
Zinc
Succinct Arguments with Small Arithmetization

Overheads from IOPs of Proximity to the Integers

Albert Garreta, Hendrik Waldner, Katerina Hristova, Luca Dall’ava

2

Arguments of knowledge

2

Arguments of knowledge
Fix a relation . Consists of pairs .R (x; w)

2

Arguments of knowledge
Fix a relation . Consists of pairs .R (x; w) is a public instance, is a witnessx w

2

Arguments of knowledge

In a SNARK for , given , P convinces V that they know such that .R x w (x; w) ∈ R
Fix a relation . Consists of pairs .R (x; w) is a public instance, is a witnessx w

2

Arguments of knowledge

In a SNARK for , given , P convinces V that they know such that .R x w (x; w) ∈ R
Fix a relation . Consists of pairs .R (x; w) is a public instance, is a witnessx w

(x; w) VP (x)

2

Arguments of knowledge

In a SNARK for , given , P convinces V that they know such that .R x w (x; w) ∈ R
Fix a relation . Consists of pairs .R (x; w) is a public instance, is a witnessx w

Often, consists of algebraic equations over a finite field .R 𝔽

(x; w) VP (x)

2

Arguments of knowledge

In a SNARK for , given , P convinces V that they know such that .R x w (x; w) ∈ R
Fix a relation . Consists of pairs .R (x; w) is a public instance, is a witnessx w

Often, consists of algebraic equations over a finite field .R 𝔽
Example: the R1CS relation over :𝔽

(x; w) VP (x)

2

Arguments of knowledge

In a SNARK for , given , P convinces V that they know such that .R x w (x; w) ∈ R
Fix a relation . Consists of pairs .R (x; w)

R𝖱𝟣𝖢𝖲,𝔽 = {(x, w) ∈ 𝔽 n ∣ q1(x, w) = … = qm(x, w) = 0}

 is a public instance, is a witnessx w

Often, consists of algebraic equations over a finite field .R 𝔽
Example: the R1CS relation over :𝔽

(x; w) VP (x)

2

Arguments of knowledge

In a SNARK for , given , P convinces V that they know such that .R x w (x; w) ∈ R
Fix a relation . Consists of pairs .R (x; w)

R𝖱𝟣𝖢𝖲,𝔽 = {(x, w) ∈ 𝔽 n ∣ q1(x, w) = … = qm(x, w) = 0}

 is a public instance, is a witnessx w

Often, consists of algebraic equations over a finite field .R 𝔽
Example: the R1CS relation over :𝔽

(x; w) VP (x)

Where are public quadratic polynomials.qi

2

Arguments of knowledge

In a SNARK for , given , P convinces V that they know such that .R x w (x; w) ∈ R
Fix a relation . Consists of pairs .R (x; w)

R𝖱𝟣𝖢𝖲,𝔽 = {(x, w) ∈ 𝔽 n ∣ q1(x, w) = … = qm(x, w) = 0}

 is a public instance, is a witnessx w

Often, consists of algebraic equations over a finite field .R 𝔽
Example: the R1CS relation over :𝔽

(x; w) VP (x)

Where are public quadratic polynomials.qi
Other examples: AIR, Plonkish constraints, CCS, M3 (Irreducible)

3

Arithmetization in arguments R𝖱𝟣𝖢𝖲,𝔽 = {(x, w) ∈ 𝔽 n ∣ qi(x, w) = 0}

*

3

Arithmetization in arguments
What if we want to prove a claim for a different ?(x, w) ∈ R0 R0

R𝖱𝟣𝖢𝖲,𝔽 = {(x, w) ∈ 𝔽 n ∣ qi(x, w) = 0}

*

3

Arithmetization in arguments
What if we want to prove a claim for a different ?(x, w) ∈ R0 R0

R𝖱𝟣𝖢𝖲,𝔽 = {(x, w) ∈ 𝔽 n ∣ qi(x, w) = 0}

Example: CPU operations (add/mult mod 2^64, XOR of bitstrings, etc)

*

3

Arithmetization in arguments
What if we want to prove a claim for a different ?(x, w) ∈ R0 R0

R𝖱𝟣𝖢𝖲,𝔽 = {(x, w) ∈ 𝔽 n ∣ qi(x, w) = 0}

(x, w) ∈ R0

Example: CPU operations (add/mult mod 2^64, XOR of bitstrings, etc)

*

3

Arithmetization in arguments
What if we want to prove a claim for a different ?(x, w) ∈ R0 R0

R𝖱𝟣𝖢𝖲,𝔽 = {(x, w) ∈ 𝔽 n ∣ qi(x, w) = 0}

(x, w) ∈ R0 Rewrite

Example: CPU operations (add/mult mod 2^64, XOR of bitstrings, etc)

*

3

Arithmetization in arguments
What if we want to prove a claim for a different ?(x, w) ∈ R0 R0

R𝖱𝟣𝖢𝖲,𝔽 = {(x, w) ∈ 𝔽 n ∣ qi(x, w) = 0}

(x, w) ∈ R0 (x′￼, w′￼) ∈ R𝖱𝟣𝖢𝖲,𝔽Rewrite

Example: CPU operations (add/mult mod 2^64, XOR of bitstrings, etc)

*

3

Arithmetization in arguments
What if we want to prove a claim for a different ?(x, w) ∈ R0 R0

R𝖱𝟣𝖢𝖲,𝔽 = {(x, w) ∈ 𝔽 n ∣ qi(x, w) = 0}

(x, w) ∈ R0

We call this rewriting process arithmetization.

(x′￼, w′￼) ∈ R𝖱𝟣𝖢𝖲,𝔽Rewrite

Example: CPU operations (add/mult mod 2^64, XOR of bitstrings, etc)

*

3

Arithmetization in arguments
What if we want to prove a claim for a different ?(x, w) ∈ R0 R0

R𝖱𝟣𝖢𝖲,𝔽 = {(x, w) ∈ 𝔽 n ∣ qi(x, w) = 0}

(x, w) ∈ R0

We call this rewriting process arithmetization.
Arithmetization can create big blowouts.

(x′￼, w′￼) ∈ R𝖱𝟣𝖢𝖲,𝔽Rewrite

Example: CPU operations (add/mult mod 2^64, XOR of bitstrings, etc)

*

3

Arithmetization in arguments
What if we want to prove a claim for a different ?(x, w) ∈ R0 R0

R𝖱𝟣𝖢𝖲,𝔽 = {(x, w) ∈ 𝔽 n ∣ qi(x, w) = 0}

(x, w) ∈ R0

We call this rewriting process arithmetization.
Arithmetization can create big blowouts.
Example: ECDSA verification proved over a non-native field has R1CS constraints,  
 Vs over native field. (Paper reports >400x performance improvements)

221

216

(x′￼, w′￼) ∈ R𝖱𝟣𝖢𝖲,𝔽Rewrite

Example: CPU operations (add/mult mod 2^64, XOR of bitstrings, etc)

*

* Block et al. Field Agnostic SNARKs from EA codes, Crypto 2024

3

Arithmetization in arguments
What if we want to prove a claim for a different ?(x, w) ∈ R0 R0

R𝖱𝟣𝖢𝖲,𝔽 = {(x, w) ∈ 𝔽 n ∣ qi(x, w) = 0}

(x, w) ∈ R0

We call this rewriting process arithmetization.
Arithmetization can create big blowouts.
Example: ECDSA verification proved over a non-native field has R1CS constraints,  
 Vs over native field. (Paper reports >400x performance improvements)

221

216

Thesis: There’s room for improvements here.

(x′￼, w′￼) ∈ R𝖱𝟣𝖢𝖲,𝔽Rewrite

Example: CPU operations (add/mult mod 2^64, XOR of bitstrings, etc)

*

* Block et al. Field Agnostic SNARKs from EA codes, Crypto 2024

3

Arithmetization in arguments
What if we want to prove a claim for a different ?(x, w) ∈ R0 R0

R𝖱𝟣𝖢𝖲,𝔽 = {(x, w) ∈ 𝔽 n ∣ qi(x, w) = 0}

(x, w) ∈ R0

We call this rewriting process arithmetization.
Arithmetization can create big blowouts.
Example: ECDSA verification proved over a non-native field has R1CS constraints,  
 Vs over native field. (Paper reports >400x performance improvements)

221

216

Thesis: There’s room for improvements here.
 A lot to be gained (10x speedups? Ease of implementations?)

(x′￼, w′￼) ∈ R𝖱𝟣𝖢𝖲,𝔽Rewrite

Example: CPU operations (add/mult mod 2^64, XOR of bitstrings, etc)

*

* Block et al. Field Agnostic SNARKs from EA codes, Crypto 2024

4

Examples

4

Examples
Computation Relevant for

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

Mult mod non-native q Recursive proving, IVC, PCD, etc.

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

Mult mod non-native q Recursive proving, IVC, PCD, etc.
XOR, NOT, etc. Classic hashes, CPU operations, AES encryption

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

Mult mod non-native q Recursive proving, IVC, PCD, etc.
XOR, NOT, etc. Classic hashes, CPU operations, AES encryption

Lattice operations Lattice cryptography, FHE

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

Mult mod non-native q Recursive proving, IVC, PCD, etc.
XOR, NOT, etc. Classic hashes, CPU operations, AES encryption

Lattice operations Lattice cryptography, FHE
Combinations of above Classic hashes, legacy cryptography, recursion,

zkVM, Ethereum blocks

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

Mult mod non-native q Recursive proving, IVC, PCD, etc.
XOR, NOT, etc. Classic hashes, CPU operations, AES encryption

Lattice operations Lattice cryptography, FHE
Combinations of above Classic hashes, legacy cryptography, recursion,

zkVM, Ethereum blocks

 Arithmetizing over 32 bit field x ⋅ y = z mod 232 𝔽

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

Mult mod non-native q Recursive proving, IVC, PCD, etc.
XOR, NOT, etc. Classic hashes, CPU operations, AES encryption

Lattice operations Lattice cryptography, FHE
Combinations of above Classic hashes, legacy cryptography, recursion,

zkVM, Ethereum blocks

 Arithmetizing over 32 bit field x ⋅ y = z mod 232 𝔽

 Binius’ benchmarks 
 (over GF(2^32))

2^20 mults 2^20 mult mod 2^32
80ms 2000ms

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

Mult mod non-native q Recursive proving, IVC, PCD, etc.
XOR, NOT, etc. Classic hashes, CPU operations, AES encryption

Lattice operations Lattice cryptography, FHE
Combinations of above Classic hashes, legacy cryptography, recursion,

zkVM, Ethereum blocks

 Arithmetizing over 32 bit field x ⋅ y = z mod 232 𝔽

 Binius’ benchmarks 
 (over GF(2^32))

 Decompose into 4 limbs of 8 bits.x, y
x = ∑

i

xi28⋅i, y = ∑
i

yi28⋅i, xi, yi ∈ [0,28 − 1]

2^20 mults 2^20 mult mod 2^32
80ms 2000ms

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

Mult mod non-native q Recursive proving, IVC, PCD, etc.
XOR, NOT, etc. Classic hashes, CPU operations, AES encryption

Lattice operations Lattice cryptography, FHE
Combinations of above Classic hashes, legacy cryptography, recursion,

zkVM, Ethereum blocks

 Arithmetizing over 32 bit field x ⋅ y = z mod 232 𝔽

 Binius’ benchmarks 
 (over GF(2^32))

 Decompose into 4 limbs of 8 bits.x, y
x = ∑

i

xi28⋅i, y = ∑
i

yi28⋅i, xi, yi ∈ [0,28 − 1]

 Then
 x ⋅ y = ∑

ij

xi ⋅ yj ⋅ 28⋅(i+j)

2^20 mults 2^20 mult mod 2^32
80ms 2000ms

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

Mult mod non-native q Recursive proving, IVC, PCD, etc.
XOR, NOT, etc. Classic hashes, CPU operations, AES encryption

Lattice operations Lattice cryptography, FHE
Combinations of above Classic hashes, legacy cryptography, recursion,

zkVM, Ethereum blocks

 Arithmetizing over 32 bit field x ⋅ y = z mod 232 𝔽

 Binius’ benchmarks 
 (over GF(2^32))

 Decompose into 4 limbs of 8 bits.x, y
x = ∑

i

xi28⋅i, y = ∑
i

yi28⋅i, xi, yi ∈ [0,28 − 1]

 Then
 x ⋅ y = ∑

ij

xi ⋅ yj ⋅ 28⋅(i+j)

 Use lookups for (or degree-2 constraints), 16 of them (or less
with tricks)

xi ⋅ yj

2^20 mults 2^20 mult mod 2^32
80ms 2000ms

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

Mult mod non-native q Recursive proving, IVC, PCD, etc.
XOR, NOT, etc. Classic hashes, CPU operations, AES encryption

Lattice operations Lattice cryptography, FHE
Combinations of above Classic hashes, legacy cryptography, recursion,

zkVM, Ethereum blocks

 Arithmetizing over 32 bit field x ⋅ y = z mod 232 𝔽

 Binius’ benchmarks 
 (over GF(2^32))

 Decompose into 4 limbs of 8 bits.x, y
x = ∑

i

xi28⋅i, y = ∑
i

yi28⋅i, xi, yi ∈ [0,28 − 1]

 Then
 x ⋅ y = ∑

ij

xi ⋅ yj ⋅ 28⋅(i+j)

 Use lookups for (or degree-2 constraints), 16 of them (or less
with tricks)

xi ⋅ yj

 Combine the into the result (requires addition and scalar mult
mod)

xi ⋅ yj z
232

2^20 mults 2^20 mult mod 2^32
80ms 2000ms

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

Mult mod non-native q Recursive proving, IVC, PCD, etc.
XOR, NOT, etc. Classic hashes, CPU operations, AES encryption

Lattice operations Lattice cryptography, FHE
Combinations of above Classic hashes, legacy cryptography, recursion,

zkVM, Ethereum blocks

 Arithmetizing over 32 bit field x ⋅ y = z mod 232 𝔽

 Binius’ benchmarks 
 (over GF(2^32))

 Decompose into 4 limbs of 8 bits.x, y
x = ∑

i

xi28⋅i, y = ∑
i

yi28⋅i, xi, yi ∈ [0,28 − 1]

 Then
 x ⋅ y = ∑

ij

xi ⋅ yj ⋅ 28⋅(i+j)

 Use lookups for (or degree-2 constraints), 16 of them (or less
with tricks)

xi ⋅ yj

 Combine the into the result (requires addition and scalar mult
mod)

xi ⋅ yj z
232

2^20 mults 2^20 mult mod 2^32
80ms 2000ms

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

Mult mod non-native q Recursive proving, IVC, PCD, etc.
XOR, NOT, etc. Classic hashes, CPU operations, AES encryption

Lattice operations Lattice cryptography, FHE
Combinations of above Classic hashes, legacy cryptography, recursion,

zkVM, Ethereum blocks

 Arithmetizing over 32 bit field x ⋅ y = z mod 232 𝔽

 Binius’ benchmarks 
 (over GF(2^32))

 Decompose into 4 limbs of 8 bits.x, y
x = ∑

i

xi28⋅i, y = ∑
i

yi28⋅i, xi, yi ∈ [0,28 − 1]

 Then
 x ⋅ y = ∑

ij

xi ⋅ yj ⋅ 28⋅(i+j)

 Use lookups for (or degree-2 constraints), 16 of them (or less
with tricks)

xi ⋅ yj

 Combine the into the result (requires addition and scalar mult
mod)

xi ⋅ yj z
232

2^20 mults 2^20 mult mod 2^32
80ms 2000ms

Complex arithmetizations have indirect costs as:

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

Mult mod non-native q Recursive proving, IVC, PCD, etc.
XOR, NOT, etc. Classic hashes, CPU operations, AES encryption

Lattice operations Lattice cryptography, FHE
Combinations of above Classic hashes, legacy cryptography, recursion,

zkVM, Ethereum blocks

 Arithmetizing over 32 bit field x ⋅ y = z mod 232 𝔽

 Binius’ benchmarks 
 (over GF(2^32))

 Decompose into 4 limbs of 8 bits.x, y
x = ∑

i

xi28⋅i, y = ∑
i

yi28⋅i, xi, yi ∈ [0,28 − 1]

