
Contribution Overview Backgrounds Random bit Sampling secret-shared FHE, SSFHE Circuit-private MPC

Secret sharing-based FHE
Actively Secure MPC in the Dishonest Majority Setting: Achieving

Constant Complexity in Online Communication, Computation
Per Gate, Rounds, and Private Input Size

Seunghwan Lee (Speaker)1,2, Jaesang Noh2, Taejong Kim2,
Dohyuk Kim1,2, and Dong-Joon Shin1,2

waLLLnut Co., Ltd.1 and University of Hanyang2

shlee@walllnut.com and kr3951@hanyang.ac.kr

Presentation in Crypto25
August 18, 2025

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 1 / 43



Contribution Overview Backgrounds Random bit Sampling secret-shared FHE, SSFHE Circuit-private MPC

Presentation Overview

1 Contribution Overview

2 Backgrounds

3 Random Bit Sampling over Composite-Modulus Secret Sharing

4 secret-shared FHE, SSFHE

5 Circuit-private MPC

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 2 / 43



Contribution Overview



Contribution Overview Backgrounds Random bit Sampling secret-shared FHE, SSFHE Circuit-private MPC

Secure Multi-Party Computation (MPC)
MPC :
• Allows multiple parties to jointly

compute a function
• Inputs remain private

throughout the computation

Security Models:
• Honest Majority Setting:

• Majority of parties follow the
protocol

• Enables Guaranteed Output
Delivery (GOD)

• Dishonest Majority Setting:
• Majority may be corrupted
• At most Security with Abort

can be guaranteed
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Dishonest Majority MPC: BMR vs SPDZ

BMR Protocol (Circuit garbling)[3]:

• Constant-round MPC protocol
• Each gate must be garbled and sent to all parties
• the concrete communication cost of preprocessing/garbling is

pretty larger than SPDZ

SPDZ Protocol (secret sharing)[4]:
• Uses information-theoretic MACs for integrity
• Small communication cost and very efficient in practice
• Online phase requires the number of non-constant

communication round

Both protocols requires Ω(n|C|) communications for a given
circuit C with |C|= cin + cout + cgate

How about FHE-based MPC? (Threshold FHE)

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 5 / 43
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FHE-based MPC ...
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Practical Limitations of FHE-Based MPC

Apparantly, FHE-based MPC seems to reduce the cost from
Ω
(
n(cin + cout + cgate))

)
to Ω

(
n(cin + cout))

)
, but...

• High Computational Overhead:
• FHE operations are significantly slower than plaintext

equivalents
Performance Degrades with Number of Parties:
• Computation cost increases exponentially with the number of

parties
• Security Challenges under Dishonest Majority:

• Active security typically requires zero-knowledge proofs.
• ZKPs introduce heavy overhead and complex protocol logic.
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Key Challenges in FHE-based MPC (PPT in NIST
MPTS 2023)

Figure: Content on Page 4 of the NIST MPTS 2023 PPT [13]
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Key Challenges in FHE-based MPC (PPT in NIST
MPTS 2023)

Figure: Today’s FHE-based MPC properties
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Comparison of FHE-based MPC Protocols

• Our solution: secret sharing (SPDZ) + FHE + pre-processing
model→ SSFHE

Types |ct| |ev| |evGen|
GLS15 [5] ThHE O(nd2

λ,n log dλ,n) 0 0
JS23 [6] ThHE O(dλ,n) O(d2

λ,n) O(nd2
λ,n)

DDE+23 [7] ThHE O(dλ) O(d2
λ) unspecified

CCS19 [8] MkHE O(ndλ,n) O(n2d2
λ,n) O(n2d2

λ,n)

TLX+21 [9] MkHE O(dλ,n) O(d2
λ,n) O(nd2

λ,n)

Ours ThHE O(dλ) O(d2
λ) O(nκd2

λ)

Majority Security Gate speed NTT-friendly
GLS15 [5] Honest Active O(poly(λ, n)) Yes
JS23 [6] Honest Passive O(poly(λ, n)) Yes

DDE+23 [7] Honest Active O(poly(λ)) No
CCS19 [8] Honest Passive O(poly(λ, n)) Yes
TLX+21 [9] Honest Passive O(poly(λ, n)) Yes

Ours Dishonest Active O(poly(λ)) Yes

Table: Comparison of FHE-based MPC protocols. The parameter λ is the
computational security bit, κ is the statistical security bit, and dλ,n is the
dimension of LWE sample
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Circuit-Private MPC in Dishonest Majority Setting
• Another Goal: How to build circuit-private MPC under

dishonest majority and eavesdropping environment?

