That's AmorE Amortized Efficiency for Pairing Delegation

ia.cr/2025/542

Adrian P. Keilty

Diego F. Aranha

Elena Pagnin

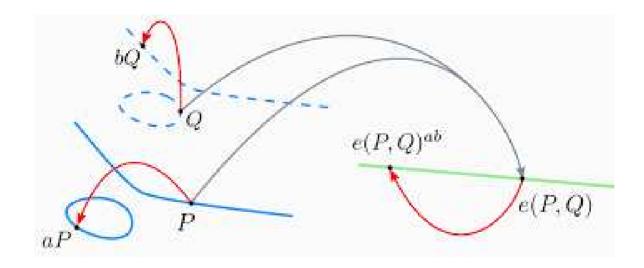
Francisco Rodríguez Henríquez

Affiliations: AarhusU (DK), ChalmersU (SE), GöteborgU (SE), TII (UAE)

What are "Pairings"?

bilinear maps on groups

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_T$$

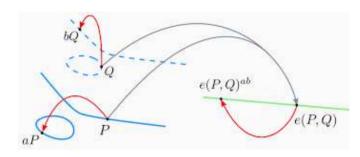


$$e(aP, bQ) = e(P, Q)^{ab}$$

What are "Pairings"?

bilinear maps on groups

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_T$$



$$e(aP, bQ) = e(P, Q)^{ab}$$

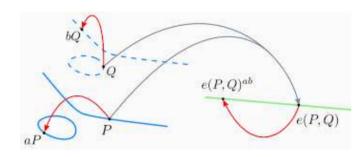
... in Cryptography

What are "Pairings"?

... in Cryptography

bilinear maps on groups

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_T$$



$$e(aP, bQ) = e(P, Q)^{ab}$$

Joux: A **one round** protocol for **tripartite** Diffie-Hellman (2000)

Boneh, Lynn, Shacham: Short Signatures from the Weil Pairing (2004)

Sahai, Waters: Fuzzy identity-based encryption (2005)

Kate, Zaverucha, Goldberg: Constant-size commitments to polynomials [..] (2010)

Groth: Short pairing-based non-interactive zero-knowledge arguments (2010)

Boneh, Drijvers, Neven: Compact multi-signatures for smaller blockchains (2018)

Gailly, Maller, Nitulescu, : **SnarkPack**: Practical SNARK aggregation (2022)

Garg, Jain, Mukherjee+: hints: Threshold signatures with silent setup (2024)

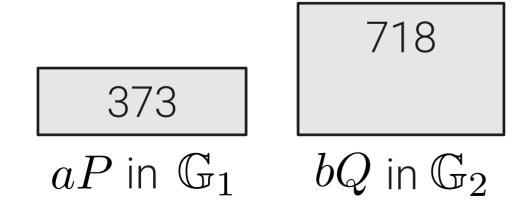
costs in 10³ clock cycles on BLS12-381

costs in 10³ clock cycles on BLS12-381

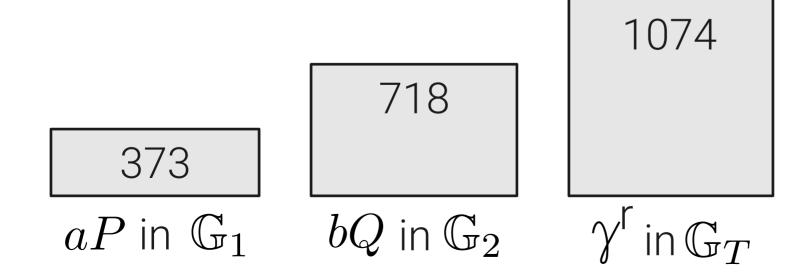
373

aP in \mathbb{G}_1

costs in 10³ clock cycles on BLS12-381



costs in 10³ clock cycles on BLS12-381



costs in 10³ clock cycles on BLS12-381 1074 718 373 bQ in \mathbb{G}_2 aP in \mathbb{G}_1

3194

pairings are **prohibitive**on weaker IoT devices
(incl. hardware wallets)