 Then
 x ⋅ y = ∑

ij

xi ⋅ yj ⋅ 28⋅(i+j)

 Use lookups for (or degree-2 constraints), 16 of them (or less
with tricks)

xi ⋅ yj

 Combine the into the result (requires addition and scalar mult
mod)

xi ⋅ yj z
232

2^20 mults 2^20 mult mod 2^32
80ms 2000ms

Complex arithmetizations have indirect costs as:
• Engineering effort,

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

Mult mod non-native q Recursive proving, IVC, PCD, etc.
XOR, NOT, etc. Classic hashes, CPU operations, AES encryption

Lattice operations Lattice cryptography, FHE
Combinations of above Classic hashes, legacy cryptography, recursion,

zkVM, Ethereum blocks

 Arithmetizing over 32 bit field x ⋅ y = z mod 232 𝔽

 Binius’ benchmarks 
 (over GF(2^32))

 Decompose into 4 limbs of 8 bits.x, y
x = ∑

i

xi28⋅i, y = ∑
i

yi28⋅i, xi, yi ∈ [0,28 − 1]

 Then
 x ⋅ y = ∑

ij

xi ⋅ yj ⋅ 28⋅(i+j)

 Use lookups for (or degree-2 constraints), 16 of them (or less
with tricks)

xi ⋅ yj

 Combine the into the result (requires addition and scalar mult
mod)

xi ⋅ yj z
232

2^20 mults 2^20 mult mod 2^32
80ms 2000ms

Complex arithmetizations have indirect costs as:
• Engineering effort,
• Security risks,

4

Examples
Computation Relevant for

Rationals, fixed point,
floating point

ML, finance, FHE

Mult mod 2^n CPU operations, lattice cryptography,
Mult mod pq RSA cryptography

Mult mod non-native q Recursive proving, IVC, PCD, etc.
XOR, NOT, etc. Classic hashes, CPU operations, AES encryption

Lattice operations Lattice cryptography, FHE
Combinations of above Classic hashes, legacy cryptography, recursion,

zkVM, Ethereum blocks

 Arithmetizing over 32 bit field x ⋅ y = z mod 232 𝔽

 Binius’ benchmarks 
 (over GF(2^32))

 Decompose into 4 limbs of 8 bits.x, y
x = ∑

i

xi28⋅i, y = ∑
i

yi28⋅i, xi, yi ∈ [0,28 − 1]

 Then
 x ⋅ y = ∑

ij

xi ⋅ yj ⋅ 28⋅(i+j)

 Use lookups for (or degree-2 constraints), 16 of them (or less
with tricks)

xi ⋅ yj

 Combine the into the result (requires addition and scalar mult
mod)

xi ⋅ yj z
232

2^20 mults 2^20 mult mod 2^32
80ms 2000ms

Complex arithmetizations have indirect costs as:
• Engineering effort,
• Security risks,
• Audits, FV, etc.

5

Examples

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?
 Proving 33 SHA-256 compressions

 * 33 compressions https://hackmd.io/@clientsideproving/zkIDBenchmarks
 ** 2^13 compressions, ran on my MacBook Air

Plonky3* Stwo* Binius (2^13)**
Prover (s) 12 21 0.33
Size (MB) 1.7 39 0.38
Verifier (s) 0.18 N/A 0.14

Binius is not necessarily better 
than the others:
• SHA-256 is native to it  

(not the AND and add mod 2^32)

https://hackmd.io/@clientsideproving/zkIDBenchmarks

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

Universal arithmetization

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

Universal arithmetization
All computations in the table are native

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

Universal arithmetization
All computations in the table are native

Similar to SOTA proof systems

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

Universal arithmetization
All computations in the table are native

Similar to SOTA proof systems
Runs over finite fields

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

Universal arithmetization
All computations in the table are native

Similar to SOTA proof systems
Runs over finite fields
Error correcting codes

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

Universal arithmetization
All computations in the table are native

Similar to SOTA proof systems
Runs over finite fields
Error correcting codes
Hash functions

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

Universal arithmetization
All computations in the table are native

Similar to SOTA proof systems
Runs over finite fields
Error correcting codes
Hash functions
STARKs, Plonky, Ligero, etc.

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

As first step, we limit ourselves to
constraints over (arbitrary)ℤ/nℤ, ℤ, ℚ n

Universal arithmetization
All computations in the table are native

Similar to SOTA proof systems
Runs over finite fields
Error correcting codes
Hash functions
STARKs, Plonky, Ligero, etc.

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

As first step, we limit ourselves to
constraints over (arbitrary)ℤ/nℤ, ℤ, ℚ n
Later: extend these to (almost) all the above

Universal arithmetization
All computations in the table are native

Similar to SOTA proof systems
Runs over finite fields
Error correcting codes
Hash functions
STARKs, Plonky, Ligero, etc.

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

As first step, we limit ourselves to
constraints over (arbitrary)ℤ/nℤ, ℤ, ℚ n
Later: extend these to (almost) all the above

Universal arithmetization
All computations in the table are native

Similar to SOTA proof systems
Runs over finite fields
Error correcting codes
Hash functions
STARKs, Plonky, Ligero, etc.

Zinc

Zinc
Zinc
Zinc

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

As first step, we limit ourselves to
constraints over (arbitrary)ℤ/nℤ, ℤ, ℚ n
Later: extend these to (almost) all the above

Universal arithmetization
All computations in the table are native

Similar to SOTA proof systems
Runs over finite fields
Error correcting codes
Hash functions
STARKs, Plonky, Ligero, etc.

Zinc

Zinc
Zinc
Zinc

Some use-cases involve a mix of computation
types.

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

As first step, we limit ourselves to
constraints over (arbitrary)ℤ/nℤ, ℤ, ℚ n
Later: extend these to (almost) all the above

Universal arithmetization
All computations in the table are native

Similar to SOTA proof systems
Runs over finite fields
Error correcting codes
Hash functions
STARKs, Plonky, Ligero, etc.

Zinc

Zinc
Zinc
Zinc

Some use-cases involve a mix of computation
types.
Examples:

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

As first step, we limit ourselves to
constraints over (arbitrary)ℤ/nℤ, ℤ, ℚ n
Later: extend these to (almost) all the above

Universal arithmetization
All computations in the table are native

Similar to SOTA proof systems
Runs over finite fields
Error correcting codes
Hash functions
STARKs, Plonky, Ligero, etc.

Zinc

Zinc
Zinc
Zinc

Some use-cases involve a mix of computation
types.
Examples:
• zkVM instruction sequences

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

As first step, we limit ourselves to
constraints over (arbitrary)ℤ/nℤ, ℤ, ℚ n
Later: extend these to (almost) all the above

Universal arithmetization
All computations in the table are native

Similar to SOTA proof systems
Runs over finite fields
Error correcting codes
Hash functions
STARKs, Plonky, Ligero, etc.

Zinc

Zinc
Zinc
Zinc

Some use-cases involve a mix of computation
types.
Examples:
• zkVM instruction sequences
• zkID: SHA-256 + RSA/ECDSA signature

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

As first step, we limit ourselves to
constraints over (arbitrary)ℤ/nℤ, ℤ, ℚ n
Later: extend these to (almost) all the above

Universal arithmetization
All computations in the table are native

Similar to SOTA proof systems
Runs over finite fields
Error correcting codes
Hash functions
STARKs, Plonky, Ligero, etc.

Zinc

Zinc
Zinc
Zinc

Some use-cases involve a mix of computation
types.
Examples:
• zkVM instruction sequences
• zkID: SHA-256 + RSA/ECDSA signature
• AES encryption, TLS

5

Examples
Computation

Rationals, fixed point,
floating point
Mult mod 2^n
Mult mod pq

Mult mod non-native q
XOR, NOT, etc.

Lattices
Combinations of above

Hash-based native
proof system

?

?
?
?

Binius
Dedicated SNARK

?

Goals: Design a proof system with:

As first step, we limit ourselves to
constraints over (arbitrary)ℤ/nℤ, ℤ, ℚ n
Later: extend these to (almost) all the above

Universal arithmetization
All computations in the table are native

Similar to SOTA proof systems
Runs over finite fields
Error correcting codes
Hash functions
STARKs, Plonky, Ligero, etc.

Zinc

Zinc
Zinc
Zinc

Some use-cases involve a mix of computation
types.
Examples:
• zkVM instruction sequences
• zkID: SHA-256 + RSA/ECDSA signature
• AES encryption, TLS
WIP: extension of Zinc to these

Binius, Zinc?
Dedicated SNARK, Zinc?

Zinc?

6

Zinc (Crypto ’25)

6

Zinc (Crypto ’25)
Framework and family of succinct arguments with:

6

Zinc (Crypto ’25)
Framework and family of succinct arguments with:

Native for , , ℤ/nℤ ℤ ℚ

6

Zinc (Crypto ’25)
Framework and family of succinct arguments with:

Native for , , ℤ/nℤ ℤ ℚ
Can handle different constraint
types at once.

6

Zinc (Crypto ’25)
Framework and family of succinct arguments with:

Native for , , ℤ/nℤ ℤ ℚ Zinc =
Spartan + Ligero-like PCS,
mod random prime

Can handle different constraint
types at once.

* Can be essentially any PIOP

6

Zinc (Crypto ’25)
Framework and family of succinct arguments with:

Native for , , ℤ/nℤ ℤ ℚ Zinc =
Spartan + Ligero-like PCS,
mod random prime

Can handle different constraint
types at once.

(In practical terms.
Formally, it is
nuanced)

* Can be essentially any PIOP

6

Zinc (Crypto ’25)
Framework and family of succinct arguments with:

Native for , , ℤ/nℤ ℤ ℚ Zinc =
Spartan + Ligero-like PCS,
mod random prime

Can handle different constraint
types at once.

Performance

WIP Implementation

(In practical terms.
Formally, it is
nuanced)

* Can be essentially any PIOP

6

Zinc (Crypto ’25)
Framework and family of succinct arguments with:

Native for , , ℤ/nℤ ℤ ℚ Zinc =
Spartan + Ligero-like PCS,
mod random prime

Can handle different constraint
types at once.

Performance

WIP Implementation

Zinc PCS commit & open  
(16 vars, 64bit witness entries)

36ms (20 + 16ms), 
 <250KB**

(In practical terms.
Formally, it is
nuanced)

* Can be essentially any PIOP

6

Zinc (Crypto ’25)
Framework and family of succinct arguments with:

Native for , , ℤ/nℤ ℤ ℚ Zinc =
Spartan + Ligero-like PCS,
mod random prime

Can handle different constraint
types at once.

Performance

WIP Implementation

Zinc PCS commit & open  
(16 vars, 64bit witness entries)

36ms (20 + 16ms), 
 <250KB**

Spartan PIOP: mod random
prime/ mod fixed prime

∼ 1

(In practical terms.
Formally, it is
nuanced)

* Can be essentially any PIOP** Largish bc of Ligero, not bc Zinc overheads

6

Zinc (Crypto ’25)
Framework and family of succinct arguments with:

Native for , , ℤ/nℤ ℤ ℚ Zinc =
Spartan + Ligero-like PCS,
mod random prime

Can handle different constraint
types at once.

Performance

WIP Implementation

IOP of proximity to ℤ Zinc PCS commit & open  
(16 vars, 64bit witness entries)

36ms (20 + 16ms), 
 <250KB**

Spartan PIOP: mod random
prime/ mod fixed prime

∼ 1

(In practical terms.
Formally, it is
nuanced)

* Can be essentially any PIOP** Largish bc of Ligero, not bc Zinc overheads

6

Zinc (Crypto ’25)
Framework and family of succinct arguments with:

Native for , , ℤ/nℤ ℤ ℚ Zinc =
Spartan + Ligero-like PCS,
mod random prime

Can handle different constraint
types at once.

Performance

WIP Implementation

IOP of proximity to ℤ
New primitive
PCS guarantees integer/rational
coefficients of bounded bit-size

Zinc PCS commit & open  
(16 vars, 64bit witness entries)

36ms (20 + 16ms), 
 <250KB**

Spartan PIOP: mod random
prime/ mod fixed prime

∼ 1

(In practical terms.
Formally, it is
nuanced)

* Can be essentially any PIOP** Largish bc of Ligero, not bc Zinc overheads

6

Zinc (Crypto ’25)
Framework and family of succinct arguments with:

Native for , , ℤ/nℤ ℤ ℚ Zinc =
Spartan + Ligero-like PCS,
mod random prime

Can handle different constraint
types at once.

Performance

WIP Implementation

IOP of proximity to ℤ
New primitive
PCS guarantees integer/rational
coefficients of bounded bit-size

Zinc PCS commit & open  
(16 vars, 64bit witness entries)

36ms (20 + 16ms), 
 <250KB**

Spartan PIOP: mod random
prime/ mod fixed prime

∼ 1

(In practical terms.
Formally, it is
nuanced)

* Can be essentially any PIOP** Largish bc of Ligero, not bc Zinc overheads

7

A journey

7

A journey
Let’s first try to build a proof system for R1CS over .ℤn

7

A journey
Let’s first try to build a proof system for R1CS over .ℤn

R𝖱𝟣𝖢𝖲,ℤn
= {(x; w)

x ∈ ℤm
n , w ∈ ℤk

n

Az ∘ Bz = Cz over ℤn, z = (w, x,1)}

7

A journey
Let’s first try to build a proof system for R1CS over .ℤn

R𝖱𝟣𝖢𝖲,ℤn
= {(x; w)

x ∈ ℤm
n , w ∈ ℤk

n

Az ∘ Bz = Cz over ℤn, z = (w, x,1)}
Observe: over if and only if over , for some .x = y ℤn x = y + n ⋅ μ ℤ μ ∈ ℤ

7

A journey
Let’s first try to build a proof system for R1CS over .ℤn

R𝖱𝟣𝖢𝖲,ℤn
= {(x; w)

x ∈ ℤm
n , w ∈ ℤk

n

Az ∘ Bz = Cz over ℤn, z = (w, x,1)}

 over Az ∘ Bz = Cz ℤn

Observe: over if and only if over , for some .x = y ℤn x = y + n ⋅ μ ℤ μ ∈ ℤ

7

A journey
Let’s first try to build a proof system for R1CS over .ℤn

R𝖱𝟣𝖢𝖲,ℤn
= {(x; w)

x ∈ ℤm
n , w ∈ ℤk

n

Az ∘ Bz = Cz over ℤn, z = (w, x,1)}

 over Az ∘ Bz = Cz ℤn

Observe: over if and only if over , for some .x = y ℤn x = y + n ⋅ μ ℤ μ ∈ ℤ

7

A journey
Let’s first try to build a proof system for R1CS over .ℤn

R𝖱𝟣𝖢𝖲,ℤn
= {(x; w)

x ∈ ℤm
n , w ∈ ℤk

n

Az ∘ Bz = Cz over ℤn, z = (w, x,1)}

 over Az ∘ Bz = Cz ℤn
There exists such that u ∈ ℤm+k+1

Observe: over if and only if over , for some .x = y ℤn x = y + n ⋅ μ ℤ μ ∈ ℤ

7

A journey
Let’s first try to build a proof system for R1CS over .ℤn

R𝖱𝟣𝖢𝖲,ℤn
= {(x; w)

x ∈ ℤm
n , w ∈ ℤk

n

Az ∘ Bz = Cz over ℤn, z = (w, x,1)}

 over Az ∘ Bz = Cz ℤn
There exists such that u ∈ ℤm+k+1

 as integersAz ∘ Bz = Cz + u ⋅ n

Observe: over if and only if over , for some .x = y ℤn x = y + n ⋅ μ ℤ μ ∈ ℤ

7

A journey
Let’s first try to build a proof system for R1CS over .ℤn

R𝖱𝟣𝖢𝖲,ℤn
= {(x; w)

x ∈ ℤm
n , w ∈ ℤk

n

Az ∘ Bz = Cz over ℤn, z = (w, x,1)}

 over Az ∘ Bz = Cz ℤn
There exists such that u ∈ ℤm+k+1

So, build a proof system for:

 as integersAz ∘ Bz = Cz + u ⋅ n

Observe: over if and only if over , for some .x = y ℤn x = y + n ⋅ μ ℤ μ ∈ ℤ

7

A journey
Let’s first try to build a proof system for R1CS over .ℤn

R𝖱𝟣𝖢𝖲,ℤn
= {(x; w)

x ∈ ℤm
n , w ∈ ℤk

n

Az ∘ Bz = Cz over ℤn, z = (w, x,1)}

 over Az ∘ Bz = Cz ℤn
There exists such that u ∈ ℤm+k+1

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ⋅ n over ℤ, z = (w, x,1)}
So, build a proof system for:

 as integersAz ∘ Bz = Cz + u ⋅ n

Observe: over if and only if over , for some .x = y ℤn x = y + n ⋅ μ ℤ μ ∈ ℤ

7

A journey
Let’s first try to build a proof system for R1CS over .ℤn

R𝖱𝟣𝖢𝖲,ℤn
= {(x; w)

x ∈ ℤm
n , w ∈ ℤk

n

Az ∘ Bz = Cz over ℤn, z = (w, x,1)}

 over Az ∘ Bz = Cz ℤn
There exists such that u ∈ ℤm+k+1

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ⋅ n over ℤ, z = (w, x,1)}
So, build a proof system for:

 as integersAz ∘ Bz = Cz + u ⋅ n

Observe: over if and only if over , for some .x = y ℤn x = y + n ⋅ μ ℤ μ ∈ ℤ

u ∘ ⃗n
Arbitrary moduli at the same time!

