Improved Resultant Attack against Arithmetization-Oriented Primitives

Augustin Bariant¹, Aurélien Boeuf², Pierre Briaud³, Maël Hostettler⁴, Morten Øygarden³, Håvard Raddum³

¹ANSSI ²INRIA, ³Simula UiB ⁴Télécom SudParis

August 2025 CRYPTO2025, Santa Barbara

Arithmetization-Oriented (AO) primitives

$Traditional\ primitives$

- Designed for bit-oriented platforms.
- Operate on bit sequences.
- ► Low resource consumption (time, etc.).
- Several decades of cryptanalysis.

Arithmetization-Oriented primitives

- ► Designed for advanced protocols.
- Operate on large finite field elements.
- Low number of field multiplications.
- $ightharpoonup \leq 10$ years of cryptanalysis.

Non-exhaustive timeline based on stap-zoo.com:

Targets of this paper

We focus on these hash functions

Anemoi Crypto2023

 $Arithmetization\hbox{-}Oriented\ primitives$

Griffin Crypto2023 ArionHash arXiv

Rescue-Prime ePrint2020

Arithmetization-Oriented primitives

Targets of this paper

Targets of this paper

We focus on these hash functions

Anemoi Crypto2023 Griffin Crypto2023 ArionHash arXiv Rescue-Prime ePrint2020

Improved full-round attacks

First full-round break of an instance

- Based on the Sponge construction
- ► We target the underlying permutation of each hash function
- Many different instances for each permutation family
- Based on SBoxes of the form
 - $x \to x^{\alpha}$
 - $\rightarrow x \rightarrow x^{1/\alpha}$

Cryptanalysis of AO permutations

CICO-1 problem against AO permutations on \mathbb{F}_q^t

Find
$$(X_0, \ldots X_{t-2}, Y_0, \ldots Y_{t-2}) \in \mathbb{F}_q^{2t-2}$$
 s.t. $\Pi(X_0, \ldots X_{t-2}, 0) = (Y_0, \ldots Y_{t-2}, 0)$.

- For a sponge of capacity 1, solving a CICO-1 gives a collision to the hash function.
- Foundation to further study generic CICO-c problem.
- Best attacks against primitves using SBox of the form $x \to x^{1/\alpha}$: algebraic attacks.
 - Freelunch attack

Arithmetization-Oriented primitives

Resultant attack

[BBL+, CRYPTO'24] [YZY+, AC'24]

Example: $Anemoi-\pi$ round function

Example: Anemoi- π round function

 $(.)^{1/lpha}$ is the only high degree operation \Rightarrow One extra variable per round

Example: In detail construction

Focus on the non-linear layer:

Construction for one round

$$P = P_1 - aQ_1^2 - a^{-1} = Z^{\alpha}$$

$$\begin{cases} P_2 = P_1 - aQ_1^2 - a^{-1} + a(Q_1 - Z)^2 \\ Q_2 = Q_1 - Z \\ Z^{\alpha} = P_1 - aQ_1^2 - a^{-1} \end{cases}$$

- ▶ One extra equation of degree α in Z
- Low algebraic degree of each variable

Iterative construction

$$\begin{cases} Z_1^{\alpha} - U_1(X) = 0 \\ Z_2^{\alpha} - U_2(X, Z_1) = 0 \\ Z_3^{\alpha} - U_3(X, Z_1, Z_2) = 0 \\ \vdots \\ Z_t^{\alpha} - U_t(X, Z_1, Z_2, \dots, Z_{t-1}) = 0 \\ P(X, Z_1, Z_2, \dots, Z_{t-1}, Z_t) = 0 \end{cases}$$

Properties

- ► Highly-structured system
- 0-dimensional ideal
- We can construct U_i s.t $\deg_{Z_i}(U_i) < \alpha$

Generic complexities

- ▶ Univariate polynomial multiplication Given $P, Q \in \mathbb{F}_p[X]$ s.t $\deg(P), \deg(Q) \leq d$ Computing PQ costs $\mathcal{M}(d) = \mathcal{O}(d \log(d) \log(\log d))$ by FFT.
- Multivariate polynomial multiplication (Kronecker trick) Given $P, Q \in \mathbb{F}_p[X_1, \cdots, X_n]$ s.t $\deg_{X_i}(P) = \alpha_i$ and $\deg_{X_i}(Q) = \beta_i$ Computing $P \times Q$ costs $\mathcal{M}\left(\prod_{i=1}^n (\alpha_i + \beta_i + 1)\right)$