(

costs in 10³ clock cycles on BLS12-381

aP in \mathbb{G}_1

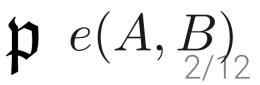
718

bQ in \mathbb{G}_2

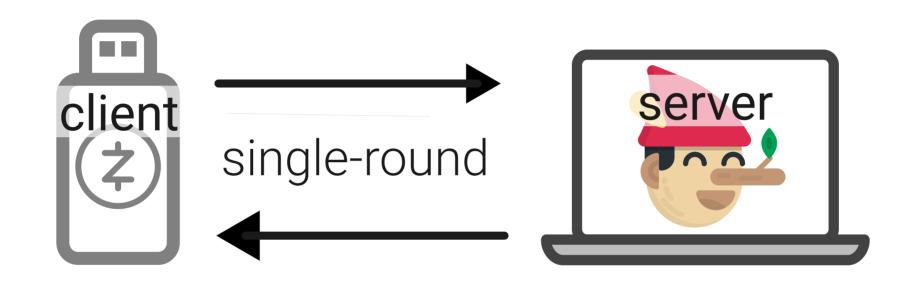
1074

 γ^{r} in \mathbb{G}_T

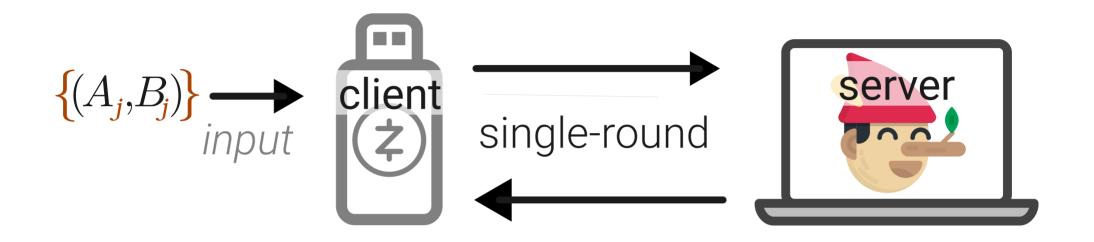
3194



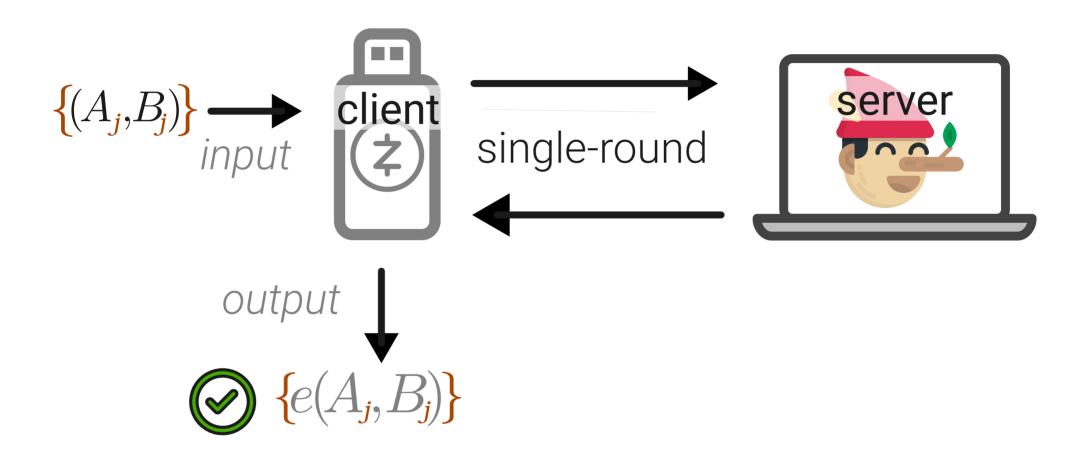
Pairing Delegation Protocols

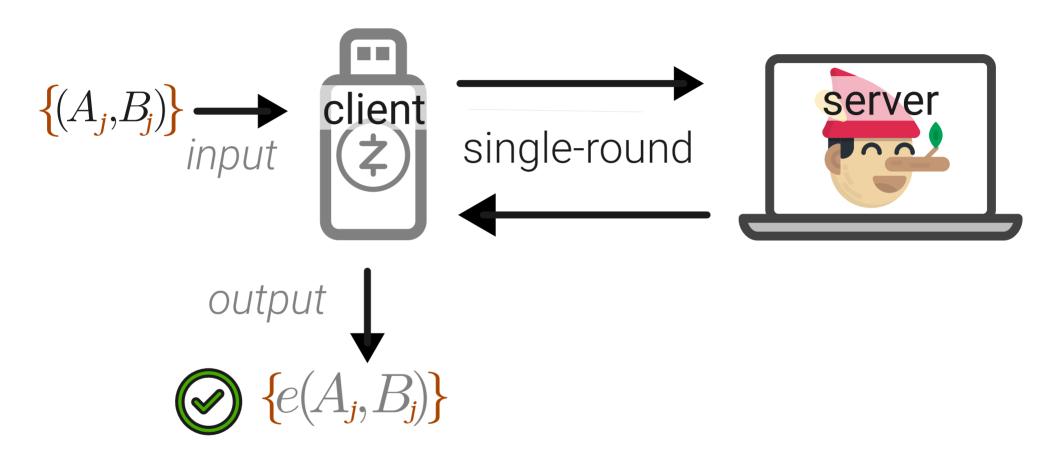


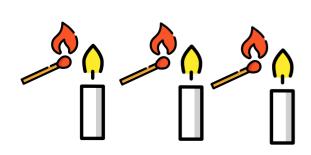
Pairing Delegation Protocols



Pairing Delegation Protocols







The one-shot framework

Category 1

2 recent protocols broken by *our work*

Category 1

2 recent protocols broken by *our work*

Category 2

unconditional security one-shot framework

Category 1

2 recent protocols broken by *our work*

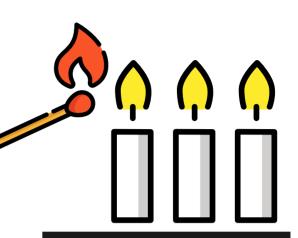
Category 2

unconditional security one-shot framework

WANTED: a pairing delegation protocol that is

reasonably secure and efficient

1. one-shot Sequential Framework



Client PreComp

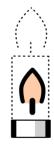
Delegation 1 - Delegation N

1. one-shot Sequential Framework

Delegation 1 - -

Delegation N

2. unconditional Everlasting Security



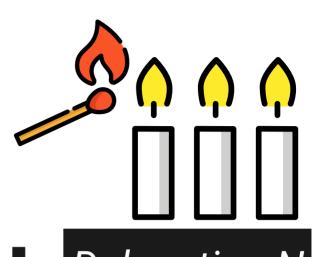
1. one-shot Sequential Framework

Delegation 1 - Delegation N

2. unconditional Everlasting Security

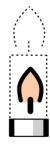
3. oddly powerful Realistic Adversaries

1. one-shot Sequential Framework



 →
 Delegation 1
 →
 →
 Delegation N

2. unconditional Everlasting Security



3. oddly powerful Realistic Adversaries

4. New Security Assumption

1. **Impossibility result** (inspired by our new attacks)

client PreComp needs to be expensive

1. **Impossibility result** (inspired by our new attacks)

client PreComp needs to be expensive

2. A **Framework** for **Sequential** Pairing Delegation