7

A journey
Let’s first try to build a proof system for R1CS over .ℤn

R𝖱𝟣𝖢𝖲,ℤn
= {(x; w)

x ∈ ℤm
n , w ∈ ℤk

n

Az ∘ Bz = Cz over ℤn, z = (w, x,1)}

 over Az ∘ Bz = Cz ℤn
There exists such that u ∈ ℤm+k+1

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ⋅ n over ℤ, z = (w, x,1)}
So, build a proof system for:

 as integersAz ∘ Bz = Cz + u ⋅ n

Observe: over if and only if over , for some .x = y ℤn x = y + n ⋅ μ ℤ μ ∈ ℤ

u ∘ ⃗n
Arbitrary moduli at the same time!

ℤm
≤B ℤk

≤B ℤm+k+1
≤B

integers of B bitsℤ≤B = ≤

8

Zinc in a nutshell

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)
Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Issues:

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Issues:
(1) can require operating with integers of thousands of bits.

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Issues:
(1) can require operating with integers of thousands of bits.
(2) is complicated to build efficiently.

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Issues:
(1) can require operating with integers of thousands of bits.
(2) is complicated to build efficiently.
 None available comparable to hash-based PCS’s over 𝔽

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Issues:
(1) can require operating with integers of thousands of bits.
(2) is complicated to build efficiently.
 None available comparable to hash-based PCS’s over 𝔽

Solution:[CH2024]: V samples a random prime .
Then execute Spartan over , rather than over .

q
𝔽q ℤ

(1)

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Issues:
(1) can require operating with integers of thousands of bits.
(2) is complicated to build efficiently.
 None available comparable to hash-based PCS’s over 𝔽

Solution:[CH2024]: V samples a random prime .
Then execute Spartan over , rather than over .

q
𝔽q ℤ

Work over instead of . Makes extraction simple.ℚ≤B ℤ≤B(2)

(1)

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Issues:
(1) can require operating with integers of thousands of bits.
(2) is complicated to build efficiently.
 None available comparable to hash-based PCS’s over 𝔽

Solution:[CH2024]: V samples a random prime .
Then execute Spartan over , rather than over .

q
𝔽q ℤ

Work over instead of . Makes extraction simple.ℚ≤B ℤ≤B
Zip: PCS for polynomials over . Similar to Ligero/Brakedown.ℚ≤B

(2)

(1)

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Issues:
(1) can require operating with integers of thousands of bits.
(2) is complicated to build efficiently.
 None available comparable to hash-based PCS’s over 𝔽

Solution:[CH2024]: V samples a random prime .
Then execute Spartan over , rather than over .

q
𝔽q ℤ

Work over instead of . Makes extraction simple.ℚ≤B ℤ≤B
Zip: PCS for polynomials over . Similar to Ligero/Brakedown.ℚ≤B
Allows to compile a PIOP for into a SNARK for R𝖱𝟣𝖢𝖲ℓ,ℚ Π R𝖱𝟣𝖢𝖲ℓ,ℚ

(2)

(1)

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Issues:
(1) can require operating with integers of thousands of bits.
(2) is complicated to build efficiently.
 None available comparable to hash-based PCS’s over 𝔽

Solution:[CH2024]: V samples a random prime .
Then execute Spartan over , rather than over .

q
𝔽q ℤ

Work over instead of . Makes extraction simple.ℚ≤B ℤ≤B
Zip: PCS for polynomials over . Similar to Ligero/Brakedown.ℚ≤B
Allows to compile a PIOP for into a SNARK for R𝖱𝟣𝖢𝖲ℓ,ℚ Π R𝖱𝟣𝖢𝖲ℓ,ℚ
Works for any algebraic relation over .ℚ

(2)

(1)

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Issues:
(1) can require operating with integers of thousands of bits.
(2) is complicated to build efficiently.
 None available comparable to hash-based PCS’s over 𝔽

Solution:[CH2024]: V samples a random prime .
Then execute Spartan over , rather than over .

q
𝔽q ℤ

Work over instead of . Makes extraction simple.ℚ≤B ℤ≤B
Zip: PCS for polynomials over . Similar to Ligero/Brakedown.ℚ≤B
Allows to compile a PIOP for into a SNARK for R𝖱𝟣𝖢𝖲ℓ,ℚ Π R𝖱𝟣𝖢𝖲ℓ,ℚ
Works for any algebraic relation over .ℚ
Yields lookups for Πlook ℤ≤B ⊆ ℚ≤B

(2)

(1)

8

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Issues:
(1) can require operating with integers of thousands of bits.
(2) is complicated to build efficiently.
 None available comparable to hash-based PCS’s over 𝔽

Solution:[CH2024]: V samples a random prime .
Then execute Spartan over , rather than over .

q
𝔽q ℤ

Work over instead of . Makes extraction simple.ℚ≤B ℤ≤B
Zip: PCS for polynomials over . Similar to Ligero/Brakedown.ℚ≤B
Allows to compile a PIOP for into a SNARK for R𝖱𝟣𝖢𝖲ℓ,ℚ Π R𝖱𝟣𝖢𝖲ℓ,ℚ
Works for any algebraic relation over .ℚ
Yields lookups for Πlook ℤ≤B ⊆ ℚ≤B
Combining and yields SNARK for .Π Πlook R𝖱𝟣𝖢𝖲ℓ,ℤ

(2)

(1)

Thanks

Paper Implementation
(WIP)

Technical talk  
at zkproof 6

Collaborators wanted!
 Research (fundamental or applications), engineering, use-cases, etc.

10

Zinc in a nutshell

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

10

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

10

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Building (2). [CH2024] propose using the PCS over of Block et al.ℤ≤B

10

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Building (2). [CH2024] propose using the PCS over of Block et al.ℤ≤B
It is not clear how to build efficient PCS’s for integral polynomials. Why?

10

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Building (2). [CH2024] propose using the PCS over of Block et al.ℤ≤B
It is not clear how to build efficient PCS’s for integral polynomials. Why?
• When trying to extract the committed polynomial , one has to solve a system of

linear equations over
f

ℤ .

10

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Building (2). [CH2024] propose using the PCS over of Block et al.ℤ≤B
It is not clear how to build efficient PCS’s for integral polynomials. Why?
• When trying to extract the committed polynomial , one has to solve a system of

linear equations over
f

ℤ .
• The solution determines .f

10

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Building (2). [CH2024] propose using the PCS over of Block et al.ℤ≤B
It is not clear how to build efficient PCS’s for integral polynomials. Why?
• When trying to extract the committed polynomial , one has to solve a system of

linear equations over
f

ℤ .
• The solution determines .f
• However, in general, the solution consists of rational numbers.

11

Zinc in a nutshell

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

11

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

11

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Building (2).

11

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Building (2).
We decided to work over instead of . Makes extraction simple.ℚ≤B ℤ≤B

11

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Building (2).
We decided to work over instead of . Makes extraction simple.ℚ≤B ℤ≤B
Zip: PCS for multilinear polynomials with coeffs in . Similar to Ligero/Brakedown.ℚ≤B

11

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Building (2).
We decided to work over instead of . Makes extraction simple.ℚ≤B ℤ≤B
Zip: PCS for multilinear polynomials with coeffs in . Similar to Ligero/Brakedown.ℚ≤B
Allows to compile a PIOP for into a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℚ Π R𝖱𝟣𝖢𝖲ℓ,ℚ

11

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Building (2).
We decided to work over instead of . Makes extraction simple.ℚ≤B ℤ≤B
Zip: PCS for multilinear polynomials with coeffs in . Similar to Ligero/Brakedown.ℚ≤B
Allows to compile a PIOP for into a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℚ Π R𝖱𝟣𝖢𝖲ℓ,ℚ
This actually works for any algebraic relation over .ℚ

11

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Building (2).
We decided to work over instead of . Makes extraction simple.ℚ≤B ℤ≤B
Zip: PCS for multilinear polynomials with coeffs in . Similar to Ligero/Brakedown.ℚ≤B
Allows to compile a PIOP for into a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℚ Π R𝖱𝟣𝖢𝖲ℓ,ℚ
This actually works for any algebraic relation over .ℚ
In particular, we obtain succinct lookups for Πlook ℤ≤B ⊆ ℚ≤B

11

Zinc in a nutshell R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)
x ∈ ℤm

≤B, w ∈ ℤk
≤B, u ∈ ℤm+k+1

≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

With soundness holding against
 that use polys over P* ℤ≤B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ

Build a PIOP for
(e.g. Spartan)

R𝖱𝟣𝖢𝖲ℓ,ℤ(1)

Design a PCS for polynomials over ℤ≤B(2)

Building (2).
We decided to work over instead of . Makes extraction simple.ℚ≤B ℤ≤B
Zip: PCS for multilinear polynomials with coeffs in . Similar to Ligero/Brakedown.ℚ≤B
Allows to compile a PIOP for into a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℚ Π R𝖱𝟣𝖢𝖲ℓ,ℚ
This actually works for any algebraic relation over .ℚ
In particular, we obtain succinct lookups for Πlook ℤ≤B ⊆ ℚ≤B
Combining and we obtain a succinct argument for .Π Πlook R𝖱𝟣𝖢𝖲ℓ,ℤ

12

Based on Ligero/Brakedown with commitment on , but runs modulo a prime.
Incorporates a costless bit-size check to make sure elements have less than bits.
Commitment is over . We use EA or RAA codes to keep the codeword entries small.

ℚ
B

ℚ

Zinc in a nutshell

Zinc in a nutshell
R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)

x ∈ ℤm
≤B, w ∈ ℤk

≤B, u ∈ ℤm+k+1
≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

Zinc in a nutshell
R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)

x ∈ ℤm
≤B, w ∈ ℤk

≤B, u ∈ ℤm+k+1
≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

(x; w, u)

VP
(x)

Zinc in a nutshell
R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)

x ∈ ℤm
≤B, w ∈ ℤk

≤B, u ∈ ℤm+k+1
≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

(x; w, u)

VP
(x)

Commit to over MLE(w), MLE(u) ℤ

Zinc in a nutshell
R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)

x ∈ ℤm
≤B, w ∈ ℤk

≤B, u ∈ ℤm+k+1
≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

(x; w, u)

VP
(x)

Random prime q
Commit to over MLE(w), MLE(u) ℤ

Zinc in a nutshell
R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)

x ∈ ℤm
≤B, w ∈ ℤk

≤B, u ∈ ℤm+k+1
≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

(x; w, u)

VP
(x)

Random prime q
Commit to over MLE(w), MLE(u) ℤ

Execute a SNARK over for the constraint
 modulo
𝔽q

Az ∘ Bz = Cz + u ∘ μ q

Zinc in a nutshell
R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)

x ∈ ℤm
≤B, w ∈ ℤk

≤B, u ∈ ℤm+k+1
≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

(x; w, u)

VP
(x)

Random prime q
Commit to over MLE(w), MLE(u) ℤ

Execute a SNARK over for the constraint
 modulo
𝔽q

Az ∘ Bz = Cz + u ∘ μ q

When opening ,
reduce mod .

MLE(w), MLE(u)
q

Zinc in a nutshell
R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)

x ∈ ℤm
≤B, w ∈ ℤk

≤B, u ∈ ℤm+k+1
≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

(x; w, u)

VP
(x)

Random prime q
Commit to over MLE(w), MLE(u) ℤ

Execute a SNARK over for the constraint
 modulo
𝔽q

Az ∘ Bz = Cz + u ∘ μ q

When opening ,
reduce mod .

MLE(w), MLE(u)
q

Ing
red

ien
ts

Zinc in a nutshell
R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)

x ∈ ℤm
≤B, w ∈ ℤk

≤B, u ∈ ℤm+k+1
≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

(x; w, u)

VP
(x)

Random prime q
Commit to over MLE(w), MLE(u) ℤ

Execute a SNARK over for the constraint
 modulo
𝔽q

Az ∘ Bz = Cz + u ∘ μ q

When opening ,
reduce mod .

MLE(w), MLE(u)
q

PIOP over 𝔽qIng
red

ien
ts

Zinc in a nutshell
R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)

x ∈ ℤm
≤B, w ∈ ℤk

≤B, u ∈ ℤm+k+1
≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

(x; w, u)

VP
(x)

Random prime q
Commit to over MLE(w), MLE(u) ℤ

Execute a SNARK over for the constraint
 modulo
𝔽q

Az ∘ Bz = Cz + u ∘ μ q

When opening ,
reduce mod .

MLE(w), MLE(u)
q

PIOP over 𝔽q PCS over ℤ
Ing

red
ien

ts

Zinc in a nutshell
R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)

x ∈ ℤm
≤B, w ∈ ℤk

≤B, u ∈ ℤm+k+1
≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

(x; w, u)

VP
(x)

Random prime q
Commit to over MLE(w), MLE(u) ℤ

Execute a SNARK over for the constraint
 modulo
𝔽q

Az ∘ Bz = Cz + u ∘ μ q

When opening ,
reduce mod .

MLE(w), MLE(u)
q

PIOP over 𝔽q PCS over ℤ
Ing

red
ien

ts Similar to Ligero/Brakedown

Zinc in a nutshell
R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)

x ∈ ℤm
≤B, w ∈ ℤk

≤B, u ∈ ℤm+k+1
≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

(x; w, u)

VP
(x)

Random prime q
Commit to over MLE(w), MLE(u) ℤ

Execute a SNARK over for the constraint
 modulo
𝔽q

Az ∘ Bz = Cz + u ∘ μ q

When opening ,
reduce mod .

MLE(w), MLE(u)
q

PIOP over 𝔽q PCS over ℤ
Ing

red
ien

ts Similar to Ligero/Brakedown
But some parts run on ℚ

Zinc in a nutshell
R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)

x ∈ ℤm
≤B, w ∈ ℤk

≤B, u ∈ ℤm+k+1
≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

(x; w, u)

VP
(x)

Random prime q
Commit to over MLE(w), MLE(u) ℤ

Execute a SNARK over for the constraint
 modulo
𝔽q

Az ∘ Bz = Cz + u ∘ μ q

When opening ,
reduce mod .

MLE(w), MLE(u)
q

PIOP over 𝔽q PCS over ℤ
Ing

red
ien

ts Similar to Ligero/Brakedown
But some parts run on ℚ
Others on 𝔽q

Zinc in a nutshell
R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)

x ∈ ℤm
≤B, w ∈ ℤk

≤B, u ∈ ℤm+k+1
≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

(x; w, u)

VP
(x)

Random prime q
Commit to over MLE(w), MLE(u) ℤ

Execute a SNARK over for the constraint
 modulo
𝔽q

Az ∘ Bz = Cz + u ∘ μ q

When opening ,
reduce mod .