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 11 / 43
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Circuit-Private MPC in Dishonest Majority Setting

• Anothor Goal: How to build circuit-private MPC under
dishonest majority and eavesdropping environment?
• While the universal circuit approach might help [14],

• the overall communication size nevertheless leaks information
about the circuit.

• Problem in SPDZ, BMR:
• Communication increases proportional to circuit size
• Circuit structure is indirectly leaked through total traffic

• FHE-based MPC is ready to be proven
• All evaluation is local
• No circuit-dependent communication in the online phase
• Circuit privacy is provably achieved

Our protocol is the first to achieve circuit-private MPC with active
security under dishonest majority.
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LWE Sample and Encryption Review
LWE Sample:
• Fix modulus q, dimension n, and error distribution χ (e.g.,

discrete Gaussian)
• Let s ∈ Zn

q be a secret vector
• Sample A ∈ Zn×m

q uniformly at random and noise e← χm

• Output the LWE sample: (A,b = sA + e mod q)

Definition (Regev’s Encryption [10])
Let M = [At |bt ] ∈ Zm×(n+1)

q be public, and s ∈ Zn
q be a secret key.

To encrypt x ∈ {0,1}:
• Sample r ∈ {0,1}m, e1 ← χn e2 ← χ and compute c = (c1, c2):

c1 = rAt +e1 ∈ Zn
q, c2 = rbt +

⌊q
2

⌋
m+e2 = rAtst +ret +e2+

⌊q
2

⌋

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 14 / 43
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Addition and Multiplication in LWE ciphertext

Addition (Linear):
• Ciphertexts can be added.
• Example:

Dec
(
Enc(m1) + Enc(m2)

)
=

(
(A1,b2) + (A2,b2)

)
= m1 + m2 (noise

grows linearly).

Multiplication (Nontrivial):
• Multiplying ciphertexts is not straightforward and limited up to at

most L times.

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 15 / 43
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Bootstrapping: From Leveled HE to FHE
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SPDZ Secret Sharing:
(n-out-of -n)Linear Secret Sharing: We denote the share of m as

[m] = ([m]1, [m]2, . . . , [m]n) ∈ Zn
q

such that

m =
n∑

i=1

[m]i mod p

Definition (Ideal functionality FSPDZ)
• Fp

SPDZ.Input(·): from input x , output [x ]i to the Pi .
• Fp

SPDZ.Rand(): output [u]i for some uniformly random u ∈ Zp.
• Fp

SPDZ.RandBit(): output [r ]i for some random bit r ∈ Zp.
• Fp

SPDZ.MUL([x ], [y ]): output [xy ]i to the Pi .

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 17 / 43
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Arithmetic on Secret Shares: SPDZ-style MPC

Linear operations: Local and efficient
• [x + y ] can be computed locally:

[x + y ]i = [x ]i + [y ]i

0.5em Multiplication: Requires communication + preprocessing

• [x · y ] is computed using a Beaver triple:

Preprocess: ⟨a⟩, ⟨b⟩, ⟨ab⟩

• Parties use x − a and y − b to compute xy via interactive
protocol.
• Hence, multiplicative depth of the circuit C determines the

number of communication round, and the number of
multiplication in C determines the total communication.

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 18 / 43
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Threshold FHE: Idea and Challenges
• Remind LWE encryption:

Encs⃗(m) = (a⃗, b =
∑

aisi + e)

• If parties hold [si ] and [e] as secret sharing, and a⃗ is a common
reference string (CRS):

[b] =
∑

ai [si ] + [e]

• Opening [b] gives Regev encryption in threshold form

Challenges:
• the modulus Q often not a prime
• KDM security: Must support

Encs⃗1
(⃗s2), Encs⃗1

(⃗s1)

while Encs⃗1
and Encs⃗2

could use difference modulus,
respectively.

