Resolving the Efficiency-Utility Dilemma of Threshold Linearly Homomorphic Encryption via Message-Space Adapter

Yijia Chang

Rongmao Chen*

Chao Lin

Songze Li

Xinyi Huang*

Threshold Linearly Homomorphic Encryption (ThLHE)

ThLHE supports homomorphic evaluation and threshold decryption

Threshold Linearly Homomorphic Encryption (ThLHE)

ThLHE supports homomorphic evaluation and threshold decryption

Why We Study ThLHE: Reason 1

ThLHE has many applications in multi-party setting

Why We Study ThLHE: Reason 2

ThLHE has low communication cost with O(N) complexity due to less interactions

ThLHE Is Currently Less Efficient Than Expected

Most of schemes are inefficient due to high computation complexity of threshold decryption

Efficient ThLHE Schemes Suffer From Utility Restrictions

Existing schemes with low complexity has either small message-space or static decryptor-set

Efficient ThLHE Schemes Suffer From Utility Restrictions

Existing schemes with low complexity has either small message-space or static decryptor-set

Efficiency-Utility Dilemma of ThLHE

In the past 20+ years, existing ThLHE schemes have either high complexity or utility restrictions

Quick Answer: Why This Dilemma Exists

The security assumptions make HE either restricted or very challenging to be thresholdized

Quick Answer: Why This Dilemma Exists

The security assumptions make HE either restricted or very challenging to be thresholdized

Quick Answer: Resolving This Dilemma for Threshold LHE

Instead of improving SS, we propose the first LHE with easy thresholdization and flexible utility

Quick Answer: Resolving This Dilemma for Threshold LHE

Instead of improving SS, we propose the first LHE with easy thresholdization and flexible utility

Traditional Perspective

Quick Answer: Resolving This Dilemma for Threshold LHE

Instead of improving SS, we propose the first LHE with easy thresholdization and flexible utility

Traditional Perspective

Our New Perspective

Potential Tool for ThLHE Construction

We can employ computationally-efficient secret sharing (SS) to thresholdize LHE

Problems for Thresholdizing Factoring-Based ThLHE

Due to the unknown group order, Shamir secret sharing (SS) cannot be used

Must keep secret to avoid the leakage of p and q

Large Primes
$$p, q$$
 RSA Integer $N = p \cdot q$

Group Order
$$P = \phi(N) = (p-1) \cdot (q-1)$$

Typical Solution: "clearing-out-denominator" technique

An integer (without mod P) but super-large

$$L_{\mathcal{T},i} = \prod_{j \in \mathcal{T}, j \neq i} \frac{x_j}{x_j - x_i} \pmod{P} \longrightarrow L'_{\mathcal{T},i} = (N!) \cdot \prod_{j \in \mathcal{T}, j \neq i} \frac{x_j}{x_j - x_i}$$

The aggregation of decryption shares $\{ds_i\}_{i\in\mathcal{T}}:\prod_{i\in\mathcal{T}}ds_i^{L'_{\mathcal{T},i}}$ \checkmark $O(N^2\log N)$ Computations

Problems for Thresholdizing DDH-Based ThLHE

- Exp-ElGamal has small message-space restriction
- CL framework via modifying internal mechanism may result in unknown group order

Our Mentality for Constructing "Easy Nails"

The dilemma can be resolved if improved Exp-ElGamal remains easy to be thresholdized

Our Key Idea

Equip Exp-ElGamal with an external adapter that doesn't modify its internal mechanism

Exp-ElGamal (HE) Message-Space Adapter (MeSA) with message-space ${\mathcal M}$ from ${\mathcal M}$ to ${\mathcal M}$ Improved Exp-ElGamal (HE) with message-space ${\mathcal M}$

Our Key Idea

Equip Exp-ElGamal with an external adapter that doesn't modify its internal mechanism

Such a tool does not exist at present

Exp-ElGamal (\underline{HE}) with message-space $\underline{\mathcal{M}}$

Message-Space Adapter (MeSA) from $\mathcal M$ to $\overline{\mathcal M}$

Improved Exp-ElGamal (HE) with message-space $\overline{\mathcal{M}}$

$$\operatorname{Enc}(m;ek) \longrightarrow \operatorname{Eval} \longrightarrow \operatorname{Enc}(f(m);f(ek))$$

$$ek \longrightarrow \operatorname{KEval} \longrightarrow f(ek)$$

$$f(ek) \in \underline{\mathcal{M}}$$

$$Enc(f(m);f(ek)) \longrightarrow \operatorname{Dec} \longrightarrow f(m) \in \overline{\mathcal{M}}$$