MLE(w), MLE(u)
q

PIOP over 𝔽q PCS over ℤ
Ing

red
ien

ts Similar to Ligero/Brakedown
But some parts run on ℚ
Others on 𝔽q

Works over as well

(In fact is the true native home of Zinc)

ℚℚ

ℚm

Zinc in a nutshell
R𝖱𝟣𝖢𝖲ℓ,ℤ = (x; w, u)

x ∈ ℤm
≤B, w ∈ ℤk

≤B, u ∈ ℤm+k+1
≤B

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)

(x; w, u)

VP
(x)

Random prime q
Commit to over MLE(w), MLE(u) ℤ

Execute a SNARK over for the constraint
 modulo
𝔽q

Az ∘ Bz = Cz + u ∘ μ q

When opening ,
reduce mod .

MLE(w), MLE(u)
q

PIOP over 𝔽q PCS over ℤ
Ing

red
ien

ts Similar to Ligero/Brakedown
But some parts run on ℚ
Others on 𝔽q

Works over as well

(In fact is the true native home of Zinc)

ℚAlso: works for any algebraic relation

ℚ

ℚm

14

Initial timid attempts

14

Initial timid attempts
By replacing with an arbitrary vector , we capture modular
arithmetic for different moduli, at the same time.

n μ ∈ ℤm+k+1
≥1

14

Initial timid attempts
By replacing with an arbitrary vector , we capture modular
arithmetic for different moduli, at the same time.

n μ ∈ ℤm+k+1
≥1

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

14

Initial timid attempts
By replacing with an arbitrary vector , we capture modular
arithmetic for different moduli, at the same time.

n μ ∈ ℤm+k+1
≥1

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}
 looks like a CCS relation over . We could try to build a SNARK for it.R ℤ

14

Initial timid attempts
By replacing with an arbitrary vector , we capture modular
arithmetic for different moduli, at the same time.

n μ ∈ ℤm+k+1
≥1

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}
 looks like a CCS relation over . We could try to build a SNARK for it.R ℤ

Let’s limit to for simplicity.R𝖱𝟣𝖢𝖲ℓ,ℤ

14

Initial timid attempts
By replacing with an arbitrary vector , we capture modular
arithmetic for different moduli, at the same time.

n μ ∈ ℤm+k+1
≥1

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}
 looks like a CCS relation over . We could try to build a SNARK for it.R ℤ

Let’s limit to for simplicity.R𝖱𝟣𝖢𝖲ℓ,ℤ
First off. For technical reasons we set a bound on the bit-size of witnesses.B

14

Initial timid attempts
By replacing with an arbitrary vector , we capture modular
arithmetic for different moduli, at the same time.

n μ ∈ ℤm+k+1
≥1

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}
 looks like a CCS relation over . We could try to build a SNARK for it.R ℤ

Let’s limit to for simplicity.R𝖱𝟣𝖢𝖲ℓ,ℤ
First off. For technical reasons we set a bound on the bit-size of witnesses.B

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = (x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ,
z = (w, x,1)

Where is the set of integers with bit-size less than .ℤB B

15

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

15

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1) requires operating with integers of thousands of bits.

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

15

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1) requires operating with integers of thousands of bits.
Solution: Campanelli and Hall-Andersen [CH2024]: have V sample a random prime .q

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

15

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1) requires operating with integers of thousands of bits.
Solution: Campanelli and Hall-Andersen [CH2024]: have V sample a random prime .q
Then execute Spartan over , rather than over .𝔽q ℤB

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

15

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1) requires operating with integers of thousands of bits.
Solution: Campanelli and Hall-Andersen [CH2024]: have V sample a random prime .q
Then execute Spartan over , rather than over .𝔽q ℤB

They call the resulting PIOP a mod-PIOP (or mod-AHP).

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

15

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1) requires operating with integers of thousands of bits.
Solution: Campanelli and Hall-Andersen [CH2024]: have V sample a random prime .q
Then execute Spartan over , rather than over .𝔽q ℤB

They call the resulting PIOP a mod-PIOP (or mod-AHP).
[CH2024] compile mod-PIOPs with (2) into a succinct argument  
for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

16

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

16

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:

16

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:
We work over instead of .ℚB ℤB

16

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:
We work over instead of .ℚB ℤB

New program:

16

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:
We work over instead of .ℚB ℤB

New program:

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

16

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:
We work over instead of .ℚB ℤB

New program:
Soundness holds against that
use polys over

P*
ℚB

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

16

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:
We work over instead of .ℚB ℤB

New program:
Soundness holds against that
use polys over

P*
ℚB

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

16

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:
We work over instead of .ℚB ℤB

New program:
Soundness holds against that
use polys over

P*
ℚB

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

16

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:
We work over instead of .ℚB ℤB

New program:
Soundness holds against that
use polys over

P*
ℚB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

17

Moving to the field of rational numbers

17

Moving to the field of rational numbers
Designing a PCS over is hard because is not a field.ℤB ℤ

17

Moving to the field of rational numbers
Designing a PCS over is hard because is not a field.ℤB ℤ
We make the following key design choice:

17

Moving to the field of rational numbers
Designing a PCS over is hard because is not a field.ℤB ℤ
We make the following key design choice:

We work over instead of .ℚB ℤB

17

Moving to the field of rational numbers
Designing a PCS over is hard because is not a field.ℤB ℤ
We make the following key design choice:

We work over instead of .ℚB ℤB

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}

17

Moving to the field of rational numbers
Designing a PCS over is hard because is not a field.ℤB ℤ
We make the following key design choice:

We work over instead of .ℚB ℤB

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
Note: Now no longer captures arbitrary modular arithmetic.R𝖱𝟣𝖢𝖲ℓ,ℚ,B

17

Moving to the field of rational numbers
Designing a PCS over is hard because is not a field.ℤB ℤ
We make the following key design choice:

We work over instead of .ℚB ℤB

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
Note: Now no longer captures arbitrary modular arithmetic.R𝖱𝟣𝖢𝖲ℓ,ℚ,B
Because of this, we also design a lookup argument over . I.e. an argument forℚB

17

Moving to the field of rational numbers
Designing a PCS over is hard because is not a field.ℤB ℤ
We make the following key design choice:

We work over instead of .ℚB ℤB

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
Note: Now no longer captures arbitrary modular arithmetic.R𝖱𝟣𝖢𝖲ℓ,ℚ,B
Because of this, we also design a lookup argument over . I.e. an argument forℚB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

18

Lookup arguments over the rational numbers

18

Lookup arguments over the rational numbers
R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)

t ∈ ℚn
B, a ∈ ℚm

B ,
{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

18

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

18

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

18

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

Argument  
for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

18

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

Argument  
for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

+

18

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

Argument  
for R𝖫𝗈𝗈𝗄,ℚ,B

Argument  
for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

+

18

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

Argument  
for R𝖫𝗈𝗈𝗄,ℚ,B

Argument  
for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

+ =

18

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

Argument  
for R𝖫𝗈𝗈𝗄,ℚ,B

Argument  
for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

+ = Argument  
for R𝖱𝟣𝖢𝖲,ℤ,B

18

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

In our work we are general and describe an argument for any relation over
that can be expressed algebraically.

ℚB

Argument  
for R𝖫𝗈𝗈𝗄,ℚ,B

Argument  
for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

+ = Argument  
for R𝖱𝟣𝖢𝖲,ℤ,B

18

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

In our work we are general and describe an argument for any relation over
that can be expressed algebraically.

ℚB

This provides arguments for both and . R𝖱𝟣𝖢𝖲ℓ,ℚ,B R𝖫𝗈𝗈𝗄,ℚ,B

Argument  
for R𝖫𝗈𝗈𝗄,ℚ,B

Argument  
for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

+ = Argument  
for R𝖱𝟣𝖢𝖲,ℤ,B

19

The mod-PIOP technique

19

The mod-PIOP technique
We will use the idea of [CH2024] of reducing modulo a random prime.

19

The mod-PIOP technique
We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

19

The mod-PIOP technique

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

19

The mod-PIOP technique

(x; w, u)

VP
(x)

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

19

The mod-PIOP technique

(x; w, u)

VP
(x)

Oracles to MLE(w), MLE(u)

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

19

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

19

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

19

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

For the latter, it suffices to use the usual version of (Super)Spartan.

We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

19

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

For the latter, it suffices to use the usual version of (Super)Spartan.
When are queried, receives a value in and reduces it mod MLE(w), MLE(u) V ℤ q

We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

20

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

20

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

This PIOP is sound against P* that send oracles to with entries in . MLE(w), MLE(u) ℤB

20

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

This PIOP is sound against P* that send oracles to with entries in . MLE(w), MLE(u) ℤB
(Assuming the PIOP in the last step is sound).

20

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

This PIOP is sound against P* that send oracles to with entries in . MLE(w), MLE(u) ℤB
(Assuming the PIOP in the last step is sound).
Why? Suppose but that modulo for many
primes . Then one can see that some entry in is divisible by many primes.

Az ∘ Bz ≠ Cz + u ∘ μ Az ∘ Bz = Cz + u ∘ μ q
q z, u

20

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

This PIOP is sound against P* that send oracles to with entries in . MLE(w), MLE(u) ℤB
(Assuming the PIOP in the last step is sound).
Why? Suppose but that modulo for many
primes . Then one can see that some entry in is divisible by many primes.

Az ∘ Bz ≠ Cz + u ∘ μ Az ∘ Bz = Cz + u ∘ μ q
q z, u

But the entries of have at most bits.z, u B

21

Zinc-PIOP: A PIOP for relations over ℚB

21

Zinc-PIOP: A PIOP for relations over ℚB
We focus on , but the techniques apply to any algebraic relation over R𝖱𝟣𝖢𝖲ℓ,ℚ,B ℚB

21

Zinc-PIOP: A PIOP for relations over ℚB
We focus on , but the techniques apply to any algebraic relation over R𝖱𝟣𝖢𝖲ℓ,ℚ,B ℚB

We will obtain a succinct argument for .R𝖱𝟣𝖢𝖲ℓ,ℚ,B

21

Zinc-PIOP: A PIOP for relations over ℚB
We focus on , but the techniques apply to any algebraic relation over R𝖱𝟣𝖢𝖲ℓ,ℚ,B ℚB

We will obtain a succinct argument for .R𝖱𝟣𝖢𝖲ℓ,ℚ,B
We start by designing a PIOP over for . Recall:ℚB R𝖱𝟣𝖢𝖲ℓ,ℚ,B

21

Zinc-PIOP: A PIOP for relations over ℚB
We focus on , but the techniques apply to any algebraic relation over R𝖱𝟣𝖢𝖲ℓ,ℚ,B ℚB

We will obtain a succinct argument for .R𝖱𝟣𝖢𝖲ℓ,ℚ,B
We start by designing a PIOP over for . Recall:ℚB R𝖱𝟣𝖢𝖲ℓ,ℚ,B

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}

21

Zinc-PIOP: A PIOP for relations over ℚB
We focus on , but the techniques apply to any algebraic relation over R𝖱𝟣𝖢𝖲ℓ,ℚ,B ℚB

We will obtain a succinct argument for .R𝖱𝟣𝖢𝖲ℓ,ℚ,B
We start by designing a PIOP over for . Recall:ℚB R𝖱𝟣𝖢𝖲ℓ,ℚ,B

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
We would like to use the mod-PIOP idea from Campanelli and Hall-Andersen.

21

Zinc-PIOP: A PIOP for relations over ℚB
We focus on , but the techniques apply to any algebraic relation over R𝖱𝟣𝖢𝖲ℓ,ℚ,B ℚB

We will obtain a succinct argument for .R𝖱𝟣𝖢𝖲ℓ,ℚ,B
We start by designing a PIOP over for . Recall:ℚB R𝖱𝟣𝖢𝖲ℓ,ℚ,B

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
We would like to use the mod-PIOP idea from Campanelli and Hall-Andersen.
But reduction modulo a prime is not well-defined: can contain rational entries.w, u

21

Zinc-PIOP: A PIOP for relations over ℚB
We focus on , but the techniques apply to any algebraic relation over R𝖱𝟣𝖢𝖲ℓ,ℚ,B ℚB

We will obtain a succinct argument for .R𝖱𝟣𝖢𝖲ℓ,ℚ,B
We start by designing a PIOP over for . Recall:ℚB R𝖱𝟣𝖢𝖲ℓ,ℚ,B

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
We would like to use the mod-PIOP idea from Campanelli and Hall-Andersen.
But reduction modulo a prime is not well-defined: can contain rational entries.w, u
We use the concept of local subrings of .ℚ

22

Zinc-PIOP: A PIOP for relations over ℚB

22

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq

22

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq
ℤ(q) = {a /b ∈ ℚ ∣ q does not divide b} .

22

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq
ℤ(q) = {a /b ∈ ℚ ∣ q does not divide b} .

 is a subring of , called the localization of on .ℤ(q) ℚ ℚ q

22

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq
ℤ(q) = {a /b ∈ ℚ ∣ q does not divide b} .

 is a subring of , called the localization of on .ℤ(q) ℚ ℚ q
There is a ring homomorphism.

22

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq
ℤ(q) = {a /b ∈ ℚ ∣ q does not divide b} .

 is a subring of , called the localization of on .ℤ(q) ℚ ℚ q
There is a ring homomorphism.

ϕq : ℤ(q) → 𝔽q a /b ↦ a ⋅ b−1 mod q

22

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq
ℤ(q) = {a /b ∈ ℚ ∣ q does not divide b} .

 is a subring of , called the localization of on .ℤ(q) ℚ ℚ q
There is a ring homomorphism.

ϕq : ℤ(q) → 𝔽q a /b ↦ a ⋅ b−1 mod q
where denotes an inverse of mod .b−1 b q

22

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq
ℤ(q) = {a /b ∈ ℚ ∣ q does not divide b} .

 is a subring of , called the localization of on .ℤ(q) ℚ ℚ q
There is a ring homomorphism.

ϕq : ℤ(q) → 𝔽q a /b ↦ a ⋅ b−1 mod q
where denotes an inverse of mod .b−1 b q
So, reduction mod has a natural meaning for most rational numbers.q

22

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq
ℤ(q) = {a /b ∈ ℚ ∣ q does not divide b} .

 is a subring of , called the localization of on .ℤ(q) ℚ ℚ q
There is a ring homomorphism.

ϕq : ℤ(q) → 𝔽q a /b ↦ a ⋅ b−1 mod q
where denotes an inverse of mod .b−1 b q
So, reduction mod has a natural meaning for most rational numbers.q

23

Towards universal arithmetization
Computation Native proof

system
Rationals, fixed point,

floating point
Zinc

Mult mod 2^n Zinc
Mult mod pq Zinc

Mult mod non-native q Zinc
XOR, NOT, etc. Binius

Lattices Dedicated SNARK

Classic hash (SHA) Binius
(partially)

23

Towards universal arithmetization
Some use-cases involve a mix of computation
types. Computation Native proof

system
Rationals, fixed point,

floating point
Zinc

Mult mod 2^n Zinc
Mult mod pq Zinc

Mult mod non-native q Zinc
XOR, NOT, etc. Binius

Lattices Dedicated SNARK

Classic hash (SHA) Binius
(partially)

23

Towards universal arithmetization
Some use-cases involve a mix of computation
types.
Examples:

Computation Native proof
system

Rationals, fixed point,
floating point

Zinc

Mult mod 2^n Zinc
Mult mod pq Zinc

Mult mod non-native q Zinc
XOR, NOT, etc. Binius

Lattices Dedicated SNARK

Classic hash (SHA) Binius
(partially)

23

Towards universal arithmetization
Some use-cases involve a mix of computation
types.
Examples:
• zkVM instruction sequences

Computation Native proof
system

Rationals, fixed point,
floating point

Zinc

Mult mod 2^n Zinc
Mult mod pq Zinc

Mult mod non-native q Zinc
XOR, NOT, etc. Binius

Lattices Dedicated SNARK

Classic hash (SHA) Binius
(partially)

23

Towards universal arithmetization
Some use-cases involve a mix of computation
types.
Examples:
• zkVM instruction sequences
• zkID: SHA-256 + RSA/ECDSA signature

Computation Native proof
system

Rationals, fixed point,
floating point

Zinc

Mult mod 2^n Zinc
Mult mod pq Zinc

Mult mod non-native q Zinc
XOR, NOT, etc. Binius

Lattices Dedicated SNARK

Classic hash (SHA) Binius
(partially)

23

Towards universal arithmetization
Some use-cases involve a mix of computation
types.
Examples:
• zkVM instruction sequences
• zkID: SHA-256 + RSA/ECDSA signature
• AES encryption, TLS

Computation Native proof
system

Rationals, fixed point,
floating point

Zinc

Mult mod 2^n Zinc
Mult mod pq Zinc

Mult mod non-native q Zinc
XOR, NOT, etc. Binius

Lattices Dedicated SNARK

Classic hash (SHA) Binius
(partially)

23

Towards universal arithmetization
Some use-cases involve a mix of computation
types.
Examples:
• zkVM instruction sequences
• zkID: SHA-256 + RSA/ECDSA signature
• AES encryption, TLS
What to do then?

