Towards Optimally Secure Deterministic Authenticated Encryption Schemes

soft merge with

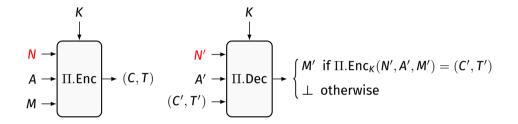
Making GCM Great Again: Toward Full Security and Longer Nonces

Ashwin Jha Byeonghak Lee

RUB

Samsung SDS

Eurocrypt 2025

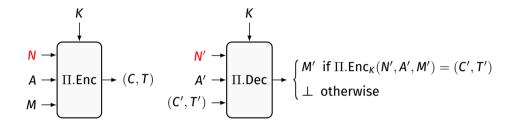

6 May, 2025

Towards Optimally Secure Deterministic Authenticated Encryption Schemes

Yu Long Chen Avijit Dutta Ashwin Jha Mridul Nandi KU Leuven TCG CREST RUB ISI Kolkata Eurocrypt 2025

6 May, 2025

Authenticated Encryption with Associated Data

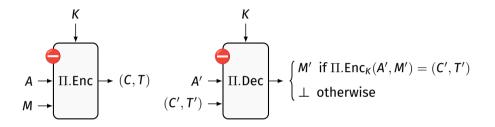


- AEAD encrypts the message M + authenticates the metadata & message (A, M)
- Widely deployed (TLS, IPsec, wireless standards)

GCM CCM ChaCha20-Poly1305 Ascon

• Nonce is supposed to be unique in encryption

Authenticated Encryption with Associated Data



- AEAD encrypts the message M + authenticates the metadata & message (A, M)
- Widely deployed (TLS, IPsec, wireless standards)

GCM CCM ChaCha20-Poly1305 Ascon

• Nonce is supposed to be unique in encryption

Deterministic AEAD [RS: EC '06]

- AEAD without a nonce [can be absorbed in the associated data]
- Encryption at rest (iCloud, AWS) and tokenization (PCI-compliant systems)

SIV GCM-SIV

Uniqueness of nonce in encryption ensures security and efficiency

- Security:
 - DAEAD leaks equality when message + metadata repeat.
 - Nonce ensures *fresh* randomness per encryption query
- Efficiency:
 - DAEAD are inherently *two-pass* (rate¹ is capped at 0.5)
 - Nonce allows for *single-pass* schemes

¹The ratio of number of *n*-bit blocks in the input to the number of primitive calls.

Uniqueness of nonce in encryption ensures security and efficiency

- Security:
 - DAEAD leaks equality when message + metadata repeat.
 - Nonce ensures fresh randomness per encryption query
- Efficiency:
 - DAEAD are inherently *two-pass* (rate¹ is capped at 0.5)
 - Nonce allows for *single-pass* schemes

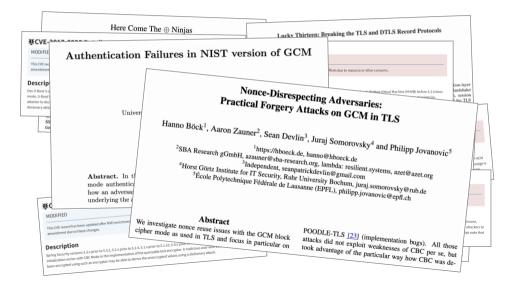
¹The ratio of number of *n*-bit blocks in the input to the number of primitive calls.

Uniqueness of nonce in encryption ensures security and efficiency

- Security:
 - DAEAD leaks equality when message + metadata repeat.
 - Nonce ensures fresh randomness per encryption query
- Efficiency:
 - DAEAD are inherently *two-pass* (rate¹ is capped at 0.5)
 - Nonce allows for *single-pass* schemes

Nonce-reuse is *strictly* prohibited!

¹The ratio of number of *n*-bit blocks in the input to the number of primitive calls.