cost(PreCom) is amortized over several delegations

1. **Impossibility result** (inspired by our new attacks)

client PreComp needs to be expensive

cost(PreCom) is amortized over several delegations

3. The **AmorE Protocol** (Amortized Efficiency)

1. **Impossibility result** (inspired by our new attacks)

client PreComp needs to be expensive

cost(PreCom) is amortized over several delegations

- 3. The **AmorE Protocol** (Amortized Efficiency)
- 4. A Novel Proof Technique

1. **Impossibility result** (inspired by our new attacks)

client PreComp needs to be expensive

cost(PreCom) is amortized over several delegations

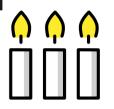
- 3. The **AmorE Protocol** (Amortized Efficiency)
- 4. A Novel Proof Technique
- 5. **Experimental Validation** and Efficient Short Scalar Sampling

1. **Impossibility result** (inspired by our new attacks)

client PreComp needs to be expensive

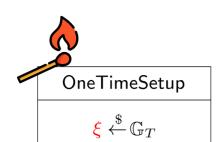
2. A **Framework** for **Sequential** Pairing Delegation

cost(PreCom) is amortized over several delegations



- 3. The **AmorE Protocol** (Amortized Efficiency)
- 4. A Novel Proof Technique
- 5. Experimental Validation

and Efficient Short Scalar Sampling



 $\mathtt{t}_{\mathsf{start}} \leftarrow \mathtt{time.now}()$

AmorE in a Nutshell

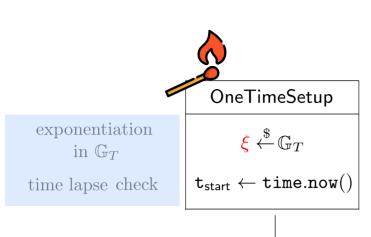
exponentiation in \mathbb{G}_T

time lapse check

$$\xi \stackrel{\$}{\leftarrow} \mathbb{G}_T$$

 $\texttt{t}_{\texttt{start}} \leftarrow \texttt{time.now}()$

AmorE in a Nutshell

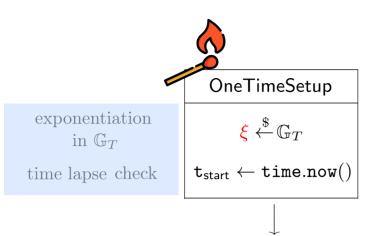


$\mathsf{Setup}(\overrightarrow{A},\overrightarrow{B})$

$$r_{j} \stackrel{\$}{\leftarrow} \{1, \dots, 2^{\varphi}\} \subsetneq \mathbb{Z}_{q}^{*},$$