Computation Native proof
system

Rationals, fixed point,
floating point

Zinc

Mult mod 2^n Zinc
Mult mod pq Zinc

Mult mod non-native q Zinc
XOR, NOT, etc. Binius

Lattices Dedicated SNARK

Classic hash (SHA) Binius
(partially)

23

Towards universal arithmetization
Some use-cases involve a mix of computation
types.
Examples:
• zkVM instruction sequences
• zkID: SHA-256 + RSA/ECDSA signature
• AES encryption, TLS
What to do then?
• Zinc handles multiple moduli, Z and Q at once

Computation Native proof
system

Rationals, fixed point,
floating point

Zinc

Mult mod 2^n Zinc
Mult mod pq Zinc

Mult mod non-native q Zinc
XOR, NOT, etc. Binius

Lattices Dedicated SNARK

Classic hash (SHA) Binius
(partially)

23

Towards universal arithmetization
Some use-cases involve a mix of computation
types.
Examples:
• zkVM instruction sequences
• zkID: SHA-256 + RSA/ECDSA signature
• AES encryption, TLS
What to do then?
• Zinc handles multiple moduli, Z and Q at once
• But how about bitwise ops and modular

arithmetic?

Computation Native proof
system

Rationals, fixed point,
floating point

Zinc

Mult mod 2^n Zinc
Mult mod pq Zinc

Mult mod non-native q Zinc
XOR, NOT, etc. Binius

Lattices Dedicated SNARK

Classic hash (SHA) Binius
(partially)

23

Towards universal arithmetization
Some use-cases involve a mix of computation
types.
Examples:
• zkVM instruction sequences
• zkID: SHA-256 + RSA/ECDSA signature
• AES encryption, TLS
What to do then?
• Zinc handles multiple moduli, Z and Q at once
• But how about bitwise ops and modular

arithmetic?
• If types of computation is clearly separated (e.g. hash+sign):

Computation Native proof
system

Rationals, fixed point,
floating point

Zinc

Mult mod 2^n Zinc
Mult mod pq Zinc

Mult mod non-native q Zinc
XOR, NOT, etc. Binius

Lattices Dedicated SNARK

Classic hash (SHA) Binius
(partially)

23

Towards universal arithmetization
Some use-cases involve a mix of computation
types.
Examples:
• zkVM instruction sequences
• zkID: SHA-256 + RSA/ECDSA signature
• AES encryption, TLS
What to do then?
• Zinc handles multiple moduli, Z and Q at once
• But how about bitwise ops and modular

arithmetic?
• If types of computation is clearly separated (e.g. hash+sign):

• Use two proof systems: binary field (SHA256), prime field
(ECDSA) (e.g. Frigo and Shelat, Anonymous credentials for ECDSA, 2025)

Computation Native proof
system

Rationals, fixed point,
floating point

Zinc

Mult mod 2^n Zinc
Mult mod pq Zinc

Mult mod non-native q Zinc
XOR, NOT, etc. Binius

Lattices Dedicated SNARK

Classic hash (SHA) Binius
(partially)

23

Towards universal arithmetization
Some use-cases involve a mix of computation
types.
Examples:
• zkVM instruction sequences
• zkID: SHA-256 + RSA/ECDSA signature
• AES encryption, TLS
What to do then?
• Zinc handles multiple moduli, Z and Q at once
• But how about bitwise ops and modular

arithmetic?
• If types of computation is clearly separated (e.g. hash+sign):

• Use two proof systems: binary field (SHA256), prime field
(ECDSA) (e.g. Frigo and Shelat, Anonymous credentials for ECDSA, 2025)

• Something else.

Computation Native proof
system

Rationals, fixed point,
floating point

Zinc

Mult mod 2^n Zinc
Mult mod pq Zinc

Mult mod non-native q Zinc
XOR, NOT, etc. Binius

Lattices Dedicated SNARK

Classic hash (SHA) Binius
(partially)

Binius, Zinc?
Dedicated SNARK,

Zinc?
Binius, Zinc?

(Both partially)

24

Universal arithmetization

24

Universal arithmetization
Case study: bitwise operations (XOR)

24

Universal arithmetization
Case study: bitwise operations (XOR)
Recall:

24

Universal arithmetization
Case study: bitwise operations (XOR)
Recall:

 over Az ∘ Bz = Cz ℤ/nℤ

24

Universal arithmetization
Case study: bitwise operations (XOR)
Recall:

 over Az ∘ Bz = Cz ℤ/nℤ

24

Universal arithmetization
Case study: bitwise operations (XOR)
Recall:

 over Az ∘ Bz = Cz ℤ/nℤ
There exists such that u ∈ ℤm+k+1

24

Universal arithmetization
Case study: bitwise operations (XOR)
Recall:

 over Az ∘ Bz = Cz ℤ/nℤ
There exists such that u ∈ ℤm+k+1

 as integersAz ∘ Bz = Cz + u ⋅ n

24

Universal arithmetization
Case study: bitwise operations (XOR)
Recall:

 over Az ∘ Bz = Cz ℤ/nℤ
There exists such that u ∈ ℤm+k+1

 as integersAz ∘ Bz = Cz + u ⋅ n

XOR operations = addition in binary fields:

24

Universal arithmetization
Case study: bitwise operations (XOR)
Recall:

 over Az ∘ Bz = Cz ℤ/nℤ
There exists such that u ∈ ℤm+k+1

 as integersAz ∘ Bz = Cz + u ⋅ n

XOR operations = addition in binary fields:
GF(2n) = 𝔽2[X]/(f (X)) = ℤ[X]/(2, f (X))

24

Universal arithmetization
Case study: bitwise operations (XOR)
Recall:

 over Az ∘ Bz = Cz ℤ/nℤ
There exists such that u ∈ ℤm+k+1

 as integersAz ∘ Bz = Cz + u ⋅ n

XOR operations = addition in binary fields:
GF(2n) = 𝔽2[X]/(f (X)) = ℤ[X]/(2, f (X))

Elements of are polynomials of degree < n.GF(2n)

24

Universal arithmetization
Case study: bitwise operations (XOR)
Recall:

 over Az ∘ Bz = Cz ℤ/nℤ
There exists such that u ∈ ℤm+k+1

 as integersAz ∘ Bz = Cz + u ⋅ n

XOR operations = addition in binary fields:
GF(2n) = 𝔽2[X]/(f (X)) = ℤ[X]/(2, f (X))

 over Az ∘ Bz = Cz GF(2n)

Elements of are polynomials of degree < n.GF(2n)

24

Universal arithmetization
Case study: bitwise operations (XOR)
Recall:

 over Az ∘ Bz = Cz ℤ/nℤ
There exists such that u ∈ ℤm+k+1

 as integersAz ∘ Bz = Cz + u ⋅ n

XOR operations = addition in binary fields:
GF(2n) = 𝔽2[X]/(f (X)) = ℤ[X]/(2, f (X))

 over Az ∘ Bz = Cz GF(2n)

Elements of are polynomials of degree < n.GF(2n)

24

Universal arithmetization
Case study: bitwise operations (XOR)
Recall:

 over Az ∘ Bz = Cz ℤ/nℤ
There exists such that u ∈ ℤm+k+1

 as integersAz ∘ Bz = Cz + u ⋅ n

XOR operations = addition in binary fields:
GF(2n) = 𝔽2[X]/(f (X)) = ℤ[X]/(2, f (X))

 over Az ∘ Bz = Cz GF(2n)
There exists
such that

u, v ∈ ℤ[X]m+k+1

Elements of are polynomials of degree < n.GF(2n)

24

Universal arithmetization
Case study: bitwise operations (XOR)
Recall:

 over Az ∘ Bz = Cz ℤ/nℤ
There exists such that u ∈ ℤm+k+1

 as integersAz ∘ Bz = Cz + u ⋅ n

XOR operations = addition in binary fields:
GF(2n) = 𝔽2[X]/(f (X)) = ℤ[X]/(2, f (X))

 over Az ∘ Bz = Cz GF(2n)
There exists
such that

u, v ∈ ℤ[X]m+k+1

  
as integer polynomials
Az ∘ Bz = Cz + u ⋅ 2+v ⋅ f

Elements of are polynomials of degree < n.GF(2n)

25

GF(2n) = 𝔽2[X]/(f (X)) = ℤ[X]/(2, f (X))

 over Az ∘ Bz = Cz GF(2n)
There exists
such that

u, v ∈ ℤ[X]m+k+1

  
as integer polynomials
Az ∘ Bz = Cz + u ⋅ 2+v ⋅ f (X)

Universal arithmetization

25

GF(2n) = 𝔽2[X]/(f (X)) = ℤ[X]/(2, f (X))

 over Az ∘ Bz = Cz GF(2n)
There exists
such that

u, v ∈ ℤ[X]m+k+1

  
as integer polynomials
Az ∘ Bz = Cz + u ⋅ 2+v ⋅ f (X)

We can mix in operations mod (and others!). 2n

Universal arithmetization

25

GF(2n) = 𝔽2[X]/(f (X)) = ℤ[X]/(2, f (X))

 over Az ∘ Bz = Cz GF(2n)
There exists
such that

u, v ∈ ℤ[X]m+k+1

  
as integer polynomials
Az ∘ Bz = Cz + u ⋅ 2+v ⋅ f (X)

We can mix in operations mod (and others!). 2n

Let be public vectors with entries in .μ, η ℤ[X]

Universal arithmetization

25

GF(2n) = 𝔽2[X]/(f (X)) = ℤ[X]/(2, f (X))

 over Az ∘ Bz = Cz GF(2n)
There exists
such that

u, v ∈ ℤ[X]m+k+1

  
as integer polynomials
Az ∘ Bz = Cz + u ⋅ 2+v ⋅ f (X)

We can mix in operations mod (and others!). 2n

Let be public vectors with entries in .μ, η ℤ[X]
Then over can encode “everything from
everywhere all at once”

Az ∘ Bz = Cz + u ∘ ⃗μ +v ∘ ⃗η ℤ[X]

Universal arithmetization

25

GF(2n) = 𝔽2[X]/(f (X)) = ℤ[X]/(2, f (X))

 over Az ∘ Bz = Cz GF(2n)
There exists
such that

u, v ∈ ℤ[X]m+k+1

  
as integer polynomials
Az ∘ Bz = Cz + u ⋅ 2+v ⋅ f (X)

We can mix in operations mod (and others!). 2n

Let be public vectors with entries in .μ, η ℤ[X]
Then over can encode “everything from
everywhere all at once”

Az ∘ Bz = Cz + u ∘ ⃗μ +v ∘ ⃗η ℤ[X]

I.e. each row can encode constraints over any of:

Universal arithmetization

25

GF(2n) = 𝔽2[X]/(f (X)) = ℤ[X]/(2, f (X))

 over Az ∘ Bz = Cz GF(2n)
There exists
such that

u, v ∈ ℤ[X]m+k+1

  
as integer polynomials
Az ∘ Bz = Cz + u ⋅ 2+v ⋅ f (X)

We can mix in operations mod (and others!). 2n

Let be public vectors with entries in .μ, η ℤ[X]
Then over can encode “everything from
everywhere all at once”

Az ∘ Bz = Cz + u ∘ ⃗μ +v ∘ ⃗η ℤ[X]

I.e. each row can encode constraints over any of:
, , Cyclotomic rings, Galois rings, any finite field, .GF(2n) ℤ/2nℤ ℤ/nℤ

Universal arithmetization

25

GF(2n) = 𝔽2[X]/(f (X)) = ℤ[X]/(2, f (X))

 over Az ∘ Bz = Cz GF(2n)
There exists
such that

u, v ∈ ℤ[X]m+k+1

  
as integer polynomials
Az ∘ Bz = Cz + u ⋅ 2+v ⋅ f (X)

We can mix in operations mod (and others!). 2n

Let be public vectors with entries in .μ, η ℤ[X]
Then over can encode “everything from
everywhere all at once”

Az ∘ Bz = Cz + u ∘ ⃗μ +v ∘ ⃗η ℤ[X]

I.e. each row can encode constraints over any of:
, , Cyclotomic rings, Galois rings, any finite field, .GF(2n) ℤ/2nℤ ℤ/nℤ

So: a SNARK for constraints over or has universal arithmetization
properties

ℤ[X] ℚ[X]

Universal arithmetization

26

Zinc+

26

Zinc+
R𝖱𝟣𝖢𝖲ℓ,ℤ[X] = {(x; w, u, v) x ∈ ℤ[X]m, w ∈ ℤ[X]k, u, v ∈ ℤ[X]m+k+1

Az ∘ Bz = Cz + u ∘ ⃗μ +v ⋅ ⃗η over ℤ[X], z = (w, x,1)}

26

Zinc+
R𝖱𝟣𝖢𝖲ℓ,ℤ[X] = {(x; w, u, v) x ∈ ℤ[X]m, w ∈ ℤ[X]k, u, v ∈ ℤ[X]m+k+1

Az ∘ Bz = Cz + u ∘ ⃗μ +v ⋅ ⃗η over ℤ[X], z = (w, x,1)}

(x; w, u)
VP
(x)

26

Zinc+
R𝖱𝟣𝖢𝖲ℓ,ℤ[X] = {(x; w, u, v) x ∈ ℤ[X]m, w ∈ ℤ[X]k, u, v ∈ ℤ[X]m+k+1

Az ∘ Bz = Cz + u ∘ ⃗μ +v ⋅ ⃗η over ℤ[X], z = (w, x,1)}

(x; w, u)
VP
(x)

Commit to over (WIP)MLE(w), MLE(u), MLE(v) ℤ[X]

26

Zinc+
R𝖱𝟣𝖢𝖲ℓ,ℤ[X] = {(x; w, u, v) x ∈ ℤ[X]m, w ∈ ℤ[X]k, u, v ∈ ℤ[X]m+k+1

Az ∘ Bz = Cz + u ∘ ⃗μ +v ⋅ ⃗η over ℤ[X], z = (w, x,1)}

(x; w, u)
VP
(x)

Random integer and prime *a q
Commit to over (WIP)MLE(w), MLE(u), MLE(v) ℤ[X]

26

Zinc+
R𝖱𝟣𝖢𝖲ℓ,ℤ[X] = {(x; w, u, v) x ∈ ℤ[X]m, w ∈ ℤ[X]k, u, v ∈ ℤ[X]m+k+1

Az ∘ Bz = Cz + u ∘ ⃗μ +v ⋅ ⃗η over ℤ[X], z = (w, x,1)}

(x; w, u)
VP
(x)

Random integer and prime *a q
Commit to over (WIP)MLE(w), MLE(u), MLE(v) ℤ[X]

Execute a SNARK over for the constraint
 modulo

𝔽q
Az ∘ Bz = Cz + u ∘ ⃗μ +v ⋅ ⃗η (X − a, q)

26

Zinc+
R𝖱𝟣𝖢𝖲ℓ,ℤ[X] = {(x; w, u, v) x ∈ ℤ[X]m, w ∈ ℤ[X]k, u, v ∈ ℤ[X]m+k+1

Az ∘ Bz = Cz + u ∘ ⃗μ +v ⋅ ⃗η over ℤ[X], z = (w, x,1)}

(x; w, u)
VP
(x)

Random integer and prime *a q
Commit to over (WIP)MLE(w), MLE(u), MLE(v) ℤ[X]

Execute a SNARK over for the constraint
 modulo

𝔽q
Az ∘ Bz = Cz + u ∘ ⃗μ +v ⋅ ⃗η (X − a, q)

When opening ,
reduce mod .