Generic complexities

- ▶ Univariate polynomial multiplication Given $P, Q \in \mathbb{F}_p[X]$ s.t $\deg(P), \deg(Q) \leq d$ Computing PQ costs $\mathcal{M}(d) = \mathcal{O}(d \log(d) \log(\log d))$ by FFT.
- Multivariate polynomial multiplication (Kronecker trick) Given $P, Q \in \mathbb{F}_p[X_1, \cdots, X_n]$ s.t $\deg_{X_i}(P) = \alpha_i$ and $\deg_{X_i}(Q) = \beta_i$ Computing $P \times Q$ costs $\mathcal{M}\left(\prod_{i=1}^n (\alpha_i + \beta_i + 1)\right)$

Consequences

- ▶ Chaining multivariate multiplications is costly: $deg_{X_i}(PQ) = deg_{X_i}(P) + deg_{X_i}(Q)$
- ▶ Solution : gradual reduction after each multiplication s.t $\deg_{X_i}(PQ) < \alpha$ for i > 1

Multiplication/Reduction

Given $P, Q \in \mathbb{F}_p[X, Z_1, \cdots, Z_n]$ s.t $\deg_{Z_i}(P) < \alpha$ and an ideal $\mathcal{P}_n = \{Z_i^{\alpha} - U_i(X, Z_1, \cdots, Z_i) \mid i \in [\![1, n]\!]\}$

- ▶ Compute $PQ \mod (\mathcal{P}_n)$ i.e in $\mathbb{F}_p[X, Z_1, \dots, Z_n]/(\mathcal{P}_n)$
- ▶ We first compute PQ in $\mathbb{F}_p[X, Z_1, \dots, Z_n]$ so $\deg_{Z_n}(PQ) \leq 2\alpha 2$
- We then use a specialized recursive reduction algorithm with complexity $\tilde{\mathcal{O}}(d_x(2\alpha-1)^n)$ to reduce the *n*-variate polynomial s.t d_x is the largest X-degree among the polynomials manipulated in the algorithm

Multiplication/Reduction

Given $P, Q \in \mathbb{F}_p[X, Z_1, \cdots, Z_n]$ s.t $\deg_{Z_i}(P) < \alpha$ and an ideal $\mathcal{P}_n = \{Z_i^{\alpha} - U_i(X, Z_1, \cdots, Z_i) \mid i \in [\![1, n]\!]\}$

- ▶ Compute $PQ \mod (\mathcal{P}_n)$ i.e in $\mathbb{F}_p[X, Z_1, \dots, Z_n]/(\mathcal{P}_n)$
- ▶ We first compute PQ in $\mathbb{F}_p[X, Z_1, \dots, Z_n]$ so $\deg_{Z_i}(PQ) \leq 2\alpha 2$
- We then use a specialized recursive reduction algorithm with complexity $\tilde{\mathcal{O}}(d_x(2\alpha-1)^n)$ to reduce the *n*-variate polynomial s.t d_x is the largest X-degree among the polynomials manipulated in the algorithm

 \Rightarrow Overall attack in roughly $\tilde{\mathcal{O}}(d_l(2\alpha-1)^n)$ n new variables and d_l the degree of the ideal.

What are resultants?

Definition (Resultants)

Let R be a ring and
$$P(x) = \sum_{i=0}^d a_i x^i \in R[x]$$
 and $Q(x) = \sum_{i=0}^{d'} b_i x^i \in R[x]$

$$res(P,Q) = \begin{vmatrix} a_0 & a_1 & \dots & a_d & 0 & \dots & 0 \\ 0 & a_0 & a_1 & \dots & a_d & \ddots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & a_0 & a_1 & \dots & a_d \\ b_0 & b_1 & b_2 & \dots & b_{d'} & 0 & \dots \\ 0 & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & 0 & b_0 & b_1 & b_2 & \dots & b_{d'} \end{vmatrix}$$

Why resultants?

Most important property of resultants

For $P, Q \in \mathbb{K}[x]$ where \mathbb{K} is a field

$$res(P(x), Q(x)) = 0 \iff gcd(P(x), Q(x)) \neq 1$$

- \triangleright P(x) and Q(x) might have a common root
- ▶ In general, $res(P, Q) = 0 \iff P$ and Q have a non-trivial common factor

Why resultants?

Most important property of resultants

For $P, Q \in \mathbb{K}[x]$ where \mathbb{K} is a field

$$res(P(x), Q(x)) = 0 \iff gcd(P(x), Q(x)) \neq 1$$

- \triangleright P(x) and Q(x) might have a common root
- ▶ In general, $res(P, Q) = 0 \iff P$ and Q have a non-trivial common factor

Example: solving bivariate system

Let $P, Q \in \mathbb{F}_q[x, y]$

- ▶ P and Q : polynomials in y with coefficients in $\mathbb{F}_q[x]$, i.e. $P, Q \in \mathbb{F}_q[x][y]$
- ▶ Find a root $\alpha \in \mathbb{F}_q$ of res(P, Q)
 - $ightharpoonup res(P,Q)(\alpha)=0$, so $\gcd(P(\alpha,y),Q(\alpha,y))\neq 1$ (as polynomials in y)
- ▶ There probably exists a common root $\beta \in \mathbb{F}_q$ s.t. $P(\alpha, \beta) = Q(\alpha, \beta) = 0$