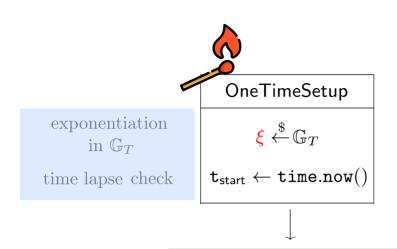
$$\text{pub} \leftarrow \text{routine}(\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{r})$$

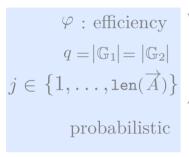
AmorE in a Nutshell

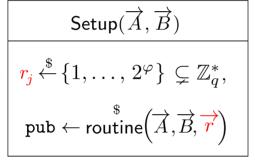


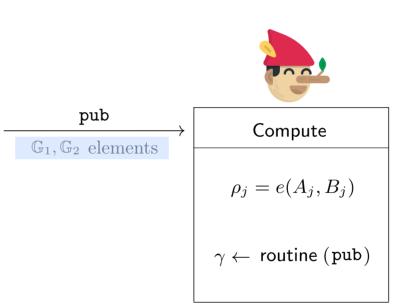
$$arphi$$
: efficiency $q=|\mathbb{G}_1|=|\mathbb{G}_2|$ $j\in\left\{1,\ldots, exttt{len}(\overrightarrow{A})
ight\}$ probabilistic

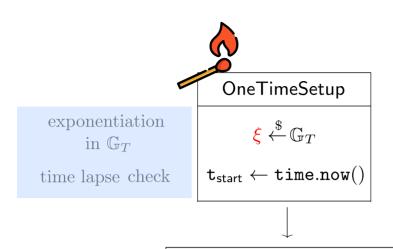
 $\mathbb{G}_1, \mathbb{G}_2$ elements

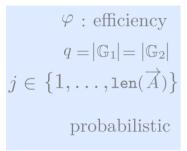


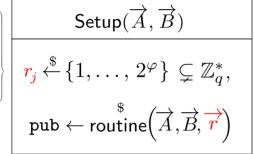


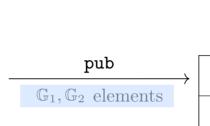












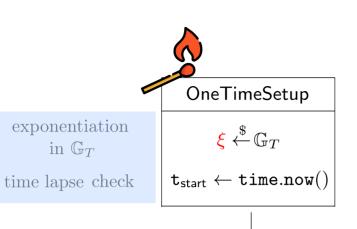
Compute

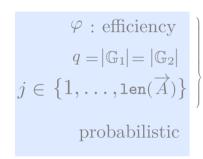
$$\rho_j = e(A_j, B_j)$$

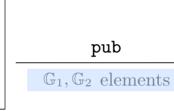
 $\gamma \leftarrow \mathsf{routine}(\mathtt{pub})$

pairing evaluations

deterministic







 $\mathtt{out} = (\gamma, \overrightarrow{\rho})$

 \mathbb{G}_T elements

Compute

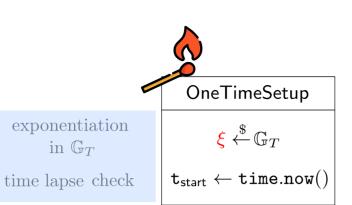
$$\rho_j = e(A_j, B_j)$$

$$\gamma \leftarrow \text{ routine (pub)}$$

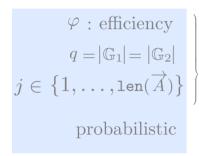
pairing evaluations

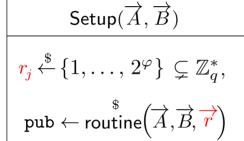
deterministic

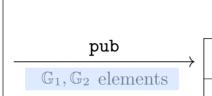
Verify
$$\begin{aligned} \mathsf{time.now}() - \mathsf{t}_{\mathsf{start}} &\overset{?}{>} \tau \\ \rho_j &\overset{?}{\in} \mathbb{G}_T \\ &\boldsymbol{\xi} &\overset{?}{=} \left(\prod_{j=1}^{\mathtt{len}(\overrightarrow{A})} \rho_j^{\boldsymbol{r_j}}\right) \cdot \gamma \end{aligned}$$