The Curse of Nonce-Misuse

Here Come The ⊕ Ninjas	Lucky Thirteen: Breaking the TLS and DTLS Record Protocols	
VE-2017-3225 Detail		
DIFIED	巣CVE-2014-5386 Detail	
	DEFERRED	
CVE record has been updated after NVD enrichment efforts were completed. Enrichment data supplied by the NVD may require indiment due to these changes.	This CVE record is not being prioritized for M/D enrichment efforts due to resource or other concerns.	
Cription Boal is a device boatlander that can read its configuration from an AES encrypted file. For devices utilizing this environment enc	Description The margat, create: In function in beha/antime/ext/margat/est, margat/est pi in Facebook HisHop Virtual Machine 084VM before 3.3.0 does	
U-Boot's use of a zero initialization vector may allow attacks against the underlying cryptographic implementation and allow as r to decrypt the data. Das U-Boot's AES-CBC encryption feature uses a zero (0) initialization vector. This allows an attacker to pe any attacks on encrypted data produced by Das U-Boot to heam information about the encrypted data.	not used the nonline member generation, which makes it salar for remote attackers to defeat cryptographic protection mechanisms by the the TI the TI to be and the set of a single installation vector. If the TI is a single and the set of a single structure is the single set of the s	
SSL standard alle		
tions usually utiliz Description		
Description Theconstruct function in Pramework/Encryption/Crypt.php in Magento 2 uses the PHP rand fur Theconstruct function in Pramework/Encryption/Crypt.php in Magento 2 uses the PHP rand fur initialization vector, which makes it easier for remote attackers to deleat cryptographic protection	This POODLE Bites: Exploiting The SSL 3.0 Fallback	
Description The contract factors in human both they prove for the state of the state initialization vector, which makes it enter for resear attackers to added organization protected initialization vector, which makes it enter for resear attackers to added organization On the Security of RC4 in TLS1	SSL 3.0 Fallback	
Description The constant formation in Pranework/Encryption/Crystate in the Augusta 2 used to a Prior Aradii The constant for factors in Pranework/Encryption/Crystate in Augusta 2 used and a Prior Aradii On the Security of RC4 in TLS1 Daniel J. Bernstein Kenn	ueb G.P. Security Advisor	
Description The London is in transmersion and the second	soc 3.0 Fallback	
Description The contrast detection in humans Afforsprinter-Crystal bit in budgenesis count in Afford and The contrast detection in humans Afforsprinter-Crystal bit in budgenesis count in a field or approximately a market in initialization vector, alticle and a terrer for result and afford afford and afford and afford and afford a	soc 3.0 Fallback	
Description The London in Insurement Altoraption Criptide in budgeness cannot be refer and in The London in Insurement Altoraption Criptide in Budgeness cannot be refer and in Installation view, which wakes traver for remer anticents to dedet organize gravitation On the Security of RC4 in TLS! Nadhem J, AlFardan Daniel J, Bernstein Medination Scotter (remer, Royal Mohoos, University of London Daniel J, Bernstein Menter and Altoraption Control of Danied Network of the Security of Reference Security of Refer	Heth G. P. Securiting And and an and a second seco	
Description The London in Insurement Altoraption Criptide in budgeness cannot be refer and in The London in Insurement Altoraption Criptide in Budgeness cannot be refer and in Installation view, which wakes traver for remer anticents to dedet organize gravitation On the Security of RC4 in TLS! Nadhem J, AlFardan Daniel J, Bernstein Medination Scotter (remer, Royal Mohoos, University of London Daniel J, Bernstein Menter and Altoraption Control of Danied Network of the Security of Reference Security of Refer	Heth G. P. Securiting And and an and a second seco	
Description The London in Insurement Altoraption Criptide in budgeness cannot be refer and in The London in Insurement Altoraption Criptide in Budgeness cannot be refer and in Installation view, which wakes traver for remer anticents to dedet organize gravitation On the Security of RC4 in TLS! Nadhem J, AlFardan Daniel J, Bernstein Medination Scotter (remer, Royal Mohoos, University of London Daniel J, Bernstein Menter and Altoraption Control of Danied Network of the Security of Reference Security of Refer	Heth G. P. Securiting And and an and a second seco	
Beschriftsform The Londown de Inserved Alternation Copy (2014) in the Alternation The Londown de Inserved Alternation Copy (2014) in the Alternation The Londown de Inserved Alternation in the Alternation The Londown de Inserved Alternation in the Alternation The Londown de Inserved Alternation The Londown de Inserved Alternation The Alternation Th	And the CP Security Advances Key CVE-2011-3389 Detail DEFERED The CVE records and being priority for MO emichment offerts due to resource or other concerns. Description The Six products, marging data by using CVE mode with channel initialization vectors, which alian a min the melling any require	
Beschriftsform Description Descri	Argenting Sector S	
Beschriftenden Deschriftenden in InserenerAbersprächer Organise in Augenesis zum eine Aufer ander des Installanten vierte allert allert aufer allert allert aufer allert allert allert aufer allert alle	Argenting Sector S	