Solving generic polynomial systems with resultants

$$\mathcal{P} = \begin{cases} P_1(x_1, \dots x_n) = 0 \\ \vdots \\ P_n(x_1, \dots x_n) = 0 \end{cases}$$

Idea: Eliminate the variable x_n and produce n-1 polynomials in $x_1, \dots x_{n-1}$

- ▶ Interpret $P_1, ... P_n$ as polynomials in x_n over $\mathbb{F}_q[x_1, ... x_{n-1}]$
- ► Compute $Q_i = res(P_i, P_n) \in \mathbb{F}_q[x_1, \dots x_{n-1}]$ for $i = 0, \dots n-1$
- ► Solve $\mathcal{P}' = \{Q_1(x_1, \dots x_{n-1}) = 0, \dots Q_{n-1}(x_1, \dots x_{n-1}) = 0\}$

Solving generic polynomial systems with resultants

$$\mathcal{P} = \begin{cases} P_1(x_1, \dots x_n) = 0 \\ \vdots \\ P_n(x_1, \dots x_n) = 0 \end{cases}$$

Idea: Eliminate the variable x_n and produce n-1 polynomials in $x_1, \ldots x_{n-1}$

- ▶ Interpret $P_1, ... P_n$ as polynomials in x_n over $\mathbb{F}_q[x_1, ... x_{n-1}]$
- ► Compute $Q_i = res(P_i, P_n) \in \mathbb{F}_q[x_1, \dots x_{n-1}]$ for $i = 0, \dots n-1$
- ► Solve $\mathcal{P}' = \{Q_1(x_1, \dots x_{n-1}) = 0, \dots Q_{n-1}(x_1, \dots x_{n-1}) = 0\}$

Issue: The degrees of the Q_i increase significantly compared to the P_i

- ▶ The ideal degree increases by $deg(P_n)^{n-2}$: many parasite solutions
- ► Complexity estimation: at least $deg(P_i)^{n(n-1)/2+1}$ operations
 - ▶ Costlier than Groebner bases when n > 3

Resultants in our context

[YZY+, AC'24]

Resultant solving 000000

$$\begin{cases} Z_1^{\alpha} - U_1(X) = 0 \\ Z_2^{\alpha} - U_2(X, Z_1) = 0 \\ Z_3^{\alpha} - U_3(X, Z_1, Z_2) = 0 \end{cases}$$

$$\vdots$$

$$Z_{t-1}^{\alpha} - U_{t-1}(X, Z_1, Z_2, \dots, Z_{t-2}) = 0$$

$$Z_t^{\alpha} - U_t(X, Z_1, Z_2, \dots, Z_{t-2}, Z_{t-1}) = 0$$

$$P(X, Z_1, Z_2, \dots, Z_{t-1}, Z_t) = 0$$

Resultants in our context

[YZY+, AC'24]

$$\begin{cases} Z_{1}^{\alpha} - U_{1}(X) = 0 \\ Z_{2}^{\alpha} - U_{2}(X, Z_{1}) = 0 \\ Z_{3}^{\alpha} - U_{3}(X, Z_{1}, Z_{2}) = 0 \\ \vdots \\ Z_{t-1}^{\alpha} - U_{t-1}(X, Z_{1}, Z_{2}, \dots, Z_{t-2}) = 0 \\ Z_{t}^{\alpha} - U_{t}(X, Z_{1}, Z_{2}, \dots, Z_{t-2}, Z_{t-1}) = 0 \\ P(X, Z_{1}, Z_{2}, \dots, Z_{t-1}, Z_{t}) = 0 \end{cases}$$

$$\begin{cases} Z_{1}^{\alpha} - U_{1}(X) = 0 \\ Z_{2}^{\alpha} - U_{2}(X, Z_{1}) = 0 \\ Z_{3}^{\alpha} - U_{3}(X, Z_{1}, Z_{2}) = 0 \\ \vdots \\ Z_{t-1}^{\alpha} - U_{t-1}(X, Z_{1}, Z_{2}, \dots, Z_{t-2}) = 0 \\ \tilde{P}(X, Z_{1}, Z_{2}, \dots, Z_{t-1}) = 0 \end{cases}$$

$$\tilde{P} = res_{Z_t}(P, Z_t^{\alpha} - U_t)$$

Special Resultant

Very structured Sylvester matrix

Using
$$P = \sum_{i=0}^{d} a_i Z_t^i, a_i \in \mathbb{F}_p[X, Z_1, Z_2, \dots, Z_{t-1}]$$