MLE(w), MLE(u)
(X − a, q)

26

Zinc+
R𝖱𝟣𝖢𝖲ℓ,ℤ[X] = {(x; w, u, v) x ∈ ℤ[X]m, w ∈ ℤ[X]k, u, v ∈ ℤ[X]m+k+1

Az ∘ Bz = Cz + u ∘ ⃗μ +v ⋅ ⃗η over ℤ[X], z = (w, x,1)}

(x; w, u)
VP
(x)

Random integer and prime *a q
Commit to over (WIP)MLE(w), MLE(u), MLE(v) ℤ[X]

Execute a SNARK over for the constraint
 modulo

𝔽q
Az ∘ Bz = Cz + u ∘ ⃗μ +v ⋅ ⃗η (X − a, q)

When opening ,
reduce mod .

MLE(w), MLE(u)
(X − a, q)

Reduction mod is the same as replacing by and reducing mod .
This gets you to

(X − a, q) X a q
𝔽q

27

= \left\{({\color{blue} x};{\color{red}w}) \left| \ \begin{aligned} & {\color{blue}x}\in \mathbb{F}^n, \ {\color{red}w}\in
\mathbb{F}^m\\ &A{\color{red}z} \circ B{\color{red}z} = C{\color{red}z},\quad {\color{red}z}=({\color{red}w},
{\color{blue}x},1)\end{aligned}\right.\right\}

28

Zinc+

28

Zinc+
• Zinc+ will be a SNARK for constraints over or .ℤ[X] ℚ[X]

28

Zinc+
• Zinc+ will be a SNARK for constraints over or .ℤ[X] ℚ[X]
• Again we can run our schemes by making a random projection

28

Zinc+
• Zinc+ will be a SNARK for constraints over or .ℤ[X] ℚ[X]
• Again we can run our schemes by making a random projection

ℤ[X] → 𝔽

28

Zinc+
• Zinc+ will be a SNARK for constraints over or .ℤ[X] ℚ[X]
• Again we can run our schemes by making a random projection

ℤ[X] → 𝔽
 where is a prime field.𝔽

28

Zinc+
• Zinc+ will be a SNARK for constraints over or .ℤ[X] ℚ[X]
• Again we can run our schemes by making a random projection

ℤ[X] → 𝔽
 where is a prime field.𝔽
• Technically, we mod out by an ideal generated by a random prime

 and where is a random integer.
ℤ[X] (q, X − a)

q X − a a

28

Zinc+
• Zinc+ will be a SNARK for constraints over or .ℤ[X] ℚ[X]
• Again we can run our schemes by making a random projection

ℤ[X] → 𝔽
 where is a prime field.𝔽
• Technically, we mod out by an ideal generated by a random prime

 and where is a random integer.
ℤ[X] (q, X − a)

q X − a a
• In other words, replace by and reduce mod .X a q

28

Zinc+
• Zinc+ will be a SNARK for constraints over or .ℤ[X] ℚ[X]
• Again we can run our schemes by making a random projection

ℤ[X] → 𝔽
 where is a prime field.𝔽
• Technically, we mod out by an ideal generated by a random prime

 and where is a random integer.
ℤ[X] (q, X − a)

q X − a a
• In other words, replace by and reduce mod .X a q
• The parts of the scheme that occur in need to be handled with care.ℤ[X]

28

Zinc+
• Zinc+ will be a SNARK for constraints over or .ℤ[X] ℚ[X]
• Again we can run our schemes by making a random projection

ℤ[X] → 𝔽
 where is a prime field.𝔽
• Technically, we mod out by an ideal generated by a random prime

 and where is a random integer.
ℤ[X] (q, X − a)

q X − a a
• In other words, replace by and reduce mod .X a q
• The parts of the scheme that occur in need to be handled with care.ℤ[X]
• But it seems that we don’t have blowouts on the witness size (i.e. costs stay always

close to the witness bit-size, with a small constant).

28

Zinc+
• Zinc+ will be a SNARK for constraints over or .ℤ[X] ℚ[X]
• Again we can run our schemes by making a random projection

ℤ[X] → 𝔽
 where is a prime field.𝔽
• Technically, we mod out by an ideal generated by a random prime

 and where is a random integer.
ℤ[X] (q, X − a)

q X − a a
• In other words, replace by and reduce mod .X a q
• The parts of the scheme that occur in need to be handled with care.ℤ[X]
• But it seems that we don’t have blowouts on the witness size (i.e. costs stay always

close to the witness bit-size, with a small constant).
• We hope to have a PoC implementation of Zinc+ in about 3 months.

29

WIP: More improvements
Avoid V sampling a prime. Sample just an integer

Zinc in a nutshell

R𝖱𝟣𝖢𝖲ℓ,ℤ

Lift Mod random prime q

Prove with

Similar to Ligero/Brakedown
But some parts run on
Others on

ℚ
𝔽q

Zinc in a nutshell

R𝖱𝟣𝖢𝖲,ℤ/nℤ

R𝖱𝟣𝖢𝖲ℓ,ℤ

Lift Mod random prime q

Prove with

Similar to Ligero/Brakedown
But some parts run on
Others on

ℚ
𝔽q

Zinc in a nutshell

R𝖱𝟣𝖢𝖲,ℤ/nℤ

R𝖱𝟣𝖢𝖲ℓ,ℤ

R𝖱𝟣𝖢𝖲ℓ,𝔽q

Lift Mod random prime q

Prove with

Similar to Ligero/Brakedown
But some parts run on
Others on

ℚ
𝔽q

Zinc in a nutshell

R𝖱𝟣𝖢𝖲,ℤ/nℤ

R𝖱𝟣𝖢𝖲ℓ,ℤ

R𝖱𝟣𝖢𝖲ℓ,𝔽q

Lift Mod random prime q

Prove with

PIOP over 𝔽q

Similar to Ligero/Brakedown
But some parts run on
Others on

ℚ
𝔽q

Zinc in a nutshell

R𝖱𝟣𝖢𝖲,ℤ/nℤ

R𝖱𝟣𝖢𝖲ℓ,ℤ

R𝖱𝟣𝖢𝖲ℓ,𝔽q

Lift Mod random prime q

Prove with

PIOP over 𝔽q PCS over ℚ
Similar to Ligero/Brakedown
But some parts run on
Others on

ℚ
𝔽q

Zinc in a nutshell

R𝖱𝟣𝖢𝖲,ℤ/nℤ

R𝖱𝟣𝖢𝖲ℓ,ℤ

R𝖱𝟣𝖢𝖲ℓ,𝔽q

Lift Mod random prime q

Prove with

PIOP over 𝔽q PCS over ℚ

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ∘ ⃗n over ℤ, z = (w, x,1)}

Similar to Ligero/Brakedown
But some parts run on
Others on

ℚ
𝔽q

31

Bit-sizes

31

Bit-sizes

Pippenger: small entries vs large entries

31

Bit-sizes

Pippenger: small entries vs large entries
Hashes: not affected

31

Bit-sizes

Pippenger: small entries vs large entries
Hashes: not affected

Arithmetization has typically ben delegated to engineers, and neglected in research (IMO)

31

Bit-sizes

Pippenger: small entries vs large entries
Hashes: not affected

Arithmetization has typically ben delegated to engineers, and neglected in research (IMO)

Call for primitive: efficient hash-based pay-per-bit vector commitments

31

Bit-sizes

Pippenger: small entries vs large entries
Hashes: not affected

Arithmetization has typically ben delegated to engineers, and neglected in research (IMO)

Call for primitive: efficient hash-based pay-per-bit vector commitments
Use with RAA codes so the codeword is small

31

Bit-sizes

Pippenger: small entries vs large entries
Hashes: not affected

Arithmetization has typically ben delegated to engineers, and neglected in research (IMO)

Call for primitive: efficient hash-based pay-per-bit vector commitments
Use with RAA codes so the codeword is small

32

Table 1
Polygon Zisk

Using lookups to avoid arithmetization

Check Binius mult use case for the above

Tessel

Invite people to colla b in research and engineering

33

STARK proof cost breakdown

33

STARK proof cost breakdown
• Anatomy of a FRI-based SNARK:

33

STARK proof cost breakdown
• Anatomy of a FRI-based SNARK:

1. Compute the trace (i.e. the witness)

 Trace generation

33

STARK proof cost breakdown
• Anatomy of a FRI-based SNARK:

1. Compute the trace (i.e. the witness)
2. Encode the trace. 

AKA compute the Low Degree Extension (LDE) of the trace.
3. Commit to the LDE with a Merkle tree.

 Trace generation LDE computation

33

STARK proof cost breakdown
• Anatomy of a FRI-based SNARK:

1. Compute the trace (i.e. the witness)
2. Encode the trace. 

AKA compute the Low Degree Extension (LDE) of the trace.
3. Commit to the LDE with a Merkle tree.
4. Etc. (batch polynomial constraints, compute quotient polynomials, apply FRI, …)

 Trace generation LDE computation Merkle Tree (Blake)

33

STARK proof cost breakdown
• Anatomy of a FRI-based SNARK:

1. Compute the trace (i.e. the witness)
2. Encode the trace. 

AKA compute the Low Degree Extension (LDE) of the trace.
3. Commit to the LDE with a Merkle tree.
4. Etc. (batch polynomial constraints, compute quotient polynomials, apply FRI, …)

• STWO’s prover cost breakdown, when proving a Blake hash computation is:

Etc. Trace generation LDE computation Merkle Tree (Blake)

33

STARK proof cost breakdown
• Anatomy of a FRI-based SNARK:

1. Compute the trace (i.e. the witness)
2. Encode the trace. 

AKA compute the Low Degree Extension (LDE) of the trace.
3. Commit to the LDE with a Merkle tree.
4. Etc. (batch polynomial constraints, compute quotient polynomials, apply FRI, …)

• STWO’s prover cost breakdown, when proving a Blake hash computation is:
 (Source: “State of Stwo” by Eli Ben-Sasson at SBC 2024)

Etc. Trace generation LDE computation Merkle Tree (Blake)

33

STARK proof cost breakdown
• Anatomy of a FRI-based SNARK:

1. Compute the trace (i.e. the witness)
2. Encode the trace. 

AKA compute the Low Degree Extension (LDE) of the trace.
3. Commit to the LDE with a Merkle tree.
4. Etc. (batch polynomial constraints, compute quotient polynomials, apply FRI, …)

• STWO’s prover cost breakdown, when proving a Blake hash computation is:
 (Source: “State of Stwo” by Eli Ben-Sasson at SBC 2024)

Etc. Trace generation LDE computation Merkle Tree (Blake)
46%

33

STARK proof cost breakdown
• Anatomy of a FRI-based SNARK:

1. Compute the trace (i.e. the witness)
2. Encode the trace. 

AKA compute the Low Degree Extension (LDE) of the trace.
3. Commit to the LDE with a Merkle tree.
4. Etc. (batch polynomial constraints, compute quotient polynomials, apply FRI, …)

• STWO’s prover cost breakdown, when proving a Blake hash computation is:
 (Source: “State of Stwo” by Eli Ben-Sasson at SBC 2024)

Etc. Trace generation LDE computation Merkle Tree (Blake)
46% 28.2%

33

STARK proof cost breakdown
• Anatomy of a FRI-based SNARK:

1. Compute the trace (i.e. the witness)
2. Encode the trace. 

AKA compute the Low Degree Extension (LDE) of the trace.
3. Commit to the LDE with a Merkle tree.
4. Etc. (batch polynomial constraints, compute quotient polynomials, apply FRI, …)

• STWO’s prover cost breakdown, when proving a Blake hash computation is:
 (Source: “State of Stwo” by Eli Ben-Sasson at SBC 2024)

Etc. Trace generation LDE computation Merkle Tree (Blake)
46% 28.2% 12.7%

33

STARK proof cost breakdown
• Anatomy of a FRI-based SNARK:

1. Compute the trace (i.e. the witness)
2. Encode the trace. 

AKA compute the Low Degree Extension (LDE) of the trace.
3. Commit to the LDE with a Merkle tree.
4. Etc. (batch polynomial constraints, compute quotient polynomials, apply FRI, …)

• STWO’s prover cost breakdown, when proving a Blake hash computation is:
 (Source: “State of Stwo” by Eli Ben-Sasson at SBC 2024)

Etc. Trace generation LDE computation Merkle Tree (Blake)
46% 28.2% 12.7% 13.1%

34

Initial timid attempts

34

Initial timid attempts
Let’s start by trying to build a proof system for R1CS over .ℤ/nℤ

34

Initial timid attempts
Let’s start by trying to build a proof system for R1CS over .ℤ/nℤ

R𝖱𝟣𝖢𝖲,ℤ/nℤ = {(x; w) x ∈ ℤ/nℤm, w ∈ ℤ/nℤk

Az ∘ Bz = Cz over ℤ/nℤ, z = (w, x,1)}

34

Initial timid attempts
Let’s start by trying to build a proof system for R1CS over .ℤ/nℤ

R𝖱𝟣𝖢𝖲,ℤ/nℤ = {(x; w) x ∈ ℤ/nℤm, w ∈ ℤ/nℤk

Az ∘ Bz = Cz over ℤ/nℤ, z = (w, x,1)}
Observe: over if and only if over , or some .x = y ℤ/nℤ x = y + n ⋅ μ ℤ μ ∈ ℤ

34

Initial timid attempts
Let’s start by trying to build a proof system for R1CS over .ℤ/nℤ

R𝖱𝟣𝖢𝖲,ℤ/nℤ = {(x; w) x ∈ ℤ/nℤm, w ∈ ℤ/nℤk

Az ∘ Bz = Cz over ℤ/nℤ, z = (w, x,1)}

 over Az ∘ Bz = Cz ℤ/nℤ

Observe: over if and only if over , or some .x = y ℤ/nℤ x = y + n ⋅ μ ℤ μ ∈ ℤ

34

Initial timid attempts
Let’s start by trying to build a proof system for R1CS over .ℤ/nℤ

R𝖱𝟣𝖢𝖲,ℤ/nℤ = {(x; w) x ∈ ℤ/nℤm, w ∈ ℤ/nℤk

Az ∘ Bz = Cz over ℤ/nℤ, z = (w, x,1)}

 over Az ∘ Bz = Cz ℤ/nℤ

Observe: over if and only if over , or some .x = y ℤ/nℤ x = y + n ⋅ μ ℤ μ ∈ ℤ

34

Initial timid attempts
Let’s start by trying to build a proof system for R1CS over .ℤ/nℤ

R𝖱𝟣𝖢𝖲,ℤ/nℤ = {(x; w) x ∈ ℤ/nℤm, w ∈ ℤ/nℤk

Az ∘ Bz = Cz over ℤ/nℤ, z = (w, x,1)}

 over Az ∘ Bz = Cz ℤ/nℤ
There exists such that u ∈ ℤm+k+1

Observe: over if and only if over , or some .x = y ℤ/nℤ x = y + n ⋅ μ ℤ μ ∈ ℤ

34

Initial timid attempts
Let’s start by trying to build a proof system for R1CS over .ℤ/nℤ

R𝖱𝟣𝖢𝖲,ℤ/nℤ = {(x; w) x ∈ ℤ/nℤm, w ∈ ℤ/nℤk

Az ∘ Bz = Cz over ℤ/nℤ, z = (w, x,1)}

 over Az ∘ Bz = Cz ℤ/nℤ
There exists such that u ∈ ℤm+k+1

 as integersAz ∘ Bz = Cz + u ⋅ n

Observe: over if and only if over , or some .x = y ℤ/nℤ x = y + n ⋅ μ ℤ μ ∈ ℤ

34

Initial timid attempts
Let’s start by trying to build a proof system for R1CS over .ℤ/nℤ

R𝖱𝟣𝖢𝖲,ℤ/nℤ = {(x; w) x ∈ ℤ/nℤm, w ∈ ℤ/nℤk

Az ∘ Bz = Cz over ℤ/nℤ, z = (w, x,1)}

 over Az ∘ Bz = Cz ℤ/nℤ
There exists such that u ∈ ℤm+k+1

So, let’s try to build a proof system for:

 as integersAz ∘ Bz = Cz + u ⋅ n

Observe: over if and only if over , or some .x = y ℤ/nℤ x = y + n ⋅ μ ℤ μ ∈ ℤ

34

Initial timid attempts
Let’s start by trying to build a proof system for R1CS over .ℤ/nℤ