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 19 / 43



Contribution Overview Backgrounds Random bit Sampling secret-shared FHE, SSFHE Circuit-private MPC

Threshold FHE: Idea and Challenges
• Remind LWE encryption:

Encs⃗(m) = (a⃗, b =
∑

aisi + e)

• If parties hold [si ] and [e] as secret sharing, and a⃗ is a common
reference string (CRS):

[b] =
∑

ai [si ] + [e]

• Opening [b] gives Regev encryption in threshold form

Challenges:
• the modulus Q often not a prime
• KDM security: Must support

Encs⃗1
(⃗s2), Encs⃗1

(⃗s1)

while Encs⃗1
and Encs⃗2

could use difference modulus,
respectively.

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 19 / 43



Contribution Overview Backgrounds Random bit Sampling secret-shared FHE, SSFHE Circuit-private MPC

Threshold FHE: Idea and Challenges
• Remind LWE encryption:

Encs⃗(m) = (a⃗, b =
∑

aisi + e)

• If parties hold [si ] and [e] as secret sharing, and a⃗ is a common
reference string (CRS):

[b] =
∑

ai [si ] + [e]

• Opening [b] gives Regev encryption in threshold form

Challenges:
• the modulus Q often not a prime
• KDM security: Must support

Encs⃗1
(⃗s2), Encs⃗1

(⃗s1)

while Encs⃗1
and Encs⃗2

could use difference modulus,
respectively.

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 19 / 43



Contribution Overview Backgrounds Random bit Sampling secret-shared FHE, SSFHE Circuit-private MPC

Threshold FHE: Idea and Challenges
• Remind LWE encryption:

Encs⃗(m) = (a⃗, b =
∑

aisi + e)

• If parties hold [si ] and [e] as secret sharing, and a⃗ is a common
reference string (CRS):

[b] =
∑

ai [si ] + [e]

• Opening [b] gives Regev encryption in threshold form

Challenges:

• the modulus Q often not a prime
• KDM security: Must support

Encs⃗1
(⃗s2), Encs⃗1

(⃗s1)

while Encs⃗1
and Encs⃗2

could use difference modulus,
respectively.

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 19 / 43



Contribution Overview Backgrounds Random bit Sampling secret-shared FHE, SSFHE Circuit-private MPC

Threshold FHE: Idea and Challenges
• Remind LWE encryption:

Encs⃗(m) = (a⃗, b =
∑

aisi + e)

• If parties hold [si ] and [e] as secret sharing, and a⃗ is a common
reference string (CRS):

[b] =
∑

ai [si ] + [e]

• Opening [b] gives Regev encryption in threshold form

Challenges:
• the modulus Q often not a prime

• KDM security: Must support

Encs⃗1
(⃗s2), Encs⃗1

(⃗s1)

while Encs⃗1
and Encs⃗2

could use difference modulus,
respectively.

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 19 / 43



Contribution Overview Backgrounds Random bit Sampling secret-shared FHE, SSFHE Circuit-private MPC

Threshold FHE: Idea and Challenges
• Remind LWE encryption:

Encs⃗(m) = (a⃗, b =
∑

aisi + e)

• If parties hold [si ] and [e] as secret sharing, and a⃗ is a common
reference string (CRS):

[b] =
∑

ai [si ] + [e]

• Opening [b] gives Regev encryption in threshold form

Challenges:
• the modulus Q often not a prime
• KDM security: Must support

Encs⃗1
(⃗s2), Encs⃗1

(⃗s1)

while Encs⃗1
and Encs⃗2

could use difference modulus,
respectively.

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 19 / 43



Random Bit Sampling over
Composite-Modulus Secret

Sharing



Contribution Overview Backgrounds Random bit Sampling secret-shared FHE, SSFHE Circuit-private MPC

Sampling on the secret sharing with Composite
Modulus

• Idea: Sample secret key and error over a composite modulus

Q = p1 · p2 · · · pℓ

where each pi is pairwise co-prime and Fpi
SPDZ are available.

