
Resolving the Efficiency-Utility Dilemma of Threshold Linearly

Homomorphic Encryption via Message-Space Adapter

Yijia Chang Rongmao Chen* Chao Lin Songze Li Xinyi Huang*

Threshold Linearly Homomorphic Encryption (ThLHE)

ThLHE supports homomorphic evaluation and threshold decryption

1

Homomorphic Evaluation for Linear Functions

Homomorphic
Evaluation

𝐜𝐭𝒎𝟐
Encryption𝒎𝟐

𝐜𝐭𝒎𝟏

𝐜𝐭𝜶𝟏⋅𝒎𝟏+𝜶𝟐⋅𝒎𝟐

Encryption𝒎𝟏

Scalars
𝛼1, 𝛼2

Threshold Linearly Homomorphic Encryption (ThLHE)

ThLHE supports homomorphic evaluation and threshold decryption

2

𝑇-out-of-𝑁 Threshold Decryption

Any ≥ 𝑇 Decryptors
(e.g., 𝑇 = 2)

Decryption share 𝑑𝑠1

𝐜𝐭𝜶𝟏⋅𝒎𝟏+𝜶𝟐⋅𝒎𝟐

𝑠𝑘1

𝑠𝑘3
Decryption share 𝑑𝑠3

𝜶𝟏 ⋅ 𝒎𝟏 +𝜶𝟐 ⋅ 𝒎𝟐

𝑁 Parties
(e.g., 𝑁 = 3)

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

Secret
Key

Why We Study ThLHE: Reason 1

ThLHE has many applications in multi-party setting

3

ThLHE Applications

Secure Multi-Party Computation (MPC)
e.g., CDN framework and YOSO-MPC

Threshold Oblivious
Pseudorandom Function

Secure Aggregation for
Federated Learning

Threshold Signature

Multi-Party FHE with “encrypted share” idea
(Our previous work in USENIX Security’25)

Why We Study ThLHE: Reason 2

ThLHE has low communication cost with 𝑂(𝑁) complexity due to less interactions

4

…𝑚1 𝑚2 𝑚𝑁

…CT𝑚1
CT𝑚2

CT𝑚𝑁

Any 𝑇 participants

1. Encryption

2. Evaluation

3. Threshold
Decryption

CT𝑓(𝑚1,… ,𝑚𝑁)

𝑠𝑘1 𝑠𝑘𝑁

𝑓(𝑚1, … ,𝑚𝑁)

no interactions

broadcast only
one ciphertext

one-shot P2P
interaction

ThLHE Is Currently Less Efficient Than Expected

Most of schemes are inefficient due to high computation complexity of threshold decryption

5

tens of

Traditional
Applications

The number of parties 𝑁

Large-Scale
Applications

thousands of

High Complexity

> 𝒪(𝑁2)

Low Complexity

Only 3 Schemes
𝒪(𝑁 log𝑁)

Efficient ThLHE Schemes Suffer From Utility Restrictions

6

Existing schemes with low complexity has either small message-space or static decryptor-set

DDH-Based Exponential ElGamal

Messages must be from a small, known set

𝑚 𝑔𝑚 CT𝑚 𝑔𝑚 𝑚

Encryption Decryption

This step is practical only if 𝑚 is small

Applications usually have large message set

CDN Framework
for Secure MPC

𝑚 ∈ ℤ𝑝
𝑝 is large (e.g.,124-bit)

AI Model
Aggregation

Floating Parameter
e.g., 1.010231

Integer Message
e.g., 𝑚 = 1010231

Efficient ThLHE Schemes Suffer From Utility Restrictions

7

Existing schemes with low complexity has either small message-space or static decryptor-set

Lattice-Based Threshold Fully HE

𝑠𝑘1 𝑠𝑘3
Lose-of-interests

Random dropout

Denial-of-Service attack

𝑁 Parties Potential Sets of 𝑇 Decryptors

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

𝑠𝑘1 𝑠𝑘2

𝑠𝑘2 𝑠𝑘3

𝑠𝑘1 𝑠𝑘3
Succeed

Fail

Fail

Successful decryption assumes a pre-determined set of decryptors will participate, which may not hold

8

Efficiency-Utility Dilemma of ThLHE

In the past 20+ years, existing ThLHE schemes have either high complexity or utility restrictions

Restricted
Utility

Free
Utility

High
Complexity

Low
Complexity

Existing Schemes
in the past 20+ years

No Scheme
in Here!