AmorE in a Nutshell







 $\mathtt{out} = (\gamma, \overrightarrow{\rho})$

 \mathbb{G}_T elements

Compute

$$\rho_j = e(A_j, B_j)$$

 $\gamma \leftarrow \text{ routine (pub)}$

pairing evaluations

deterministic

 τ : latency

membership tests

Verify
$$\begin{aligned} \mathsf{time.now}() - \mathsf{t_{start}} &\overset{?}{>} \tau \\ \rho_j &\overset{?}{\in} \mathbb{G}_T \\ & \boldsymbol{\xi} &\overset{?}{=} \left(\prod_{j=1}^{\mathtt{len}(\overrightarrow{A})} \rho_j^{\boldsymbol{r_j}} \right) \cdot \gamma \end{aligned}$$

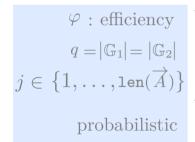
exponentiation in \mathbb{G}_T

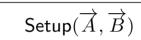
time lapse check

$$\xi \stackrel{\$}{\leftarrow} \mathbb{G}_T$$

 $t_{start} \leftarrow time.now()$

AmorE in a Nutshell





$$r_j \stackrel{\$}{\leftarrow} \{1, \dots, 2^{\varphi}\} \subsetneq \mathbb{Z}_q^*$$

$$\texttt{pub} \leftarrow \mathsf{routine}(\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{r})$$

pub

 $\mathbb{G}_1, \mathbb{G}_2$ elements

 $\mathtt{out} = (\gamma, \overrightarrow{\rho})$

 \mathbb{G}_T elements

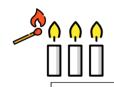
Compute

$$\rho_j = e(A_j, B_j)$$

 $\gamma \leftarrow \text{ routine (pub)}$

pairing evaluations

deterministic



Verify

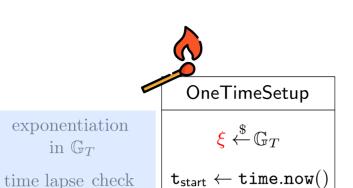
$$\texttt{time.now}() - \texttt{t}_{\mathsf{start}} \overset{?}{>} \tau$$

$$\rho_j \stackrel{?}{\in} \mathbb{G}_T$$

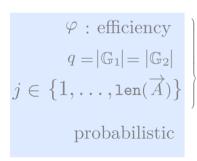
$$\boldsymbol{\xi} \stackrel{?}{=} \left(\prod_{j=1}^{\operatorname{len}(\overrightarrow{A})} \rho_j^{\boldsymbol{r_j}} \right) \cdot \gamma$$

 τ : latency

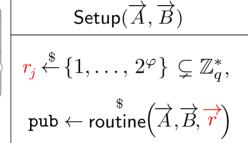
membership tests



AmorE in a Nutshell

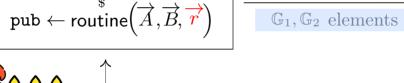


in \mathbb{G}_T



 $\mathtt{out} = (\gamma, \overrightarrow{\rho})$

 \mathbb{G}_T elements



 $\rho_i = e(A_i, B_i)$

pairing evaluations

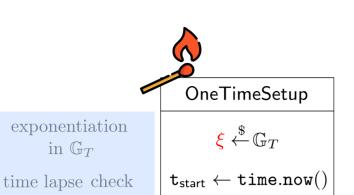
deterministic

$$\tau$$
: latency

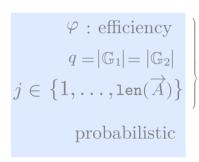
membership tests

Verify
$$\begin{aligned} \mathsf{Verify} \\ \mathsf{time.now}() - \mathsf{t_{start}} \overset{?}{>} \tau \\ \rho_j \overset{?}{\in} \mathbb{G}_T \\ \xi \overset{?}{=} \left(\prod_{j=1}^{\mathtt{len}(\overrightarrow{A})} \rho_j^{r_j} \right) \cdot \gamma \end{aligned}$$

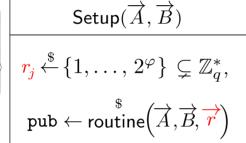
$$\mathcal{P}\left[egin{array}{c|c} (\mathtt{pub})
ightarrow \mathtt{out}^* & \mathtt{out}^*
eq \mathtt{out}^* \neq \mathtt{out} \ & \mathsf{Verify}\,(\mathtt{out}^*) = 1 \end{array}
ight]$$