• However, directly invoking all Fpi
SPDZ.RandBit() is not a solution.

This is because the elements {0,1} ∈ ZQ must correspond to
the tuples (0, . . . ,0) and (1, . . . ,1) across all moduli.
• Goal: Construct arbitrary discrete distributions (e.g., Discrete

Gaussian) from uniform bits over Q with active security

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 21 / 43
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Sampling on the secret sharing with Composite
Modulus

Lemma (Inverse transform sampling)
Let D be any discrete distribution with support size poly(n) and
u1, . . . ,uκ be κ uniformly random samples. Then there exists a
Boolean/arithmetic circuit such that:
• Depth: at most 3⌈log κ⌉+ 2
• Multiplications: at most 6 · poly(n) · κ
• Output: a sample from distribution statistically close to D
• advantage of adversary: statistical distance ≤ 2−κ

• Actively secure one-bit sampler over Q ⇒
• Actively secure sampler for any poly(n)-bounded distribution,

including discrete Gaussians with polynomial variance
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Core idea of samping one bit on the composite
modulus [12]
• First, perform one-bit sampling of [m]p over an auxiliary prime

modulus p and obtaining k such that m =
∑n

i=1[m]pi − kp.

• Then, replicate the sampled share into corresponding shares

[m]p1 , [m]p2 , . . . , [m]pℓ

over the other prime moduli via m = (
∑n

i=1[m]pi − kp) mod pi .

Fp
MPC

Fp1
MPC

. . . Fpl
SPDZ

Fp,p1,...,pl
MPC · RandomBits()
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Open Only High Bits to obtaining k [12]
∆-split (high bit only). Let p be prime and each party hold a share
xi ∈ {0, . . . ,p − 1}. Fix ∆ = ⌈p/n⌉ and write

[m]i = ℓi +∆hi , 0 ≤ ℓi < ∆.

Only the high bits hi are opened; the lows ℓi remain secret.

Lemma [Correctness]. Let [m]1, . . . , [m]n be uniformly chosen subject to

[m]1 + · · ·+ [m]n ∈ {k · p, k · p + 1}

for some integer k . Set ∆ = ⌈p/n⌉ and decompose xi = ℓi +∆hi with
0 ≤ ℓi < ∆. Then, with probability at least 1− 3

p ,

k =
⌊
∆
p

n∑
i=1

hi

⌋
Lemma [Zero knowledge, Informal] The protocol has perfectly hiding
property (no informational leakage).
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Verification protocol [12]
Verifying t uniformly random bits consuming sec random bits

1 Sample public t + sec values ri,j uniformly at random from
{0,2sec − 1}.

2 For each v = 0, . . . , t − 1, compute linear shares

[Sv ]
pv =

t+sec∑
i=1

ri,j · [mi ]
pv .

3 Open [S0]
p0 (auxiliary prime p0) and each Sv .

4 Abort if S0 ̸= Sv mod pv for some v .
5 Otherwise output [mi ]

pv .

Note. The ri,j randomizers (size 2sec) guarantee hiding , while
cross-checking ensures consistency across all moduli.

Drawback. The opened value [S0]
p0 must satisfy 0 < S0 < p0, which

requires the auxiliary prime p0 to be much larger than 2sec. Hence, a very
large modulus p0 is needed.
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[Our works] Opening High Bits: Counterexample &
Lemma (in One Slide)
Toy counterexample (not perfectly hiding).

Let p0 = 7, ∆ = ⌈p0/2⌉ = 4, and an adversary fixes its share [m]
(7)
2 = 1.

Then h2 = 0 and reconstruction m ≡ [m]
(7)
1 + [m]

(7)
2 (mod 7) with m ∈ {0,1}

forces [m]
(7)
1 ∈ {0,6}. Opening only h1 = ⌊[m]

(7)
1 /∆⌋ reveals m

(h1 = 0⇒m = 1, h1 = 1⇒m = 0). Hence perfect hiding can fail.