Why ThLHE has this longstanding dilemma?

How can we resolve this dilemma?

9

10

Quick Answer: Why This Dilemma Exists

The security assumptions make HE either restricted or very challenging to be thresholdized

Provable Security of Public-Key Encryption

Assumption
Some problem is hard to solve

DDH Problem

Factoring-Based Problem

Lattice-Based Problems

Conclusion
Some scheme is secure

Prove

ElGamal

Paillier, G-M

BGV, TFHE

11

Quick Answer: Why This Dilemma Exists

The security assumptions make HE either restricted or very challenging to be thresholdized

DDH-based LHE

Lattice-based FHE
(e.g., BGV & TFHE)

Factoring-based LHE
(e.g., Paillier & G-M)

Noisy Recovery

Unknown Group Order

Exp-ElGamal with Small Message-Space

C-L

✓ Restricted Utility

✓ Hard Thresholdization

(Shamir secret sharing
does NOT apply)

12

Quick Answer: Resolving This Dilemma for Threshold LHE

Instead of improving SS, we propose the first LHE with easy thresholdization and flexible utility

Secret Sharing (SS)

LHE with restricted utility or
hard thresholdization

13

Quick Answer: Resolving This Dilemma for Threshold LHE

Instead of improving SS, we propose the first LHE with easy thresholdization and flexible utility

Secret Sharing (SS)

LHE with restricted utility or
hard thresholdization

Traditional
Perspective

Let’s devise a
stronger hammer

14

Quick Answer: Resolving This Dilemma for Threshold LHE

Instead of improving SS, we propose the first LHE with easy thresholdization and flexible utility

Secret Sharing (SS)

LHE with restricted utility or
hard thresholdization

Traditional
Perspective

Let’s devise a
stronger hammer

Our New
Perspective

Let’s try
easy nails

15

Potential Tool for ThLHE Construction

We can employ computationally-efficient secret sharing (SS) to thresholdize LHE

Shamir SS with 1 ≤ 𝑇 ≤ 𝑁

𝑠 =෍

𝑖∈𝒯

𝐿𝒯,𝑖 ⋅ 𝑠𝑖 mod 𝑃

for any set 𝒯 of ≥ 𝑇 parties

✓ Size of 𝑠 = Size of 𝑠𝑖 ✓ 𝑂 𝑁 log 𝑁 Computations

Share𝑠 {𝑠1, 𝑠2, … , 𝑠𝑁}

Reconstruct𝑠𝑖 𝑖∈𝒯

𝑠

Secret
Sharing

Nothing

if 𝒯 ≥ 𝑇

if 𝒯 < 𝑇

Group order 𝑃 must
be public information

𝐿𝒯,𝑖 = ෑ

𝑗∈𝒯,𝑗≠𝑖

𝑥𝑗

𝑥𝑗 − 𝑥𝑖
(mod 𝑃)

16

Problems for Thresholdizing Factoring-Based ThLHE

Due to the unknown group order, Shamir secret sharing (SS) cannot be used

RSA Integer
𝑵 = 𝒑 ⋅ 𝒒

Large Primes
𝒑, 𝒒 Hard

Easy Group Order
𝑷 = 𝝓 𝑵 = (𝒑 − 𝟏) ⋅ (𝒒 − 𝟏)