Enc(m; ek)
$$\longrightarrow$$
 Eval \longrightarrow Enc(f(m); f(ek)) \longrightarrow Enc(f(m); f(ek)) \longrightarrow Dec \longrightarrow f(m) $\in \overline{\mathcal{M}}$ \longrightarrow KEval \longrightarrow f(ek)

MeSA-Assisted HE Construction: An Illustrative Example

For ease of description, we assume two messages and additive-homomorphism

MeSA-Assisted HE Construction: An Illustrative Example

For ease of description, we assume two messages and additive-homomorphism

MeSA-Assisted HE Construction: Encryption

Encryption consists of encrypting messages via MeSA and encrypting MeSA's key via <u>HE</u>

MeSA-Assisted HE Construction: Evaluation

Evaluation consists of evaluating MeSA's ciphertexts and evaluating HE's ciphertexts

MeSA-Assisted HE Construction: Decryption

Decryption consists of decrypting MeSA's keys via HE and decrypting messages via MeSA

MeSA-Assisted HE Construction: Final Result

HE is obtained by simply combining HE and MeSA together

Another Perspective of MeSA: Hybrid Cryptosystem

MeSA is a special type of secret-key encryption with extra requirements on homomorphism

MeSA-Assisted HE Construction: Easy to Be Thresholdized

Any method for thresholdizing \underline{HE} can directly thresholdize HE due to same key structure

MeSA-Assisted Threshold HE (ThHE) Construction

ThHE's threshold decryption consists of ThHE's threshold decryption and MeSA's decryption

Lattice-Based MeSA Scheme for Exp-ElGamal

Lattice-based secret-key encryption satisfies all requirements of MeSA for Exp-ElGamal

Public parameters
$$ct = \mathbf{a} \cdot \underbrace{e\mathbf{k}}_{\mathbf{k}} + \underbrace{e}_{\mathbf{k}} + \Delta \cdot \mathbf{m}_{\mathbf{k}}$$
Key Error Message

- ✓ Message space is \mathcal{M} : \mathbb{Z}_P , where P can be fairly large
- ✓ Key space is $\underline{\mathcal{M}}$: each key is vector/matrix with small entries (e.g., 0, 1, or -1)
- ✓ Secret-key encryption
- ✓ Key is generated by encryption algorithm
- ✓ Homomorphic in both of messages and keys

$$\alpha_{1} \cdot ct_{1} + \alpha_{2} \cdot ct_{2} = \mathbf{a} \cdot (\underbrace{\alpha_{1} \cdot ek_{1} + \alpha_{2} \cdot ek_{2}}_{\mathsf{Key}}) + \underbrace{(\alpha_{1} \cdot e_{1} + \alpha_{2} \cdot e_{2}}_{\mathsf{Error}}) + \Delta \cdot (\underbrace{\alpha_{1} \cdot m_{1} + \alpha_{2} \cdot m_{2}}_{\mathsf{Message}})$$

Lattice-Based MeSA Scheme for Exp-ElGamal

Lattice-based secret-key encryption satisfies all requirements of MeSA for Exp-ElGamal

- ✓ Message
- ✓ Key space
- ✓ Secret-Ke
- √ Key is ger

- Problem
- The key and error grow rapidly with a multiplicative factor $\mathcal{O}(\alpha)$
- Decryption will fail if key/error exceeds some bound
- √ Homomorphic in both of messages and keys

$$\alpha_1 \cdot ct_1 + \alpha_2 \cdot ct_2 = \mathbf{a} \cdot (\underbrace{\alpha_1 \cdot ek_1 + \alpha_2 \cdot ek_2}_{\mathsf{Key}}) + \underbrace{(\alpha_1 \cdot e_1 + \alpha_2 \cdot e_2}_{\mathsf{Error}}) + \Delta \cdot (\underbrace{\alpha_1 \cdot m_1 + \alpha_2 \cdot m_2}_{\mathsf{Message}})$$

Controlling Key & Error: Basic Idea

Bit decomposition can convert the homomorphic evaluation from multiplication to addition

Another way to compute $\alpha \cdot m$

Suppose the message space is $\mathbb{Z}_P = \{0,1,2,...,P-1\}$ and $P \leq 2^L$, then

$$\alpha = \sum_{i=0}^{L-1} \alpha_i \cdot 2^i \pmod{P}$$

$$\alpha = \sum_{i=0}^{L-1} \alpha_i \cdot 2^i \pmod{P}$$

$$2 \cdot m \pmod{P}$$

$$2^2 \cdot m \pmod{P}$$

$$2^2 \cdot m \pmod{P}$$

$$2^{L-1} \cdot m \pmod{P}$$

$$\alpha \cdot m = \sum_{i=0}^{L-1} \alpha_i \cdot (2^i \cdot m) \pmod{P}$$

Controlling Key & Error: Concrete Design

Reduce the growth from $\mathcal{O}(\alpha)$ to $\mathcal{O}(\log \alpha)$ by encrypting multiple versions of messages