R𝖱𝟣𝖢𝖲,ℤ/nℤ = {(x; w) x ∈ ℤ/nℤm, w ∈ ℤ/nℤk

Az ∘ Bz = Cz over ℤ/nℤ, z = (w, x,1)}

 over Az ∘ Bz = Cz ℤ/nℤ
There exists such that u ∈ ℤm+k+1

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ⋅ n over ℤ, z = (w, x,1)}
So, let’s try to build a proof system for:

 as integersAz ∘ Bz = Cz + u ⋅ n

Observe: over if and only if over , or some .x = y ℤ/nℤ x = y + n ⋅ μ ℤ μ ∈ ℤ

35

Initial timid attempts

35

Initial timid attempts
By replacing with an arbitrary vector , we capture modular
arithmetic for different moduli, at the same time.

n μ ∈ ℤm+k+1
≥1

35

Initial timid attempts
By replacing with an arbitrary vector , we capture modular
arithmetic for different moduli, at the same time.

n μ ∈ ℤm+k+1
≥1

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

35

Initial timid attempts
By replacing with an arbitrary vector , we capture modular
arithmetic for different moduli, at the same time.

n μ ∈ ℤm+k+1
≥1

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}
 looks like a CCS relation over . We could try to build a SNARK for it.R ℤ

35

Initial timid attempts
By replacing with an arbitrary vector , we capture modular
arithmetic for different moduli, at the same time.

n μ ∈ ℤm+k+1
≥1

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}
 looks like a CCS relation over . We could try to build a SNARK for it.R ℤ

Let’s limit to for simplicity.R𝖱𝟣𝖢𝖲ℓ,ℤ

35

Initial timid attempts
By replacing with an arbitrary vector , we capture modular
arithmetic for different moduli, at the same time.

n μ ∈ ℤm+k+1
≥1

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}
 looks like a CCS relation over . We could try to build a SNARK for it.R ℤ

Let’s limit to for simplicity.R𝖱𝟣𝖢𝖲ℓ,ℤ
First off. For technical reasons we set a bound on the bit-size of witnesses.B

35

Initial timid attempts
By replacing with an arbitrary vector , we capture modular
arithmetic for different moduli, at the same time.

n μ ∈ ℤm+k+1
≥1

R𝖱𝟣𝖢𝖲ℓ,ℤ = {(x; w, u) x ∈ ℤm, w ∈ ℤk, u ∈ ℤm+k+1

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}
 looks like a CCS relation over . We could try to build a SNARK for it.R ℤ

Let’s limit to for simplicity.R𝖱𝟣𝖢𝖲ℓ,ℤ
First off. For technical reasons we set a bound on the bit-size of witnesses.B

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = (x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ,
z = (w, x,1)

Where is the set of integers with bit-size less than .ℤB B

36

Naïve attempt: A succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

36

Naïve attempt: A succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B
Let’s build a succinct argument for the following relation:Π

36

Naïve attempt: A succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B
Let’s build a succinct argument for the following relation:Π

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

36

Naïve attempt: A succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B
Let’s build a succinct argument for the following relation:Π

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}
Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

36

Naïve attempt: A succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B
Let’s build a succinct argument for the following relation:Π

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}
Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Prove it is sound against
that use polys over

P*
ℤB

36

Naïve attempt: A succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B
Let’s build a succinct argument for the following relation:Π

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}
Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Design a PCS for polynomials  
over ℤB

Prove it is sound against
that use polys over

P*
ℤB

36

Naïve attempt: A succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B
Let’s build a succinct argument for the following relation:Π

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}
Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Design a PCS for polynomials  
over ℤB

Prove it is sound against
that use polys over

P*
ℤB

36

Naïve attempt: A succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B
Let’s build a succinct argument for the following relation:Π

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}
Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Design a PCS for polynomials  
over ℤB

Prove it is sound against
that use polys over

P*
ℤB

36

Naïve attempt: A succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B
Let’s build a succinct argument for the following relation:Π

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}
Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Design a PCS for polynomials  
over ℤB

Prove it is sound against
that use polys over

P*
ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

37

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

37

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

Issues:

37

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

Issues:
(1) requires operating with integers of thousands of bits.

37

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

Issues:
(1) requires operating with integers of thousands of bits.
(2) is a very strong primitive.

37

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

Issues:
(1) requires operating with integers of thousands of bits.
(2) is a very strong primitive.
 The only one we are aware of is due to Block et al.

37

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

Issues:
(1) requires operating with integers of thousands of bits.
(2) is a very strong primitive.
 The only one we are aware of is due to Block et al.

Based on the DARK scheme. Uses hidden order groups. Is very slow in practice.

37

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

Issues:
(1) requires operating with integers of thousands of bits.
(2) is a very strong primitive.
 The only one we are aware of is due to Block et al.

Based on the DARK scheme. Uses hidden order groups. Is very slow in practice.
Let’s modify our naïve attempt so as to address these issues.

38

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

38

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1) requires operating with integers of thousands of bits.

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

38

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1) requires operating with integers of thousands of bits.
Solution: Campanelli and Hall-Andersen [CH2024]: have V sample a random prime .q

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

38

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1) requires operating with integers of thousands of bits.
Solution: Campanelli and Hall-Andersen [CH2024]: have V sample a random prime .q
Then execute Spartan over , rather than over .𝔽q ℤB

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

38

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1) requires operating with integers of thousands of bits.
Solution: Campanelli and Hall-Andersen [CH2024]: have V sample a random prime .q
Then execute Spartan over , rather than over .𝔽q ℤB

They call the resulting PIOP a mod-PIOP (or mod-AHP).

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

38

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1) requires operating with integers of thousands of bits.
Solution: Campanelli and Hall-Andersen [CH2024]: have V sample a random prime .q
Then execute Spartan over , rather than over .𝔽q ℤB

They call the resulting PIOP a mod-PIOP (or mod-AHP).
[CH2024] compile mod-PIOPs with (2) into a succinct argument  
for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

With soundness holding against
 that use polys over P* ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

39

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

39

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(2) is a very strong primitive.

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

39

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(2) is a very strong primitive.
[CH2024] propose using the PCS over of Block et al.ℤB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

39

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(2) is a very strong primitive.
[CH2024] propose using the PCS over of Block et al.ℤB
It is not clear how to build efficient PCS’s for integral polynomials. Why?

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

39

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(2) is a very strong primitive.
[CH2024] propose using the PCS over of Block et al.ℤB
It is not clear how to build efficient PCS’s for integral polynomials. Why?
• In a nutshell, when trying to extract the committed polynomial , one has to solve a

system of linear equations over
f

ℤ .

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

39

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(2) is a very strong primitive.
[CH2024] propose using the PCS over of Block et al.ℤB
It is not clear how to build efficient PCS’s for integral polynomials. Why?
• In a nutshell, when trying to extract the committed polynomial , one has to solve a

system of linear equations over
f

ℤ .
• The solution determines .f

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

39

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(2) is a very strong primitive.
[CH2024] propose using the PCS over of Block et al.ℤB
It is not clear how to build efficient PCS’s for integral polynomials. Why?
• In a nutshell, when trying to extract the committed polynomial , one has to solve a

system of linear equations over
f

ℤ .
• The solution determines .f
• However, in general, the solution consists of rational numbers.

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

39

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(2) is a very strong primitive.
[CH2024] propose using the PCS over of Block et al.ℤB
It is not clear how to build efficient PCS’s for integral polynomials. Why?
• In a nutshell, when trying to extract the committed polynomial , one has to solve a

system of linear equations over
f

ℤ .
• The solution determines .f
• However, in general, the solution consists of rational numbers.
• I.e. extraction often requires inversion, but is not closed under inversion.ℤ

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

40

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

40

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:

40

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:
We work over instead of .ℚB ℤB

40

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:
We work over instead of .ℚB ℤB

New program:

40

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:
We work over instead of .ℚB ℤB

New program:

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

40

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:
We work over instead of .ℚB ℤB

New program:
Soundness holds against that
use polys over

P*
ℚB

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

40

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:
We work over instead of .ℚB ℤB

New program:
Soundness holds against that
use polys over

P*
ℚB

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

40

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:
We work over instead of .ℚB ℤB

New program:
Soundness holds against that
use polys over

P*
ℚB

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

40

Designing a succinct argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

Adapt Spartan PIOP (or
SuperSpartan) for R𝖱𝟣𝖢𝖲ℓ,ℤ,B

(1)

Design a PCS for polynomials over ℤB(2)

We make the following key design choice:
We work over instead of .ℚB ℤB

New program:
Soundness holds against that
use polys over

P*
ℚB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

41

Moving to the field of rational numbers

41

Moving to the field of rational numbers
Designing a PCS over is hard because is not a field.ℤB ℤ

41

Moving to the field of rational numbers
Designing a PCS over is hard because is not a field.ℤB ℤ
We make the following key design choice:

41

Moving to the field of rational numbers
Designing a PCS over is hard because is not a field.ℤB ℤ
We make the following key design choice:

We work over instead of .ℚB ℤB

41

Moving to the field of rational numbers
Designing a PCS over is hard because is not a field.ℤB ℤ
We make the following key design choice:

We work over instead of .ℚB ℤB

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}

41

Moving to the field of rational numbers
Designing a PCS over is hard because is not a field.ℤB ℤ
We make the following key design choice:

We work over instead of .ℚB ℤB

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
Note: Now no longer captures arbitrary modular arithmetic.R𝖱𝟣𝖢𝖲ℓ,ℚ,B

41

Moving to the field of rational numbers
Designing a PCS over is hard because is not a field.ℤB ℤ
We make the following key design choice:

We work over instead of .ℚB ℤB

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
Note: Now no longer captures arbitrary modular arithmetic.R𝖱𝟣𝖢𝖲ℓ,ℚ,B
Because of this, we also design a lookup argument over . I.e. an argument forℚB

41

Moving to the field of rational numbers
Designing a PCS over is hard because is not a field.ℤB ℤ
We make the following key design choice:

We work over instead of .ℚB ℤB

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
Note: Now no longer captures arbitrary modular arithmetic.R𝖱𝟣𝖢𝖲ℓ,ℚ,B
Because of this, we also design a lookup argument over . I.e. an argument forℚB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

42

Lookup arguments over the rational numbers

42

Lookup arguments over the rational numbers
R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)

t ∈ ℚn
B, a ∈ ℚm

B ,
{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

42

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

42

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

42

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

Argument  
for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

42

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

Argument  
for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

+

42

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

Argument  
for R𝖫𝗈𝗈𝗄,ℚ,B

Argument  
for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

+

42

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

Argument  
for R𝖫𝗈𝗈𝗄,ℚ,B

Argument  
for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

+ =

42

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

Argument  
for R𝖫𝗈𝗈𝗄,ℚ,B

Argument  
for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

+ = Argument  
for R𝖱𝟣𝖢𝖲,ℤ,B

42

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

In our work we are general and describe an argument for any relation over
that can be expressed algebraically.

ℚB

Argument  
for R𝖫𝗈𝗈𝗄,ℚ,B

Argument  
for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

+ = Argument  
for R𝖱𝟣𝖢𝖲,ℤ,B

42

Lookup arguments over the rational numbers

Set . t = [−2B,2B] ∩ ℤ
Then an argument for enforces to contain entries from .R𝖫𝗈𝗈𝗄,ℚ,B a ℤB

R𝖫𝗈𝗈𝗄,ℚ,B = {(t; a)
t ∈ ℚn

B, a ∈ ℚm
B ,

{ai ∣ i ∈ [m]} ⊆ {ti ∣ i ∈ [n]}}

In our work we are general and describe an argument for any relation over
that can be expressed algebraically.

ℚB

This provides arguments for both and . R𝖱𝟣𝖢𝖲ℓ,ℚ,B R𝖫𝗈𝗈𝗄,ℚ,B

Argument  
for R𝖫𝗈𝗈𝗄,ℚ,B

Argument  
for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

+ = Argument  
for R𝖱𝟣𝖢𝖲,ℤ,B

43

The mod-PIOP technique

43

The mod-PIOP technique
We will use the idea of [CH2024] of reducing modulo a random prime.

43

The mod-PIOP technique
We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

43

The mod-PIOP technique

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

43

The mod-PIOP technique

(x; w, u)

VP
(x)

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

43

The mod-PIOP technique

(x; w, u)

VP
(x)

Oracles to MLE(w), MLE(u)

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

43

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

43

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

43

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

For the latter, it suffices to use the usual version of (Super)Spartan.

We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

43

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

For the latter, it suffices to use the usual version of (Super)Spartan.
When are queried, receives a value in and reduces it mod MLE(w), MLE(u) V ℤ q

We will use the idea of [CH2024] of reducing modulo a random prime.
First, let’s see how [CH2024] does that over the integers.

44

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

44

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

This PIOP is sound against P* that send oracles to with entries in . MLE(w), MLE(u) ℤB

44

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

This PIOP is sound against P* that send oracles to with entries in . MLE(w), MLE(u) ℤB
(Assuming the PIOP in the last step is sound).

44

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

This PIOP is sound against P* that send oracles to with entries in . MLE(w), MLE(u) ℤB
(Assuming the PIOP in the last step is sound).
Why? Suppose but that modulo for many
primes . Then one can see that some entry in is divisible by many primes.

Az ∘ Bz ≠ Cz + u ∘ μ Az ∘ Bz = Cz + u ∘ μ q
q z, u

44

The mod-PIOP technique

(x; w, u)

VP
(x)

Random prime q
Oracles to MLE(w), MLE(u)

Execute a PIOP for the constraint
 modulo Az ∘ Bz = Cz + u ∘ μ q

R𝖱𝟣𝖢𝖲ℓ,ℤ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℤk
B, u ∈ ℤm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℤ, z = (w, x,1)}

This PIOP is sound against P* that send oracles to with entries in . MLE(w), MLE(u) ℤB
(Assuming the PIOP in the last step is sound).
Why? Suppose but that modulo for many
primes . Then one can see that some entry in is divisible by many primes.

Az ∘ Bz ≠ Cz + u ∘ μ Az ∘ Bz = Cz + u ∘ μ q
q z, u

But the entries of have at most bits.z, u B

45

Zinc-PIOP: A PIOP for relations over ℚB

45

Zinc-PIOP: A PIOP for relations over ℚB
We focus on , but the techniques apply to any algebraic relation over R𝖱𝟣𝖢𝖲ℓ,ℚ,B ℚB

45

Zinc-PIOP: A PIOP for relations over ℚB
We focus on , but the techniques apply to any algebraic relation over R𝖱𝟣𝖢𝖲ℓ,ℚ,B ℚB

We will obtain a succinct argument for .R𝖱𝟣𝖢𝖲ℓ,ℚ,B

45

Zinc-PIOP: A PIOP for relations over ℚB
We focus on , but the techniques apply to any algebraic relation over R𝖱𝟣𝖢𝖲ℓ,ℚ,B ℚB

We will obtain a succinct argument for .R𝖱𝟣𝖢𝖲ℓ,ℚ,B
We start by designing a PIOP over for . Recall:ℚB R𝖱𝟣𝖢𝖲ℓ,ℚ,B

45

Zinc-PIOP: A PIOP for relations over ℚB
We focus on , but the techniques apply to any algebraic relation over R𝖱𝟣𝖢𝖲ℓ,ℚ,B ℚB

We will obtain a succinct argument for .R𝖱𝟣𝖢𝖲ℓ,ℚ,B
We start by designing a PIOP over for . Recall:ℚB R𝖱𝟣𝖢𝖲ℓ,ℚ,B

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}

45

Zinc-PIOP: A PIOP for relations over ℚB
We focus on , but the techniques apply to any algebraic relation over R𝖱𝟣𝖢𝖲ℓ,ℚ,B ℚB

We will obtain a succinct argument for .R𝖱𝟣𝖢𝖲ℓ,ℚ,B
We start by designing a PIOP over for . Recall:ℚB R𝖱𝟣𝖢𝖲ℓ,ℚ,B

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
We would like to use the mod-PIOP idea from Campanelli and Hall-Andersen.