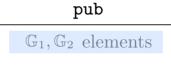


AmorE in a Nutshell



in \mathbb{G}_T





 $\mathtt{out} = (\gamma, \overrightarrow{\rho})$

 \mathbb{G}_T elements

Compute

$$\rho_j = e(A_j, B_j)$$

 $\gamma \leftarrow \text{ routine (pub)}$

pairing evaluations

deterministic

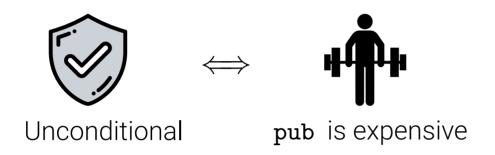
membership tests

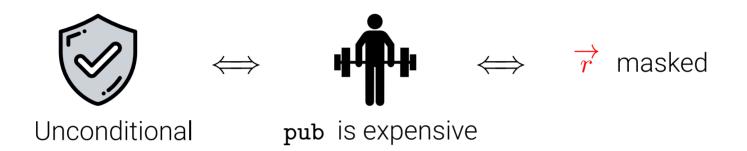
 τ : latency

Verify
$$\begin{aligned} \mathsf{time.now}() - \mathsf{t_{start}} &\overset{?}{>} \tau \\ \rho_j &\overset{?}{\in} \mathbb{G}_T \\ & \boldsymbol{\xi} &\overset{?}{=} \left(\prod_{\rho_i^{\overrightarrow{A}}}^{\mathsf{len}(\overrightarrow{A})} \rho_i^{r_j} \right) \cdot \gamma \end{aligned}$$

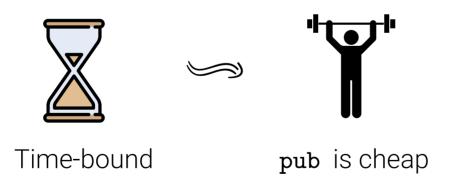
$$\mathcal{P}\left[igcap_{(exttt{pub})}
ightarrow exttt{out}^* \middle| egin{array}{c} exttt{out}^*
out^*
eq exttt{out}^*
out^* = 1 \end{array}
ight]$$

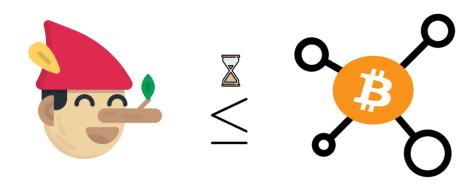
$$= \mathcal{P}\left[\exists\, k \in \{1,\ldots, exttt{len}(\overrightarrow{A})\} :
ight.$$
 (pub) $ightarrow extit{r}_{m{k}}$

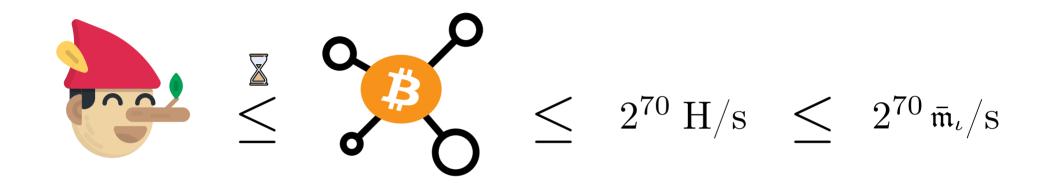




Time-bound







(Fair) assumption:

cost (block header hash) < cost (short scalar multiplication in \mathbb{G}_1)

Let $(\mathbb{G} = \langle P \rangle, +)$ be a cyclic group of prime order q and $\varepsilon \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$, $\xi = [\varepsilon]P$.

Let
$$(\mathbb{G} = \langle P \rangle, +)$$
 be a cyclic group of prime order q and $\varepsilon \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$, $\xi = [\varepsilon]P$.

$$ullet$$
 $r_1, r_2 \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$

•
$$r_1, r_2 \stackrel{\$}{\leftarrow} [2^{\varphi}] = \{1, \dots, 2^{\varphi}\} \subsetneq \mathbb{Z}_q^*$$

Let
$$(\mathbb{G} = \langle P \rangle, +)$$
 be a cyclic group of prime order q and $\varepsilon \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$, $\xi = [\varepsilon]P$.

$$ullet$$
 $r_1, r_2 \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$

$$pub = \begin{cases} C = [r_1]\xi + X \\ D = [r_2]\xi + Y \end{cases}$$

where $X, Y \in \mathbb{G}$ are public and $X \neq C$, $Y \neq D$

Let $(\mathbb{G} = \langle P \rangle, +)$ be a cyclic group of prime order q and $\varepsilon \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$, $\xi = [\varepsilon]P$.

$$ullet$$
 $r_1, r_2 \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$

•
$$r_1, r_2 \stackrel{\$}{\leftarrow} [2^{\varphi}] = \{1, \dots, 2^{\varphi}\} \subsetneq \mathbb{Z}_q^*$$

$$pub = \begin{cases} C = [r_1]\xi + X \\ D = [r_2]\xi + Y \end{cases}$$

where $X, Y \in \mathbb{G}$ are public and $X \neq C, Y \neq D$

1

Let
$$(\mathbb{G} = \langle P \rangle, +)$$
 be a cyclic group of prime order q and $\varepsilon \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$, $\xi = [\varepsilon]P$.