Must keep secret to avoid the leakage of 𝑝 and 𝑞

Typical Solution: “clearing-out-denominator” technique

The aggregation of decryption shares 𝑑𝑠𝑖 𝑖∈𝒯: ς𝑖∈𝒯 𝑑𝑠𝑖
𝐿𝒯,𝑖
′

✓ 𝑂 𝑁2 log 𝑁 Computations

𝐿𝒯,𝑖 = ෑ

𝑗∈𝒯,𝑗≠𝑖

𝑥𝑗

𝑥𝑗 − 𝑥𝑖
(mod 𝑃) 𝐿𝒯,𝑖

′ = 𝑁! ⋅ ෑ

𝑗∈𝒯,𝑗≠𝑖

𝑥𝑗

𝑥𝑗 − 𝑥𝑖

An integer (without mod P)
but super-large

17

Problems for Thresholdizing DDH-Based ThLHE

• Exp-ElGamal has small message-space restriction
• CL framework via modifying internal mechanism may result in unknown group order

Exp-ElGamal

Small message-space

Easy to be thresholdized
by using Shamir secret sharing

CL framework with
unknown group order

Flexible message-space

Hard to be thresholdized

Modifying
internal mechanism

18

Our Mentality for Constructing “Easy Nails”

The dilemma can be resolved if improved Exp-ElGamal remains easy to be thresholdized

Improved
Exp-ElGamal

Flexible message-space

Easy to be thresholdized
by using Shamir secret sharing

?
Exp-ElGamal

Small message-space

Easy to be thresholdized
by using Shamir secret sharing

CL framework with
unknown group order

Flexible message-space

Hard to be thresholdized

19

Our Key Idea

Equip Exp-ElGamal with an external adapter that doesn’t modify its internal mechanism

Exp-ElGamal (HE)

with message-space ℳ

Message-Space Adapter (MeSA)

from ℳ to ℳ

Improved Exp-ElGamal (HE)

with message-space ℳ

20

Our Key Idea

Equip Exp-ElGamal with an external adapter that doesn’t modify its internal mechanism

Message-Space Adapter (MeSA)

from ℳ to ℳ

Improved Exp-ElGamal (HE)

with message-space ℳ

Such a tool does not exist at present

Exp-ElGamal (HE)

with message-space ℳ

21

Formulation of MeSA: Algorithms and Requirements

MeSA is an encryption scheme with four main algorithms and five special requirements

EncMessage 𝒎 ∈ℳ

Encryption Key 𝒆𝒌 ∈ ℳ

Ciphertext Enc(𝒎;𝒆𝒌)

Enc(𝒎;𝒆𝒌) Eval Enc(𝒇(𝒎); 𝒇(𝒆𝒌))

𝒆𝒌 KEval 𝒇(𝒆𝒌)

Enc(𝒇(𝒎); 𝒇(𝒆𝒌)) Dec 𝒇 𝒎 ∈ ℳ

𝒇(𝒆𝒌) ∈ ℳ

22

Formulation of MeSA: Algorithms and Requirements

MeSA is an encryption scheme with four main algorithms and five special requirements

EncMessage 𝒎 ∈ℳ

Encryption Key 𝒆𝒌 ∈ ℳ

Ciphertext Enc(𝒎;𝒆𝒌)

Message space is 𝓜

Enc(𝒎;𝒆𝒌) Eval Enc(𝒇(𝒎); 𝒇(𝒆𝒌))

𝒆𝒌 KEval 𝒇(𝒆𝒌)

Enc(𝒇(𝒎); 𝒇(𝒆𝒌)) Dec 𝒇 𝒎 ∈ ℳ

𝒇(𝒆𝒌) ∈ ℳ

23

Formulation of MeSA: Algorithms and Requirements

MeSA is an encryption scheme with four main algorithms and five special requirements

EncMessage 𝒎 ∈ℳ

Encryption Key 𝒆𝒌 ∈ ℳ

Ciphertext Enc(𝒎;𝒆𝒌)

Message space is ℳ
Secret-key encryption

Enc(𝒎;𝒆𝒌) Eval Enc(𝒇(𝒎); 𝒇(𝒆𝒌))

𝒆𝒌 KEval 𝒇(𝒆𝒌)

