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What are "Pairings"? ... in Cryptography
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Joux: A one round protocol for tripartite Diffie-Hellman (2000)

Boneh, Lynn,Shacham: Short Signaturesfrom the Weil Pairing (2004)

Sahai, Waters: Fuzzy identity-based encryption (2005)

Kate,Zaverucha,Goldberg: Constant-size commitments to polynomials [..] (2010)
Groth: Short pairing-based non-interactive zero-knowledge arguments (2010)
Boneh,Drijvers,Neven: Compact multi-signatures for smaller blockchains (2018)
Gailly,Maller,Nitulescu, : SnarkPack: Practical SNARK aggregation (2022)
Garg,Jain,Mukherjee+: hints: Threshold signatures with silent setup (2024)
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The one-shot framework

Client 4 One
PreComp Delegation 21

Bo 20 %




State of the Art

4/12



State of the Art

Cateqory 1 2 recent protocols
o broken by our work

4/12



State of the Art

Cateqory 1 2 recent protocols
o broken by our work

®
Category 2 unconditional security
one-shot framework

4/12



State of the Art

Cateqory 1 2 recent protocols
o broken by our work
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unconditional security
Category 2
Jory 'I'w'l' one-shot framework

WANTED: a pairing delegation protocol that is

reasonably secure and efficient
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Adversary Bound

ho‘f{’c’

b < 2PH/s < 27m/s

(Fair) assumption:

cost (block header hash ) < cost ( short scalar multiplication in Gl)
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Table: Amortized Efficiency obtained over N = 10 delegations and
40 bits of statistical security (RELIC implementations).
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Thank you for your attention :)

Open-source tools used for our presentation:

v

SVGH

Inkscape SOZi SVG repo