$$ullet$$
 $r_1, r_2 \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$

• $r_1, r_2 \stackrel{\$}{\leftarrow} [2^{\varphi}] = \{1, \dots, 2^{\varphi}\} \subsetneq \mathbb{Z}_q^*$

unconditionally secure

$$pub = \begin{cases} C = [r_1]\xi + X \\ D = [r_2]\xi + Y \end{cases}$$

where $X, Y \in \mathbb{G}$ are public and $X \neq C, Y \neq D$

1/

Let
$$(\mathbb{G} = \langle P \rangle, +)$$
 be a cyclic group of prime order q and $\varepsilon \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$, $\xi = [\varepsilon]P$.

$$ullet$$
 $r_1, r_2 \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$

• $r_1, r_2 \stackrel{\$}{\leftarrow} [2^{\varphi}] = \{1, \dots, 2^{\varphi}\} \subsetneq \mathbb{Z}_q^*$

unconditionally secure

$$pub = \begin{cases} C = [r_1]\xi + X \\ D = [r_2]\xi + Y \end{cases}$$

where $X, Y \in \mathbb{G}$ are public and $X \neq C, Y \neq D$

$$\operatorname{set} \left\{ [r^{-1}](C-X) \colon r \in \llbracket 2^{\varphi} \rrbracket \right\}$$

$$\xi \in \bigcap$$

$$\operatorname{set} \left\{ [r^{-1}](D-Y) \colon r \in \llbracket 2^{\varphi} \rrbracket \right\}$$

Let
$$(\mathbb{G} = \langle P \rangle, +)$$
 be a cyclic group of prime order q and $\varepsilon \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$, $\xi = [\varepsilon]P$.

$$ullet$$
 $r_1, r_2 \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$

• $r_1, r_2 \stackrel{\$}{\leftarrow} [2^{\varphi}] = \{1, \dots, 2^{\varphi}\} \subsetneq \mathbb{Z}_q^*$

unconditionally secure

$$pub = \begin{cases} C = [r_1]\xi + X \\ D = [r_2]\xi + Y \end{cases}$$

where $X, Y \in \mathbb{G}$ are public and $X \neq C, Y \neq D$

broken after up to $2^{\varphi+1}$ scalar computations in \mathbb{G}

$$\det\left\{[r^{-1}](C-X)\colon r\in \llbracket 2^{\varphi}\rrbracket\right\}$$

$$\xi\in \qquad \qquad \bigcap$$

$$\det\left\{[r^{-1}](D-Y)\colon r\in \llbracket 2^{\varphi}\rrbracket\right\}$$

Time-bound: \bullet computes no more than 2^{κ} short scalar multiplications in τ seconds.

Time-bound: \triangleright computes no more than 2^{κ} short scalar multiplications in τ seconds.

Time-bound: \triangleright computes no more than 2^{κ} short scalar multiplications in τ seconds.

$$\mathcal{P} \left[igchtarrow (exttt{pub})
ightarrow exttt{out}^* \ | egin{array}{c} exttt{out}^*
out^*
out^*
out^*
out^*
out
out^*
out^*$$

Time-bound: \bullet computes no more than 2^{κ} short scalar multiplications in τ seconds.

$$\mathcal{P}\left[igotimes (\mathtt{pub})
ightarrow \mathtt{out}^* \, \middle| egin{array}{c} \mathtt{out}^*
eq \mathtt{out}^* \ eq \mathtt{out}^*$$

$$\leq \mathcal{P} \left[\begin{array}{c} \operatorname{set} \left\{ [r^{-1}](C - X) \colon r \in S_1 \right\} \\ \xi \in & \cap \\ \operatorname{set} \left\{ [r^{-1}](D - Y) \colon r \in S_2 \right\} \end{array} \right]$$

Time-bound: \triangleright computes no more than 2^{κ} short scalar multiplications in τ seconds.

$$\mathcal{P}\left[igchtarrow (exttt{pub})
ightarrow exttt{out}^* \ \ \, egin{array}{c} exttt{out}^*
out^*
ou$$

$$\leq \mathcal{P} \left[\begin{array}{c} \operatorname{set} \left\{ [r^{-1}](C - X) \colon r \in S_1 \right\} \\ \xi \in & \cap \\ \operatorname{set} \left\{ [r^{-1}](D - Y) \colon r \in S_2 \right\} \end{array} \right]$$

$$= \mathcal{P} \left[egin{array}{ccc} ext{event} \left\{ oldsymbol{r_1} \in S_1
ight\} \ & & & & \\ ext{event} \left\{ oldsymbol{r_2} \in S_2
ight\} \end{array}
ight]$$