Controlling Key & Error: Practical Effect

Our lattice-based MeSA can already support real-world applications

Lattice-Exp-ElGamal and Its Threshold Version

Performance Analysis of Threshold Lattice-Exp-ElGamal

Threshold Lattice-Exp-ElGamal is the first unrestricted ThLHE with quasi-linear complexity

	ThLHE with unknown group order	ThLHE with noisy recovery	Threshold Lattice-Exp-ElGamal
Computation Complexity	$\mathcal{O}(N^2 \log N)$	$\mathcal{O}(N^2 \log N)$	$\mathcal{O}(N \log N)$
Communication Complexity	$\mathcal{O}(1)$	$\mathcal{O}(N \log N)$	O (1)

N: the number of parties

Performance Analysis of Threshold Lattice-Exp-ElGamal

Threshold Lattice-Exp-ElGamal is the first unrestricted ThLHE with quasi-linear complexity

Performance Analysis of Threshold Lattice-Exp-ElGamal

Threshold Lattice-Exp-ElGamal has even more significant advantages for larger messages

	ThLHE with unknown group order	ThLHE with noisy recovery	Threshold Lattice-Exp-ElGama	
Computation Complexity	$\mathcal{O}(N^2 \log N \cdot M)$	$\mathcal{O}(N^2 \log N \cdot M)$	$O(N \log N + ND + M)$	
Communication Complexity	$\mathcal{O}(M)$	$\mathcal{O}(N \log N \cdot M)$	$\mathcal{O}(D)$	$pprox \mathcal{O}(1)$ for
N 7. +lo	a number of parties M.	managa aiza D . M	suffic	iently-large <i>I</i>

N: the number of parties

M: message size **D**: MeSA's key size

Problems for Thresholdizing Lattice-Based ThFHE

ThFHE decryption should hide the error in ciphertexts, generally with a flooding noise

Cannot be disclosed!

$$\mathbf{Dec}(\mathsf{ct}_m; sk): \qquad b = \mathsf{ct}_m \cdot sk \to \Delta \cdot \underline{m} + \underbrace{e_{ct}}_{\mathsf{ciphertext}}$$

$$\mathsf{Message} \quad \mathsf{Error} \; \mathsf{in}$$

Safe to be disclosed!

$$\mathbf{Dec}(\mathbf{ct}_m; sk): \qquad \boxed{b'} = \mathbf{ct}_m \cdot sk + n_{sm} \to \Delta \cdot m + e_{ct} + n_{sm} \cong \Delta \cdot m + \underbrace{n_{sm}}_{} \cong \Delta \cdot m +$$

Our Previous Work in USENIX Security'25

The core of multi-party FHE design is to construct approximate secret sharing (ApproxSS)

Threshold decryption may take multiple rounds

"Encrypted Share" could be a better idea for ApproxSS

ApproxSS Construction via Threshold Lattice-Exp-ElGamal

The share algorithm encrypts message b using threshold Lattice-Exp-ElGamal

Algorithms of Threshold Lattice-Exp-ElGamal

ApproxSS Construction via Threshold Lattice-Exp-ElGamal

The approximate recovery protocol consists of two rounds

- Round 1: every parties encrypt a small noise $n_i \leftarrow \chi$ and add all ciphertexts together
- Round 2: every parties execute threshold decryption to output approximate message

The share of party i: { sk_i , pk, Enc(b; pk) }

Algorithms of Threshold Lattice-Exp-ElGamal

Performance Analysis of Our ThLHE-Based ApproxSS

Our ThLHE-based ApproxSS resolves the multi-party FHE's efficiency-utility dilemma

- Efficiency: Quasi-linear computation complexity and constant communication complexity
- Utility: Can work for any *T* decryptors

	{0,1}-ApproxSS	Shamir-Based ApproxSS			ThLHE-Based
		Scheme 1	Scheme 2	Scheme 3	ApproxSS
Computation Complexity	$\mathcal{O}(N^{5.2})$	$\mathcal{O}(N^2)$	$\mathcal{O}(N^2)$	$\mathcal{O}(N^2)$	$\mathcal{O}(N \log N)$
Communication Complexity	$\mathcal{O}(N^{4.2})$	$\mathcal{O}(N)$	$\mathcal{O}(N)$	$\mathcal{O}(N)$	O (1)
Round Number	1	1	2	2	2

Summary and Discussion

Thank you!

Any questions?