Enc(𝒇(𝒎); 𝒇(𝒆𝒌)) Dec 𝒇 𝒎 ∈ ℳ

𝒇(𝒆𝒌) ∈ ℳ

24

Formulation of MeSA: Algorithms and Requirements

MeSA is an encryption scheme with four main algorithms and five special requirements

EncMessage 𝒎 ∈ℳ

Encryption Key 𝒆𝒌 ∈ ℳ

Ciphertext Enc(𝒎;𝒆𝒌)

Message space is ℳ
Secret-key encryption

Key space is 𝓜

Key is generated by it

Enc(𝒎;𝒆𝒌) Eval Enc(𝒇(𝒎); 𝒇(𝒆𝒌))

𝒆𝒌 KEval 𝒇(𝒆𝒌)

Enc(𝒇(𝒎); 𝒇(𝒆𝒌)) Dec 𝒇 𝒎 ∈ ℳ

𝒇(𝒆𝒌) ∈ ℳ

25

Formulation of MeSA: Algorithms and Requirements

MeSA is an encryption scheme with four main algorithms and five special requirements

EncMessage 𝒎 ∈ℳ

Encryption Key 𝒆𝒌 ∈ ℳ

Ciphertext Enc(𝒎;𝒆𝒌)

Message space is ℳ
Secret-key encryption

Key space is ℳ

Key is generated by it

Enc(𝒎;𝒆𝒌) Eval Enc(𝒇(𝒎); 𝒇(𝒆𝒌))

Homomorphic in both of messages and keys

𝒆𝒌 KEval 𝒇(𝒆𝒌)

Enc(𝒇(𝒎); 𝒇(𝒆𝒌)) Dec 𝒇 𝒎 ∈ ℳ

𝒇(𝒆𝒌) ∈ ℳ

𝒎𝟏,𝒎𝟐 ∈ ℳ 𝒎𝟏 +𝒎𝟐 ∈ ℳ

Pipeline of MeSA Pipeline of HE

KGen Enc
pk

Eval Dec

sk

26

MeSA-Assisted HE Construction: An Illustrative Example

For ease of description, we assume two messages and additive-homomorphism

𝒎𝟏,𝒎𝟐 ∈ ℳ 𝒎𝟏 +𝒎𝟐 ∈ ℳ

Pipeline of MeSA Pipeline of HE

KGen Enc
pk

Eval Dec

sk

27

MeSA-Assisted HE Construction: An Illustrative Example

For ease of description, we assume two messages and additive-homomorphism

Message space is ℳ

Enc

𝒆𝒌𝟏

Enc(𝒎𝟏; 𝒆𝒌𝟏)

Enc(𝒎𝟐; 𝒆𝒌𝟐)

𝒎𝟏,𝒎𝟐 ∈ ℳ

𝒆𝒌𝟐 ∈ ℳ

𝒎𝟏 +𝒎𝟐 ∈ ℳ

Pipeline of MeSA Pipeline of HE

KGen Enc
pk

Eval Dec
Enc(𝒆𝒌𝟐; pk)

sk

Enc(𝒆𝒌𝟏; pk)

28

MeSA-Assisted HE Construction: Encryption

Secret-key
encryption

Key space is ℳ

Encryption consists of encrypting messages via MeSA and encrypting MeSA’s key via HE

Enc

𝒆𝒌𝟏

Enc(𝒎𝟏; 𝒆𝒌𝟏)

Enc(𝒎𝟐; 𝒆𝒌𝟐)

𝒎𝟏,𝒎𝟐 ∈ ℳ

𝒆𝒌𝟐 ∈ ℳ

𝒎𝟏 +𝒎𝟐 ∈ ℳ

Pipeline of MeSA Pipeline of HE

KGen Enc
pk

Eval Dec
Enc(𝒆𝒌𝟐; pk)

sk

Enc(𝒆𝒌𝟏; pk)

29

MeSA-Assisted HE Construction: Evaluation

Homomorphic in both of
keys and messages

Evaluation consists of evaluating MeSA’s ciphertexts and evaluating HE’s ciphertexts