45

Zinc-PIOP: A PIOP for relations over ℚB
We focus on , but the techniques apply to any algebraic relation over R𝖱𝟣𝖢𝖲ℓ,ℚ,B ℚB

We will obtain a succinct argument for .R𝖱𝟣𝖢𝖲ℓ,ℚ,B
We start by designing a PIOP over for . Recall:ℚB R𝖱𝟣𝖢𝖲ℓ,ℚ,B

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
We would like to use the mod-PIOP idea from Campanelli and Hall-Andersen.
But reduction modulo a prime is not well-defined: can contain rational entries.w, u

45

Zinc-PIOP: A PIOP for relations over ℚB
We focus on , but the techniques apply to any algebraic relation over R𝖱𝟣𝖢𝖲ℓ,ℚ,B ℚB

We will obtain a succinct argument for .R𝖱𝟣𝖢𝖲ℓ,ℚ,B
We start by designing a PIOP over for . Recall:ℚB R𝖱𝟣𝖢𝖲ℓ,ℚ,B

R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)
x ∈ ℤm

B , w ∈ ℚk
B, u ∈ ℚm+k+1

B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
We would like to use the mod-PIOP idea from Campanelli and Hall-Andersen.
But reduction modulo a prime is not well-defined: can contain rational entries.w, u
We use the concept of local subrings of .ℚ

46

Zinc-PIOP: A PIOP for relations over ℚB

46

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq

46

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq
ℤ(q) = {a /b ∈ ℚ ∣ q does not divide b} .

46

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq
ℤ(q) = {a /b ∈ ℚ ∣ q does not divide b} .

 is a subring of , called the localization of on .ℤ(q) ℚ ℚ q

46

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq
ℤ(q) = {a /b ∈ ℚ ∣ q does not divide b} .

 is a subring of , called the localization of on .ℤ(q) ℚ ℚ q
There is a ring homomorphism.

46

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq
ℤ(q) = {a /b ∈ ℚ ∣ q does not divide b} .

 is a subring of , called the localization of on .ℤ(q) ℚ ℚ q
There is a ring homomorphism.

ϕq : ℤ(q) → 𝔽q a /b ↦ a ⋅ b−1 mod q

46

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq
ℤ(q) = {a /b ∈ ℚ ∣ q does not divide b} .

 is a subring of , called the localization of on .ℤ(q) ℚ ℚ q
There is a ring homomorphism.

ϕq : ℤ(q) → 𝔽q a /b ↦ a ⋅ b−1 mod q
where denotes an inverse of mod .b−1 b q

46

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq
ℤ(q) = {a /b ∈ ℚ ∣ q does not divide b} .

 is a subring of , called the localization of on .ℤ(q) ℚ ℚ q
There is a ring homomorphism.

ϕq : ℤ(q) → 𝔽q a /b ↦ a ⋅ b−1 mod q
where denotes an inverse of mod .b−1 b q
So, reduction mod has a natural meaning for most rational numbers.q

46

Zinc-PIOP: A PIOP for relations over ℚB

Given a prime , defineq
ℤ(q) = {a /b ∈ ℚ ∣ q does not divide b} .

 is a subring of , called the localization of on .ℤ(q) ℚ ℚ q
There is a ring homomorphism.

ϕq : ℤ(q) → 𝔽q a /b ↦ a ⋅ b−1 mod q
where denotes an inverse of mod .b−1 b q
So, reduction mod has a natural meaning for most rational numbers.q

47

The mod-PIOP technique over the rationals

47

The mod-PIOP technique over the rationals
R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)

x ∈ ℤm
B , w ∈ ℚk

B, u ∈ ℚm+k+1
B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}

47

The mod-PIOP technique over the rationals
R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)

x ∈ ℤm
B , w ∈ ℚk

B, u ∈ ℚm+k+1
B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}

(x; w, u)

VP
(x)

47

The mod-PIOP technique over the rationals
R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)

x ∈ ℤm
B , w ∈ ℚk

B, u ∈ ℚm+k+1
B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}

(x; w, u)

VP
(x)

Oracles to MLE(w), MLE(u)

47

The mod-PIOP technique over the rationals
R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)

x ∈ ℤm
B , w ∈ ℚk

B, u ∈ ℚm+k+1
B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
Random prime q

(x; w, u)

VP
(x)

Oracles to MLE(w), MLE(u)

47

The mod-PIOP technique over the rationals
R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)

x ∈ ℤm
B , w ∈ ℚk

B, u ∈ ℚm+k+1
B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
Random prime q

If have entries in ,  
execute a PIOP for modulo .
Otherwise, abort.

z, u ℤ(q)
Az ∘ Bz = Cz + u ∘ μ q(x; w, u)

VP
(x)

Oracles to MLE(w), MLE(u)

47

The mod-PIOP technique over the rationals
R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)

x ∈ ℤm
B , w ∈ ℚk

B, u ∈ ℚm+k+1
B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
Random prime q

If have entries in ,  
execute a PIOP for modulo .
Otherwise, abort.

z, u ℤ(q)
Az ∘ Bz = Cz + u ∘ μ q(x; w, u)

VP
(x)

Completeness: Completeness only fails when don’t have all entries in .z, u ℤ(q)

Oracles to MLE(w), MLE(u)

47

The mod-PIOP technique over the rationals
R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)

x ∈ ℤm
B , w ∈ ℚk

B, u ∈ ℚm+k+1
B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
Random prime q

If have entries in ,  
execute a PIOP for modulo .
Otherwise, abort.

z, u ℤ(q)
Az ∘ Bz = Cz + u ∘ μ q(x; w, u)

VP
(x)

Completeness: Completeness only fails when don’t have all entries in .z, u ℤ(q)

If this happens for many primes, then some entry in has huge size. z, u

Oracles to MLE(w), MLE(u)

47

The mod-PIOP technique over the rationals
R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)

x ∈ ℤm
B , w ∈ ℚk

B, u ∈ ℚm+k+1
B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
Random prime q

If have entries in ,  
execute a PIOP for modulo .
Otherwise, abort.

z, u ℤ(q)
Az ∘ Bz = Cz + u ∘ μ q(x; w, u)

VP
(x)

Completeness: Completeness only fails when don’t have all entries in .z, u ℤ(q)

If this happens for many primes, then some entry in has huge size. z, u
But entries in have bit-size .z, u ≤ B

Oracles to MLE(w), MLE(u)

48

The mod-PIOP technique over the rationals
R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)

x ∈ ℤm
B , w ∈ ℚk

B, u ∈ ℚm+k+1
B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
Random prime q

If have entries in ,  
execute a PIOP for modulo .
Otherwise, abort.

z, u ℤ(q)
Az ∘ Bz = Cz + u ∘ μ q(x; w, u)

VP
(x)

Oracles to MLE(w), MLE(u)

48

The mod-PIOP technique over the rationals
R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)

x ∈ ℤm
B , w ∈ ℚk

B, u ∈ ℚm+k+1
B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
Random prime q

If have entries in ,  
execute a PIOP for modulo .
Otherwise, abort.

z, u ℤ(q)
Az ∘ Bz = Cz + u ∘ μ q(x; w, u)

VP
(x)

Oracles to MLE(w), MLE(u)

Soundness: Similarly as in mod-PIOPs over the integers (with some technical subtleties).

48

The mod-PIOP technique over the rationals
R𝖱𝟣𝖢𝖲ℓ,ℚ,B = {(x; w, u)

x ∈ ℤm
B , w ∈ ℚk

B, u ∈ ℚm+k+1
B

Az ∘ Bz = Cz + u ∘ μ over ℚ, z = (w, x,1)}
Random prime q

If have entries in ,  
execute a PIOP for modulo .
Otherwise, abort.

z, u ℤ(q)
Az ∘ Bz = Cz + u ∘ μ q(x; w, u)

VP
(x)

Oracles to MLE(w), MLE(u)

Soundness: Similarly as in mod-PIOPs over the integers (with some technical subtleties).
If P* has large success probability, then some witness entry has large bit-size.

49

Where are we?

49

Where are we?
PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

49

Where are we?
Soundness holds against that
use polys over

P*
ℚBPIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

49

Where are we?
Soundness holds against that
use polys over

P*
ℚBPIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

49

Where are we?
Soundness holds against that
use polys over

P*
ℚBPIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

49

Where are we?
Soundness holds against that
use polys over

P*
ℚB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

49

Where are we?

Next, we design Zip, a PCS for polynomials over .ℚB

Soundness holds against that
use polys over

P*
ℚB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

49

Where are we?

Next, we design Zip, a PCS for polynomials over .ℚB
Zip is based on the Brakedown PCS.

Soundness holds against that
use polys over

P*
ℚB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

49

Where are we?

Next, we design Zip, a PCS for polynomials over .ℚB
Zip is based on the Brakedown PCS.
Uses error correcting codes and hash functions.

Soundness holds against that
use polys over

P*
ℚB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

49

Where are we?

Next, we design Zip, a PCS for polynomials over .ℚB
Zip is based on the Brakedown PCS.
Uses error correcting codes and hash functions.
This is the most involved part of our work.

Soundness holds against that
use polys over

P*
ℚB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

49

Where are we?

Next, we design Zip, a PCS for polynomials over .ℚB
Zip is based on the Brakedown PCS.
Uses error correcting codes and hash functions.
This is the most involved part of our work.
Zip features both

Soundness holds against that
use polys over

P*
ℚB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

49

Where are we?

Next, we design Zip, a PCS for polynomials over .ℚB
Zip is based on the Brakedown PCS.
Uses error correcting codes and hash functions.
This is the most involved part of our work.
Zip features both
• IOP of proximity to a linear code

Soundness holds against that
use polys over

P*
ℚB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

49

Where are we?

Next, we design Zip, a PCS for polynomials over .ℚB
Zip is based on the Brakedown PCS.
Uses error correcting codes and hash functions.
This is the most involved part of our work.
Zip features both
• IOP of proximity to a linear code
• IOP of proximity to the integers

Soundness holds against that
use polys over

P*
ℚB

Compile into succinct
argument for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

PIOP for R𝖱𝟣𝖢𝖲ℓ,ℚ,B

Design a PCS for polynomials  
over ℚB

New!

50

Zip

Soundness

50

Zip

Soundness

50

Zip

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

Soundness

50

Zip

Zip guarantees P committed to multilinear .f ∈ ℚB′￼[X1, …, Xμ]

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

Soundness

50

CompletenessZip

Zip guarantees P committed to multilinear .f ∈ ℚB′￼[X1, …, Xμ]

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

Soundness

50

CompletenessZip

Zip guarantees P committed to multilinear .f ∈ ℚB′￼[X1, …, Xμ]

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

Soundness

50

CompletenessZip

Zip guarantees P committed to multilinear .f ∈ ℚB′￼[X1, …, Xμ]
But we expect the honest P to commit to multilinear ,f ∈ ℤB[X1, …, Xμ]

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

Soundness

50

CompletenessZip

Zip guarantees P committed to multilinear .f ∈ ℚB′￼[X1, …, Xμ]
But we expect the honest P to commit to multilinear ,f ∈ ℤB[X1, …, Xμ]
Here is certain bound determined by , and other parameters.B′￼ B, μ

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

Soundness

50

CompletenessZip

Zip guarantees P committed to multilinear .f ∈ ℚB′￼[X1, …, Xμ]
But we expect the honest P to commit to multilinear ,f ∈ ℤB[X1, …, Xμ]
Here is certain bound determined by , and other parameters.B′￼ B, μ
If P doesn’t use , completeness may fail.f ∈ ℤB[X1, …, Xμ]

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

Soundness

50

CompletenessZip

Zip guarantees P committed to multilinear .f ∈ ℚB′￼[X1, …, Xμ]
But we expect the honest P to commit to multilinear ,f ∈ ℤB[X1, …, Xμ]
Here is certain bound determined by , and other parameters.B′￼ B, μ
If P doesn’t use , completeness may fail.f ∈ ℤB[X1, …, Xμ]
Analogous to IOP of proximity (IOPP) to a code:

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

Soundness

50

CompletenessZip

Zip guarantees P committed to multilinear .f ∈ ℚB′￼[X1, …, Xμ]
But we expect the honest P to commit to multilinear ,f ∈ ℤB[X1, …, Xμ]
Here is certain bound determined by , and other parameters.B′￼ B, μ
If P doesn’t use , completeness may fail.f ∈ ℤB[X1, …, Xμ]
Analogous to IOP of proximity (IOPP) to a code:

An IOPP guarantees P committed to words close to codewords,

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

Soundness

50

CompletenessZip

Zip guarantees P committed to multilinear .f ∈ ℚB′￼[X1, …, Xμ]
But we expect the honest P to commit to multilinear ,f ∈ ℤB[X1, …, Xμ]
Here is certain bound determined by , and other parameters.B′￼ B, μ
If P doesn’t use , completeness may fail.f ∈ ℤB[X1, …, Xμ]
Analogous to IOP of proximity (IOPP) to a code:

An IOPP guarantees P committed to words close to codewords,
But completeness is only guaranteed if P actually used codewords

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

Soundness

50

CompletenessZip

Zip guarantees P committed to multilinear .f ∈ ℚB′￼[X1, …, Xμ]
But we expect the honest P to commit to multilinear ,f ∈ ℤB[X1, …, Xμ]
Here is certain bound determined by , and other parameters.B′￼ B, μ
If P doesn’t use , completeness may fail.f ∈ ℤB[X1, …, Xμ]
Analogous to IOP of proximity (IOPP) to a code:

An IOPP guarantees P committed to words close to codewords,
But completeness is only guaranteed if P actually used codewords

In our use cases, honest always uses integral polys.P

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

Soundness

50

CompletenessZip

Zip guarantees P committed to multilinear .f ∈ ℚB′￼[X1, …, Xμ]
But we expect the honest P to commit to multilinear ,f ∈ ℤB[X1, …, Xμ]
Here is certain bound determined by , and other parameters.B′￼ B, μ
If P doesn’t use , completeness may fail.f ∈ ℤB[X1, …, Xμ]
Analogous to IOP of proximity (IOPP) to a code:

An IOPP guarantees P committed to words close to codewords,
But completeness is only guaranteed if P actually used codewords

In our use cases, honest always uses integral polys.P
(We can extend Zip to enable completeness for)f ∈ ℚB[X1, …, Xμ] .

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

51

Soundness CompletenessZip

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

51

Soundness CompletenessZip

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

Zip is essentially Brakedown over , executed modulo a random prime at times.ℚ

51

Soundness CompletenessZip

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

Zip is essentially Brakedown over , executed modulo a random prime at times.ℚ
The commitment happens over .ℚ

51

Soundness CompletenessZip

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

Zip is essentially Brakedown over , executed modulo a random prime at times.ℚ
The commitment happens over .ℚ
Hence, we use a linear code over (with integral generator matrix).ℚ MGen

51

Soundness CompletenessZip

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

Zip is essentially Brakedown over , executed modulo a random prime at times.ℚ
The commitment happens over .ℚ
Hence, we use a linear code over (with integral generator matrix).ℚ MGen
We use Expand-Accumulate codes to make sure has “small” entries.MGen

51

Soundness CompletenessZip

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

Zip is essentially Brakedown over , executed modulo a random prime at times.ℚ
The commitment happens over .ℚ
Hence, we use a linear code over (with integral generator matrix).ℚ MGen
We use Expand-Accumulate codes to make sure has “small” entries.MGen
We need to add extra (but costless) Verifier checks to make sure committed to a
polynomial with bounded coefficients.

P

51

Soundness CompletenessZip

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

Zip is essentially Brakedown over , executed modulo a random prime at times.ℚ
The commitment happens over .ℚ
Hence, we use a linear code over (with integral generator matrix).ℚ MGen
We use Expand-Accumulate codes to make sure has “small” entries.MGen
We need to add extra (but costless) Verifier checks to make sure committed to a
polynomial with bounded coefficients.

P

51

Soundness CompletenessZip

f ∈ ℚB′￼[X1, …, Xμ]
Guaranteed: P committed to

f ∈ ℤB[X1, …, Xμ], B < B′￼

To be used only for

Zip is essentially Brakedown over , executed modulo a random prime at times.ℚ
The commitment happens over .ℚ
Hence, we use a linear code over (with integral generator matrix).ℚ MGen
We use Expand-Accumulate codes to make sure has “small” entries.MGen
We need to add extra (but costless) Verifier checks to make sure committed to a
polynomial with bounded coefficients.

P

Key technical lemma: A random linear combination of
rational numbers with large bit-size has large bit-size,
e.w.n.p.

