honest P to commit to multilinear ,f ∈ ℤB[X1, …, Xμ]
Here  is certain bound determined by , and other parameters.B′￼ B, μ
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Zip is essentially Brakedown over , executed modulo a random prime at times.ℚ
The commitment happens over .ℚ
Hence, we use a linear code over  (with integral generator matrix ).ℚ MGen
We use Expand-Accumulate codes to make sure  has “small” entries.MGen
We need to add extra (but costless) Verifier checks to make sure  committed to a 
polynomial with bounded coefficients.

P

Key technical lemma: A random linear combination of 
rational numbers with large bit-size has large bit-size, 
e.w.n.p.