Enc(𝒎𝟏 +𝒎𝟐; 𝒆𝒌𝟏 + 𝒆𝒌𝟐)
Eval

Enc(𝒆𝒌𝟏 + 𝒆𝒌𝟐; pk)

Enc

𝒆𝒌𝟏

Enc(𝒎𝟏; 𝒆𝒌𝟏)

Enc(𝒎𝟐; 𝒆𝒌𝟐)

𝒎𝟏,𝒎𝟐 ∈ ℳ

𝒆𝒌𝟐 ∈ ℳ

𝒎𝟏 +𝒎𝟐 ∈ ℳ

Pipeline of MeSA Pipeline of HE

KGen Enc
pk

Eval Dec
Enc(𝒆𝒌𝟐; pk)

sk

Enc(𝒆𝒌𝟏; pk)

30

MeSA-Assisted HE Construction: Decryption

Decryption consists of decrypting MeSA’s keys via HE and decrypting messages via MeSA

Enc(𝒎𝟏 +𝒎𝟐; 𝒆𝒌𝟏 + 𝒆𝒌𝟐)
Eval

Enc(𝒆𝒌𝟏 + 𝒆𝒌𝟐; pk)

Dec

𝒆𝒌𝟏 + 𝒆𝒌𝟐 ∈ ℳ

31

MeSA-Assisted HE Construction: Final Result

DecEvalEncKGen

Enc(𝒎𝟏 +𝒎𝟐; 𝒆𝒌𝟏 + 𝒆𝒌𝟐)
Enc

𝒆𝒌𝟏

Eval Dec
Enc(𝒎𝟏; 𝒆𝒌𝟏)

Enc(𝒎𝟐; 𝒆𝒌𝟐)

𝒎𝟏,𝒎𝟐

𝒆𝒌𝟐 𝒆𝒌𝟏 + 𝒆𝒌𝟐

𝒎𝟏 +𝒎𝟐

KGen Enc
pk

Eval Dec
Enc(𝒆𝒌𝟐; pk)

Enc(𝒆𝒌𝟏 + 𝒆𝒌𝟐; pk)

sk

Enc(𝒆𝒌𝟏; pk)

HE is obtained by simply combining HE and MeSA together

Pipeline of

MeSA
Pipeline of HE Pipeline of HE

32

Another Perspective of MeSA: Hybrid Cryptosystem

MeSA is a special type of secret-key encryption with extra requirements on homomorphism

Public-Key Encryption
(e.g., RSA)

Secret-Key Encryption
(e.g., AES)

ek

𝒎 Enc(𝒎;𝒆𝒌)

Enc(𝒆𝒌; 𝒑𝒌)

✓ SK encryption is concretely efficient
✓ PK encryption has convenient key generation

Hybrid Cryptosystem

ek

𝒎 Enc(𝒎;𝒆𝒌)

Enc(𝒆𝒌; 𝒑𝒌)

MeSA-Assisted HE Construction

✓ MeSA has flexible message space
✓ Exp-ElGamal is easy to be thresholdized

MeSA

Exp-ElGamal

33

MeSA-Assisted HE Construction: Easy to Be Thresholdized

DecKGen

Dec

𝒆𝒌𝟏 + 𝒆𝒌𝟐

𝒎𝟏 +𝒎𝟐

KGen
pk

Dec

sk

Any method for thresholdizing HE can directly thresholdize HE due to same key structure

HE and HE have the same key pair
and key generation algorithm

HE doesn’t modify the
decryption algorithm of HE

Pipeline of

MeSA
Pipeline of HE Pipeline of HE

34

MeSA-Assisted Threshold HE (ThHE) Construction

Threshold KGen

Threshold KGen pk

sk1, sk2, …, skN

ThHE’s threshold decryption consists of ThHE’s threshold decryption and MeSA’s decryption

Pipeline of

MeSA
Pipeline of ThHE Pipeline of ThHE

Threshold Dec

Dec

𝒆𝒌𝟏 + 𝒆𝒌𝟐

𝒎𝟏 +𝒎𝟐

Threshold Dec

35

Lattice-Based MeSA Scheme for Exp-ElGamal

Lattice-based secret-key encryption satisfies all requirements of MeSA for Exp-ElGamal