Lemma (no leakage except boundary cases). Write an honest share as
[m]i = ℓi +∆hi with 0 ≤ ℓi < ∆, hi ∈ {0,1}. If [m]i is not in any of the
following boundary cases:

(i) ℓi = 0, (ii) ℓi = ∆− 1, (iii) [m]i = p − 1,

then revealing hi leaks no information about m (i.e., hi ⊥ m).

Note (rejection sampling restores perfect hiding property). Whenever
a bad event is detected, discard that sample (rejection) and resample; the
resulting message-bit shares [m] are again uniformly random and thus
perfectly hiding.
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[Our contribution] Protocol Fix: Boundary-Share
Filter Before Opening hi

Idea. Honest parties locally screen out boundary cases before any hi is
opened.

Distribute hi phase (before high-bit opening).
1 Each honest Pi computes ℓi = [m]i mod ∆ and checks:

ℓi ∈ {0,∆− 1} or [m]i = p − 1.

2 If a boundary case holds, Pi broadcasts its share index to a public set
B.

3 If B ̸= ∅, resample/refresh those indices (or exclude them for this
round) and restart the high-bit step.

4 Otherwise (i.e., B = ∅) proceed to publicly open the hi ’s.

Note (probability & restart policy). If all parties’ shares are uniformly
random, the probability that some honest share hits a boundary is at
most 3n p−1. Hence one can monitor the number of restarts and abort.
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most 3n p−1. Hence one can monitor the number of restarts and abort.
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[Our contribution] Protocol Fix: Boundary-Share
Filter Before Opening hi

Idea. Honest parties locally screen out boundary cases before any hi is
opened.
Distribute hi phase (before high-bit opening).

1 Each honest Pi computes ℓi = [m]i mod ∆ and checks:

ℓi ∈ {0,∆− 1} or [m]i = p − 1.

2 If a boundary case holds, Pi broadcasts its share index to a public set
B.

3 If B ̸= ∅, resample/refresh those indices (or exclude them for this
round) and restart the high-bit step.

4 Otherwise (i.e., B = ∅) proceed to publicly open the hi ’s.

Note (probability & restart policy). If all parties’ shares are uniformly
random, the probability that some honest share hits a boundary is at
most 3n p−1. Hence one can monitor the number of restarts and abort.

Seunthgwan Lee (waLLLnut) SSFHE August 18, 2025 27 / 43



Contribution Overview Backgrounds Random bit Sampling secret-shared FHE, SSFHE Circuit-private MPC

[Our contribution] Verification with One-Bit r

• In the previous verification protocol, We reduce r down to a single bit,
leveraging the Random Smudging Lemma:

• By applying rejection sampling whenever a bad event is detected, we
ensure the message shares remain uniformly random and perfectly
hiding.

• This modification allows the auxiliary modulus to be reduced to only
32 bits, while preserving security.

Lemma (Random Smudging Lemma)
Let X $←− U2κ and Y $←− DB be independent. Let E be the event that
B − 1 ≤ X + Y < 2κ, and let Ec be its complement. Then:

(i) X + Y and Y are independent conditioned on E .
(ii) Pr[Ec ] ≤ (B − 1)2−κ.
(iii) ∆

(
(X + Y ), Y

)
≤ (B − 1)2−κ.
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Improving Random Bit Sampling Overview

Rotaru et al. [12]
• Assumes no leakage

during the sharing
• Requires uniform

randomness from
corrupted parties
• Requires λ-bit auxiliary

primes (e.g., 128 bits)

Our Improvements
• Provides full leakage

analysis of all possible
cases

• Remains secure even when
corrupted parties choose
shares arbitrarily

• Requires using primes
p ≈ 32 bits via rejection
procedure
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Informal Construction of SSFHE

Step-by-step Construction:
• Combine all primes p1, . . . ,pl used in the given FHE into a

single composite modulus Q = p1 · · · pl .

• Use a multiplicative secret sharing scheme (e.g., SPDZ) to
generate secret shares:
• [⃗s]Q : secret sharing of the secret key s⃗
• [e⃗]Q : secret sharing of the error vector e⃗
• [pk]Q and [ev]Q are deterministically generated from [⃗s] and [e⃗]

so that it can computed via multiplicative secret sharing scheme
• Open (reveal) [pk] and [ev] to all parties.

