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Public Key PK

Threshold Schnorr Signatures

• final signature 
 verifies as 

Schnorr signature 
under 

sig = (R, z)

PK



Remember ROS attacks?



ROS Attacks
• ROS problem first stated in Schnorr’s original paper 

• many threshold, blind, and multi-signatures were shown insecure 

• ROS attacks fundamentally rely on concurrency 

• most recent showing a polynomial-time attack for greater than 
(e.g., ≈180) concurrent sessions 

• a birthday problem

0.725 log(p)



Our Attack
• similar to ROS, we construct an attack where the forgery amounts to a linear 

combination of parties’ public values 

• uniquely, our attack allows a forgery based on public key shares alone - no 
partial signatures are required 

• unlike ROS attacks, the attack works even for a single signing session
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The Problem P
• we define a search problem P and show a concrete, efficient attack if P is 

easy to solve

• similar to ROS, P does not rely on group elements or operations (field elements 
only) 

• unlike ROS, P is not stated in terms of a random oracle
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Conditions of Our Attack
Our attack applies to any scheme with the following 3 properties:

1. Public key shares  are publicPK1, …, PKn

2. Public keys are , where  is a 
degree  polynomial with coefficients in 

PK = gf(0), PK1 = gf(1), …, PKn = gf(n) f
t ℤp

• e.g., Shamir secret sharing, DL-based DKGs like Pedersen, Gennaro et al.

3. Final signature is compatible with Schnorr verification: R ⋅ PKc = gz



Affected Schemes
• FROST, FROST2, FROST3 

• SimpleTSig 

• Sparkle, Sparkle+ 

• Lindell’22 

• Classic S. 

• GKMN’21 (deterministic) 

• Arctic (deterministic)

Robust (G.O.D.): 

• ROAST 

• SPRINT 

• HARTS 

• GJKR’07 

• Stinson-Strobl’01
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The Attack
• adversary sets  for random R* = PKα0PKα1

1 ⋯PKαn
n α0, α1, …, αn ∈ ℤp

• valid forgery: R*PKc* = gz*

• R*PKc* = PKc*+α0PKα1
1 ⋯PKαn

n

•  where  are Vandermonde 
vectors
ski = f(i) = a0 + a1i + … + atit ⃗vi = (1,i, i2, …, it)

• compute       where ⃗w = c* ⃗v0 +
n

∑
i=0

αi ⃗vi c* = H(PK, m*, R*)
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The Attack
• uses oracle for solving problem P to obtain set  with 

 such that 
CS ⊆ {1,…, n}

|CS | = tc ⃗w ∈ span({ ⃗vi∈CS})

• corrupts all parties in  to obtain CS {ski}i∈CS

• computes (via linear algebra)  such that:{βj}j∈CS

• ⃗w = c* ⃗v0 +
n

∑
i=0

αi ⃗vi = ∑
j∈CS

βj ⃗vj

• finally, computes z* = ∑
j∈CS

βjskj
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Implications of Our Results
Our results have two striking implications: 

1. If P is easy to solve, all schemes meeting Conditions 1-3 are statically secure 
but not adaptively secure 

Would be first such separation for any natural protocol, solving a long-
standing open problem in MPC 

Moreover, would apply to a large class of schemes and would hold even in 
the strongest idealized models: the AGM and the GGM



Implications of Our Results
2. The full adaptive security of these schemes cannot be proven without an 

assumption that implies the hardness of some instances of P 

Such an assumption would likely go beyond assumptions about the group 
and ROs since P is not defined in terms of them 

Moreover, this extends to corruption thresholds below tc = t



Call to Action
• attack is “plausible” because we do not know if the problem P is easy to solve 

or not 

• some preliminary analysis, but further investigation needed
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FROST
• Flexible Round-Optimized Schnorr Threshold signatures 

• 2 rounds 

• 1 offline pre-processing round, 1 online signing round 

• static security in the ROM under AOMDL 

• OMDL: Given  and  queries to a DL solution oracle , 
output  discrete logs  

• AOMDL: falsifiable variant of OMDL

(X0, X1, …, Xt) t 𝒪DL(X)
t + 1 (x0, x1, …, xt)



z ← r + c ⋅ sk

How to share  ? sk
How to share  ? r

Threshold Schnorr Signatures

sig = (R, z)



FROST
• To sign a message , party  

• Round 1: samples , sets , , and outputs  

• Round 2: computes 

•  

•   

•  

•  

• outputs 

m Pi

ri, si
$ ℤp Ri ← gri Si ← gsi Ri, Si

ai ← H′￼(i, PK, m, {Ri, Si}i∈𝒮)

R = Πi∈𝒮 Ri ⋅ Sai
i

c ← H(PK, m, R)

zi ← ri + ai ⋅ si + c ⋅ λ𝒮
i ⋅ ski

zi

R ⋅ PKc ?= gz z = Σi∈𝒮 zi

sig = (R, z)

m, 𝒮



Optimizations FROST2 / FROST3
• FROST2 computational optimization of FROST 

• FROST3 improves communication complexity of FROST2 

• we prove adaptive security of all 3 variants



IRTF FROST Standardization
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Our Main Results
1. FROST/2/3 secure up to  adaptive corruptions in the ROM under AOMDL 

• same as the original assumptions for FROST static security

t/2

2. FROST/2/3 secure up to  (i.e., full) adaptive corruptions in the AGM+ROM 
under AOMDL+LDVR (our new assumption)

t

3. Unconditional hardness of LDVR for interesting values above t/2
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(32, 128)
(64, 128)

0.55 0.60 0.70 0.80 0.90 1.00

(96, 128)
(64, 256)
(128, 256)
(192, 256)

(256, 1024)
(512, 1024)

𝖿𝗋𝖺𝖼 = tc/t

(t, n)

Unconditionally hard ??

Unconditional Hardness of LDVR



Half Adaptive Security Proof
• FROST/2/3 for up to  adaptive corruptions in the ROM under AOMDL 

• same assumptions as static FROST 

• similar structure to static FROST proof

t/2
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• “Want” this in order to break LDVR

• If no, can break AOMDL instead

Full Adaptive Security Proof
• FROST/2/3 for up to  adaptive corruptions in the AGM+ROM under 

AOMDL+LDVR
t

• when adversary queries , it must output representation:c* = H(PK, m*, R*)

Can replace with  and g PK′￼is?



Call to Action
• we do not know if P or LDVR is easy or hard (beyond the unconditional 

bound) 

• other schemes may be proven under variants of these assumptions

Adaptive FROSTPlausible Attack
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