▶ Computing the naive determinant costs $\mathcal{O}((d+\alpha)^3)$

$$res_{Z_{t}}(P, Z_{t}^{\alpha} - U_{t}) = \begin{bmatrix} -U_{t} & 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ 0 & -U_{t} & 0 & \dots & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & 1 & 0 \\ 0 & \dots & 0 & -U_{t} & 0 & \dots & 0 & 1 \\ a_{0} & a_{1} & \dots & a_{d} & 0 & \dots & \dots & 0 \\ 0 & a_{0} & a_{1} & \dots & a_{d} & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & a_{0} & a_{1} & \dots & a_{d} \end{bmatrix}$$

Special Resultant

Very structured Sylvester matrix

Using
$$P = \sum_{i=0}^{d} a_i Z_t^i, a_i \in \mathbb{F}_p[X, Z_1, Z_2, \dots, Z_{t-1}]$$

▶ Computing the naive determinant costs $\mathcal{O}\left((d+\alpha)^3\right)$

Special resultants

Special Toeplitz matrix

- ► The presented matrix is also a special Toeplitz matrix
- ▶ In practice, we use $\alpha = 3$ which makes this computation cheap
- ▶ For larger α the overhead is roughly of α^2

$$res_{Z_t}(P, Z_t^{\alpha} - U_t) = \begin{vmatrix} a_0 & U_t a_{\alpha-1} & \dots & U_t a_2 & U_t a_1 \\ a_1 & a_0 & U_t a_{\alpha-1} & \dots & U_t a_2 \\ & \ddots & & \ddots & \ddots & \ddots \\ a_{\alpha-2} & \dots & a_1 & a_0 & U_t a_{\alpha-1} \\ a_{\alpha-1} & a_{\alpha-2} & \dots & a_1 & a_0 \end{vmatrix}.$$

 \Rightarrow We compute a $\alpha \times \alpha$ resultant instead

Experimental results ($\alpha = 3$)

Cipher	t						
		7	8	9	10	11	-
Anemoi	2	49m 9.5 s	10h 1m25s	- 13m51s	- 2h38m	- 1d22h	[YZY+] Ours
		6	7	8			
Griffin	12	1m 10 s	3h32m 5m30s	- 4h20m			[BBL+] Ours
		4	5	6			
Rescue	3	15m 2.4s	1d 6m6s	- 2d4h			[YZY+] Ours

Theoretical complexities (full-round instances)

Cipher	Security					
		$\alpha = 3$	$\alpha = 5$	$\alpha = 7$	$\alpha = 11$	-
Anemoi	128	110 80	133 96	141 103	158 111	[YZY+] Ours
		t = 3	t = 4	t = 8	<i>t</i> ≥ 12	
Griffin	128	120 96	112 87	76 63	64 55	[BBL+] Ours
		$\alpha = t = 3$				
Rescue	512	- 475				- Ours

Conclusion

Insights on AO design criteria

- ▶ AO hash functions should not base their security on Gröbner basis methods
- Instead, conservatively consider the ideal degree d_I as a lower bound for the best attack

Future works

- Utilizing better algorithm for generic resultant computations
- Moving from CICO-1 to CICO-2

Thank you for your attention!

The reduction algorithm

Algorithm 1 Reduce_k $(g(X, Z_1, ..., Z_k), P_k)$

Input: A polynomial $g \in \mathbb{F}_q[X, Z_1, \dots, Z_k]$, where $\deg_{Z_i}(g) < 2\alpha - 1$ for $1 \le i \le k$, and a reduced polynomial system \mathcal{P}_k

Output: The normal form of g with respect to \mathcal{P}_k

- 1: **if** k = 0 **then**
- 2: return g
- 3: end if
- 4: write g as $g = \sum_{i=0}^{2\alpha-2} g_i(X, Z_1, \dots, Z_{k-1}) Z_k^i$
- 5: $\rho \leftarrow \mathsf{Reduce}_{k-1}(g_{\alpha-1}, \mathcal{P}_{k-1}) \cdot \mathsf{Z}_k^{\alpha-1}$
- 6: **for** i = 0 to $\alpha 2$ **do**
- 7: $\rho \leftarrow \rho + \mathsf{Reduce}_{k-1}(g_i + \mathsf{Reduce}_{k-1}(g_{\alpha+i}, \mathcal{P}_{k-1}) \cdot f_k, \mathcal{P}_{k-1}) \cdot Z_k^i$

 $\triangleright 2\alpha - 1$ calls to Reduce_{k-1} in total

- 8: end for
- 9: return ρ

Example for $\alpha = 3$ and d = 6

Example for $\alpha = 3$ and d = 6

Example for $\alpha = 3$ and d = 6

We are left with a $\alpha \times \alpha$ determinant of a Toepliz matrix !