✓ Message space is ℳ: ℤ𝑃, where 𝑃 can be fairly large
✓ Key space is ℳ: each key is vector/matrix with small entries (e.g., 0, 1, or -1)
✓ Secret-key encryption
✓ Key is generated by encryption algorithm
✓ Homomorphic in both of messages and keys

𝜶𝟏 ⋅ 𝒄𝒕𝟏 + 𝜶𝟐 ⋅ 𝒄𝒕𝟐 = 𝐚 ⋅ 𝜶𝟏 ⋅ 𝒆𝒌𝟏 + 𝜶𝟐 ⋅ 𝒆𝒌𝟐 + 𝜶𝟏 ⋅ 𝒆𝟏 + 𝜶𝟐 ⋅ 𝒆𝟐 + 𝚫 ⋅ (𝜶𝟏 ⋅ 𝒎𝟏 + 𝜶𝟐 ⋅ 𝒎𝟐)

Key Error Message

𝒄𝒕 = 𝐚 ⋅ 𝒆𝒌 + 𝒆 + 𝚫 ⋅ 𝒎

Key Error Message

Public parameters

36

Lattice-Based MeSA Scheme for Exp-ElGamal

Lattice-based secret-key encryption satisfies all requirements of MeSA for Exp-ElGamal

✓ Message space is ℳ: ℤ𝑃, where 𝑃 can be fairly large
✓ Key space is ℳ: each key is vector/matrix with small entries (e.g., 0, 1, or -1)
✓ Secret-Key encryption
✓ Key is generated by encryption algorithm
✓ Homomorphic in both of messages and keys

𝜶𝟏 ⋅ 𝒄𝒕𝟏 + 𝜶𝟐 ⋅ 𝒄𝒕𝟐 = 𝐚 ⋅ 𝜶𝟏 ⋅ 𝒆𝒌𝟏 + 𝜶𝟐 ⋅ 𝒆𝒌𝟐 + 𝜶𝟏 ⋅ 𝒆𝟏 + 𝜶𝟐 ⋅ 𝒆𝟐 + 𝚫 ⋅ (𝜶𝟏 ⋅ 𝒎𝟏 + 𝜶𝟐 ⋅ 𝒎𝟐)

Key Error Message

𝒄𝒕 = 𝐚 ⋅ 𝒆𝒌 + 𝒆 + 𝚫 ⋅ 𝒎

Key Error Message

Public parameters

• The key and error grow rapidly with a multiplicative factor 𝓞(𝜶)
• Decryption will fail if key/error exceeds some bound

Problem

37

Controlling Key & Error: Basic Idea

Bit decomposition can convert the homomorphic evaluation from multiplication to addition

Another way to compute 𝛼 ⋅ 𝑚

Suppose the message space is ℤ𝑃 = {0,1,2, … , 𝑃 − 1} and 𝑃 ≤ 2𝐿, then

𝛼 =෍

𝑖=0

𝐿−1

𝛼𝑖 ⋅ 2
𝑖 (mod 𝑃)

𝛼𝑖 ∈ {0,1}

𝛼 ⋅ 𝑚 =෍

𝑖=0

𝐿−1

𝛼𝑖 ⋅ (2
𝑖 ⋅ 𝑚) (mod 𝑃)

At most 𝐿 additions

𝑚 (mod 𝑃)
2 ⋅ 𝑚 (mod 𝑃)
22 ⋅ 𝑚 (mod 𝑃)

…
2𝐿−1 ⋅ 𝑚 (mod 𝑃)