ϵ-Correctness and δ-IND-CPA Security Guarantee:
• Let FHE be (δF, ϵF)-secure
• Let the LSSS-based MPC have κ-soundness
• Then the resulting SSFHE satisfies:

δS ← δF, ϵS ← 2−O(κ) + ϵF · poly(λ)
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Communication Cost of Gate Bootstrapping
Key Insight:
• Recall the structure of FHE (or LWE) encryption:

Encs⃗(m) = (a⃗, b =
d∑

i=1

aisi + e)

• If we can generate secret shares [⃗s] and [e⃗], then encryption
can be computed locally.

Key Observation:
• The circuit for generating pk and GINX-type ev consists of many

parallel calls to:
• random bit samplers or inverse transform samplers

Communication Complexity:
• For LWE dimension d :

• random bit sampling: O(1) rounds, O(d2) multiplications
• Inverse transform: O(log κ) rounds, O(d2κ) multiplications
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Circuit privacy: Why we use SSFHE

Previous MPC ideal functionality: FABB

Ideal functionality of FABB
Initializ: On input (init, pk ) for all parties, the functionality activates and store the modulus

p.
Input: On input (input,Pi , varid, x) from Pi and (input,Pi , varid, ?) from all other parties, with

varid a fresh identifier, the functionality stores (varid, x)
Add: On command (add, varid1, varid2, varid3) from all parties (if varid1 and varid2 are present

in memory and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and store
(varid3, x + y mod p)

Multiply: On command (multiply, varid1, varid2, varid3) from all parties (if varid1 and varid2
are present in memory and varid3 is not), the functionality retrieves (varid1, x), (varid2, y)
and store (varid3, xy mod p)

Output: On input (output, varid from all honest parties parties (if varid is present in memory),
the functionality retrieves (varid, x), and outputs it to the environment. If the adversary
inputs OK then x is output to all parties. Otherwise ⊥ is output to all parties.

Figure: The common ideal functionality for arithmetic black-box model.
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Circuit privacy: Why we use SSFHE

Current circuit-private MPC ideal functionaliy: FCPMPC
Ideal functionality of FCPMPC

Init: On input (init, t) from all parties, store the threshold t . Initialize the register State to 0.
CircuitInit: On input (CircInit, i, C, l) from all parties Pi , if State is 0, store the circuit C and

leak the number of inputs l and the input-to-party mapping to the adversary A. Set State
to 1.

Input: On input (input,Pi , varid, x) from all parties Pi and (input,Pi , varid, ?) from all other
parties in P\Pi , store (varid, x) if varid is a fresh identifier. Set State to 2.

Output: On input (output, i, varid) from all parties Pi , if varid exists in memory, TTP retrieves
(varid, x) and outputs it to the adversary A. If A inputs OK, x is output to all parties, and
State is reset to 0. IfA inputs⊥, then⊥ is output to all parties, and the protocol terminates.

Figure: The ideal functionality for circuit-private MPC.

BMR vs SS vs FHE-based MPC
• Without corrupted parties, BMR or secret sharing simulators cannot easily generate

views without circuit info.
• (FHE-based MPC) Simulator need not construct output ciphertexts, thus security proof

is feasible.
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Circuit-Private MPC

Theorem (Informal)
Let:
• An (δ-IND-CPA, ϵ-correctness)-secure SSFHE scheme be given,
• A κ-soundness secret sharing scheme be used,
• And all errors in the decrypted ciphertext are bounded by B..

Then, under the UC framework, the adversary’s computational
advantage is bounded by:

δ + (B − 1) · 2−κ+2 + 2ϵ
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Future Work (On Progress...)

• SPDZ over 16-bit Primes:
• Explore implementation of SPDZ using small 16-bit NTT-friendly

primes
• Leverage vector Oblivious Linear Evaluation (vOLE) for efficient

multiplication triples
• Aim to reduce computation and memory cost while preserving

active security

• SSFHE with GOD in Honest Majority:
• Construct SSFHE protocol under honest majority assumption
• Ensure Guaranteed Output Delivery (GOD) despite

adversarial behavior
• Implement and evaluate performance in real-world parameters
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