Time-bound: \triangleright computes no more than 2^{κ} short scalar multiplications in τ seconds.

$$\mathcal{P}\left[igotimes_{}^{} (exttt{pub})
ightarrow exttt{out}^* \ \left| egin{array}{c} exttt{out}^*
out^*
o$$

$$\leq \mathcal{P} \left[\begin{array}{c} \operatorname{set} \left\{ [r^{-1}](C - X) \colon r \in S_1 \right\} \\ \xi \in & \cap \\ \operatorname{set} \left\{ [r^{-1}](D - Y) \colon r \in S_2 \right\} \end{array} \right]$$

$$= \mathcal{P} \left[\begin{array}{c} \operatorname{event} \left\{ r_1 \in S_1 \right\} \\ \wedge \\ \operatorname{event} \left\{ r_2 \in S_2 \right\} \end{array} \right] \leq 2^{-\sigma} \\ \downarrow \quad \text{if } \varphi = \left\lceil \frac{\sigma - 1}{2} + \kappa \right\rceil$$

computes no more than 2^{κ} short scalar multiplications in τ seconds. Time-bound:

choose $S_1, S_2 \subset [2^{\varphi}]$: $|S_1| + |S_2| \leq 2^{\kappa}$ and intersect the generated sets. Best strategy:

$$\mathcal{P} \left[igchtarrow (exttt{pub})
ightarrow exttt{out}^* \ ert exttt{Verify} (exttt{out}^*) = 1 \
ight]$$

$$\leq \mathcal{P} \left[\begin{array}{c} \operatorname{set} \left\{ [r^{-1}](C - X) \colon r \in S_1 \right\} \\ \xi \in & \cap \\ \operatorname{set} \left\{ [r^{-1}](D - Y) \colon r \in S_2 \right\} \end{array} \right]$$

$$\tau = 1 \qquad \text{latency}$$
 In this work:
$$\kappa = 70 \qquad \text{computational}$$

$$\sigma = 40 \qquad \text{statistical}$$

$$\varphi = 90 \qquad \text{efficiency}$$

$$\varphi = 90$$
 efficiency

$$= \mathcal{P} \left[\begin{array}{c} \operatorname{event} \left\{ r_1 \in S_1 \right\} \\ \wedge \\ \operatorname{event} \left\{ r_2 \in S_2 \right\} \end{array} \right] \leq 2^{-\sigma} \\ \downarrow \quad \text{if } \varphi = \left\lceil \frac{\sigma - 1}{2} + \kappa \right\rceil$$

Curve	${\bf Protocol}$		Client cost	Security
BLS12-381	CDS14 CKKS20 LOVE	$\mathtt{len}(\overrightarrow{A})=1$	1.41 p 2.01 p 1.90 p	
	AmorE		$0.68~\mathfrak{p}$	

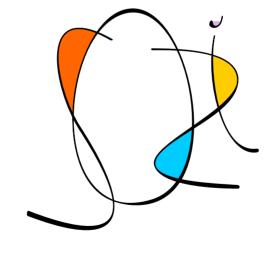
Curve	${f Protocol}$		Client cost	Security
BLS12-381	CDS14 CKKS20 LOVE	$\mathtt{len}(\overrightarrow{A})=1$	1.41 p 2.01 p 1.90 p	
	AmorE		$0.68~\mathfrak{p}$	
	MV19 CKC23	$\operatorname{len}(\overrightarrow{A}) = 3$	$1.04\mathfrak{p}$ $1.65\mathfrak{p}$	⊗
	AmorE		$0.45~\mathfrak{p}$	$\overline{\mathbb{Z}}$

Curve	$\mathbf{Protocol}$		Client cost	Security
BLS12-381	CDS14 CKKS20 LOVE	$\operatorname{\mathtt{len}}(\overrightarrow{A})=1$	1.41 p 2.01 p 1.90 p	
	AmorE		$0.68~\mathfrak{p}$	
	MV19 CKC23	$\operatorname{len}(\overrightarrow{A})=3$	$1.04\mathfrak{p}$ $1.65\mathfrak{p}$	
	AmorE		$0.45~\mathfrak{p}$	$\overline{\mathbb{Z}}$

Table: Amortized Efficiency obtained over N = 10 delegations and 40 bits of statistical security (RELIC implementations).

Thank you for your attention:)

Open-source tools used for our presentation:



Sozi

SVG repo