(𝜶 ⋅ 𝒄𝒕)𝒋 =෍

𝒊=𝟎

𝑳−𝟏

𝜶𝒊,𝒋 ⋅ 𝒄𝒕𝒊

= 𝐚 ⋅ ෍

𝒊=𝟎

𝑳−𝟏

𝜶𝒊,𝒋 ⋅ 𝒆𝒌𝒊 +෍

𝒊=𝟎

𝑳−𝟏

𝜶𝒊,𝒋 ⋅ 𝒆𝒊 + 𝚫 ⋅෍

𝒊=𝟎

𝑳−𝟏

𝜶𝒊,𝒋 ⋅ 𝟐
𝒊𝒎

38

Controlling Key & Error: Concrete Design

Reduce the growth from 𝒪(𝛼) to 𝒪(log𝛼) by encrypting multiple versions of messages

𝒄𝒕 = 𝐚 ⋅ 𝒆𝒌 + 𝒆 + 𝚫 ⋅ 𝒎

𝒄𝒕𝒋 = 𝐚 ⋅ 𝒆𝒌𝒋 + 𝒆𝒋 + 𝚫 ⋅ 𝟐𝒋−𝟏𝒎

𝒄𝒕𝑳 = 𝐚 ⋅ 𝒆𝒌𝑳 + 𝒆𝑳 + 𝚫 ⋅ 𝟐𝑳−𝟏𝒎

𝒄𝒕𝟏 = 𝐚 ⋅ 𝒆𝒌𝟏 + 𝒆𝟏 + 𝚫 ⋅ 𝒎

…

𝜶 ⋅ 𝒄𝒕 = 𝐚 ⋅ 𝜶 ⋅ 𝒆𝒌 + 𝜶 ⋅ 𝒆 + 𝚫 ⋅ 𝜶 ⋅ 𝒎
Before

Controlling

After
Controlling

𝒪(𝛼) growth

An Illustrative Example with Message Space being ℤ𝑃

𝒪 𝐿 = 𝒪(log 𝛼) growth

…𝒄𝒕𝟐 = 𝐚 ⋅ 𝒆𝒌𝟐 + 𝒆𝟐 + 𝚫 ⋅ 𝟐𝒎

39

Controlling Key & Error: Practical Effect

Our lattice-based MeSA can already support real-world applications

64-bit messages

Exp-ElGamal

Lattice-Based MeSA

Exp-ElGamal

Evaluating linear functions
over 15625 messages

Evaluating addition functions
over 1000000 messages

40

Lattice-Exp-ElGamal and Its Threshold Version

Lattice-Exp-ElGamal Exp-ElGamal’s Thresholdizer

Threshold Lattice-Exp-ElGamal

Exp-ElGamal

Lattice-Based MeSA

41

Performance Analysis of Threshold Lattice-Exp-ElGamal

Threshold Lattice-Exp-ElGamal is the first unrestricted ThLHE with quasi-linear complexity

ThLHE with
unknown group order

ThLHE with
noisy recovery

Threshold
Lattice-Exp-ElGamal

Computation
Complexity

𝒪(𝑁2 log𝑁) 𝒪(𝑁2 log𝑁) 𝓞(𝑵 𝐥𝐨𝐠𝑵)

Communication
Complexity

𝓞(𝟏) 𝒪(𝑁 log𝑁) 𝓞(𝟏)

𝑵: the number of parties

42

Performance Analysis of Threshold Lattice-Exp-ElGamal

Threshold Lattice-Exp-ElGamal is the first unrestricted ThLHE with quasi-linear complexity

43

Performance Analysis of Threshold Lattice-Exp-ElGamal

Threshold Lattice-Exp-ElGamal has even more significant advantages for larger messages

ThLHE with
unknown group order

ThLHE with
noisy recovery

Threshold
Lattice-Exp-ElGamal

Computation
Complexity

𝒪(𝑁2 log𝑁 ⋅ 𝑀) 𝒪(𝑁2 log𝑁 ⋅ 𝑀) 𝓞(𝑵 𝐥𝐨𝐠𝑵 +𝑵𝑫+𝑴)

Communication
Complexity

𝓞(𝑴) 𝒪(𝑁 log𝑁 ⋅ 𝑀) 𝓞(𝑫)

𝑵: the number of parties 𝑴: message size 𝑫: MeSA’s key size

≈ 𝒪(𝑁𝐷 +𝑀) for
sufficiently-large 𝑀

≈ 𝒪(1) for
sufficiently-large 𝑀

44

Problems for Thresholdizing Lattice-Based ThFHE

ThFHE decryption should hide the error in ciphertexts, generally with a flooding noise

𝒃 = 𝐜𝐭𝒎 ⋅ 𝒔𝒌 → 𝚫 ⋅ 𝒎 + 𝒆𝒄𝒕

Cannot be disclosed!

Dec(𝐜𝐭𝒎; 𝒔𝒌) :

Message Error in
ciphertext

𝒃′ = 𝐜𝐭𝒎 ⋅ 𝒔𝒌 + 𝒏𝒔𝒎 → 𝚫 ⋅ 𝒎 + 𝒆𝒄𝒕 + 𝒏𝒔𝒎 ≅ 𝚫 ⋅ 𝒎 + 𝒏𝒔𝒎

Safe to be disclosed!

Dec(𝐜𝐭𝒎; 𝒔𝒌) :

≅𝒏𝒔𝒎 𝒏𝒔𝒎

𝒆𝒄𝒕

Message Flooding
Noise

45

Our Previous Work in USENIX Security’25

The core of multi-party FHE design is to construct approximate secret sharing (ApproxSS)

“Encrypted Share” could be a
better idea for ApproxSS

Threshold decryption may take multiple rounds

ApproxSS Construction via Threshold Lattice-Exp-ElGamal

46

Algorithms of Threshold Lattice-Exp-ElGamal

The share algorithm encrypts message 𝑏 using threshold Lattice-Exp-ElGamal

Threshold KGen
pk

sk1, sk2, …, skN

Enc Enc(𝒃; pk)

Share Algorithm of ApproxSS

The share of party 𝒊: { ski , pk, Enc(𝒃; pk) }

𝒃

ApproxSS Construction via Threshold Lattice-Exp-ElGamal

47

Algorithms of Threshold Lattice-Exp-ElGamal

The share of party 𝒊: { ski , pk, Enc(𝒃; pk) }

The approximate recovery protocol consists of two rounds
• Round 1: every parties encrypt a small noise 𝑛𝑖 ← 𝜒 and add all ciphertexts together
• Round 2: every parties execute threshold decryption to output approximate message

Approximate Recovery
Round 1 with participant set 𝒯1

Enc(𝒃 + ෍

𝒊∈𝓣𝟏

𝒏𝒊 ; pk) Threshold Dec 𝒃 + ෍

𝒊∈𝓣𝟏

𝒏𝒊Enc Enc(𝒏𝒊; pk) Eval

Approximate Recovery
Round 2 with participant set 𝒯2

pk Enc(𝐛; pk) ski for 𝑖 ∈ 𝒯2

for 𝑖 ∈ 𝒯1

Performance Analysis of Our ThLHE-Based ApproxSS

48

Our ThLHE-based ApproxSS resolves the multi-party FHE’s efficiency-utility dilemma
• Efficiency: Quasi-linear computation complexity and constant communication complexity
• Utility: Can work for any 𝑇 decryptors

{0,1}-ApproxSS Shamir-Based ApproxSS ThLHE-Based
ApproxSS

Scheme 1 Scheme 2 Scheme 3

Computation
Complexity

𝒪(𝑁5.2) 𝒪(𝑁2) 𝒪(𝑁2) 𝒪(𝑁2) 𝓞(𝑵 𝐥𝐨𝐠𝑵)

Communication
Complexity

𝒪(𝑁4.2) 𝒪(𝑁) 𝒪(𝑁) 𝒪(𝑁) 𝓞(𝟏)

Round Number 1 1 2 2 2

49

Summary and Discussion

49

Threshold HE

SS for LHE LHE for SS

Black-box SS

Integer SS

Pseudo-
random SS

MeSA

ApproxSS

Noisy Share

Encrypted
Share

Maybe we need to expand this branch!

New Nodes

Existing Nodes

Likely finding applications
beyond ThHE

Yijia CHANG’s Watermark

	Slide 0
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