The Curse of Nonce-Misuse

жеч	Here Come The Ninjas	Lucky Thirteen:	Breaking the TLS and DTLS Record Protocols	
MODI This CVE	Authentication Failures in NIST vers	sion of GCM		
Descr Das U-Boor mode, U-B	p Antoine Joux		fforts due to resource or other concerns. L.mcrypt.cpg in Facebook HipMop Virtual Machine (HMVM) before 3.0.0 does for remote attacken to defeat crystographic potection mechanism by	tion-layer landshaker 1, session
attacker to dictionary	and and and the state of the st		E Bites: Exploiting The ack	I the TLS I manare-
[]	Abstract. In this note, we study the security of the mode authenticated encryption recently published by I how an adversary can recover the secret key of the keye underlying the authentication, using a chosen IV attack.	NIST. We show d hash function	Detail Id for MO enrichment efforts due to resource or other concerns.	
	MODIFIED This OUT record has been updated after NVD environment efforts user completed. Evolutioner data supplied by the NVD may require amendment data to those changes. Bescription Bescription Biological Statistics of the Statistic sta	Opera, and other products, encr obtain plaintest HTTP headers v user (1) the HTMLS WebSorker &	ain configurations in Microsoft Windows and Microsoft Internet Diplorer, Maralla Firel pts dada by using CIK mode with channed Initialization vectors, which allows man in a blocknet chosen-bandway rates (URX) on an ITTPS sension, in compactions (1) of the ain ut (Concert AN, or 0) the Shatiget WebClinet MA, was a "Block or usy HIS BUCCOBSSORS TLS 1.0 [REFC2246], TLS 1.1 [REFC	-the-middle attackers to ith JavaScript code that " attack.

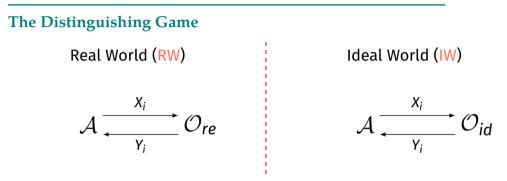
The Curse of Nonce-Misuse

- GCM, CCM, and OCB[†] are *limited* to birthday bound security AES-{GCM,CCM,OCB[†]} is secure up to 2^{64} queries
- 64-bit security might be insufficient
 - exabyte-scale $(\simeq 2^{60})$ in use, zetabyte-scale $(\simeq 2^{70})$ expected
 - Limited generic multi-user security
- Standardise a bigger block cipher [an effective long term solution(?)]
 - Replacing AES-128 might not be viable
 - Noticeable setup time expected
- BBB secure (nonce-based) AEAD modes
 - CHM: full *n*-bit security
 - SCM: graceful degradation (limited to n/2-bit security for arbitrary misuse)
 - SIV_r: BBB nonce-misuse security (highly inefficient)

- GCM, CCM, and OCB^{\dagger} are *limited* to birthday bound security AES-{GCM,CCM,OCB^{\dagger}} is secure up to 2⁶⁴ queries
- 64-bit security might be *insufficient*
 - exabyte-scale $(\simeq 2^{60})$ in use, zetabyte-scale $(\simeq 2^{70})$ expected
 - Limited generic multi-user security
- Standardise a bigger block cipher [an effective long term solution(?)]
 - Replacing AES-128 might not be viable
 - Noticeable setup time expected [hardware support, general confidence]
- BBB secure (nonce-based) AEAD modes
 - CHM: full n-bit security
 - SCM: graceful degradation (limited to n/2-bit security for arbitrary misuse)
 - SIV_r: BBB nonce-misuse security (highly inefficient)

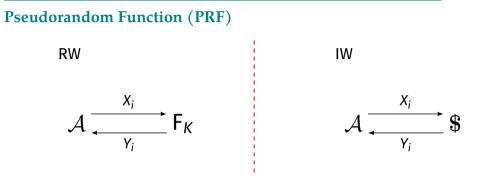
- GCM, CCM, and OCB[†] are *limited* to birthday bound security AES-{GCM,CCM,OCB[†]} is secure up to 2⁶⁴ queries
- 64-bit security might be *insufficient*
 - exabyte-scale $(\simeq 2^{60})$ in use, zetabyte-scale $(\simeq 2^{70})$ expected
 - Limited generic multi-user security
- Standardise a bigger block cipher [an effective long term solution(?)]
 - Replacing AES-128 might not be viable
 - Noticeable setup time expected
- BBB secure (nonce-based) AEAD modes [CHM, SCM, SIVr, GCM-SIV, OCB, Romulus, LightOCB]
 - CHM: full *n*-bit security
 - SCM: graceful degradation (limited to n/2-bit security for arbitrary misuse)
 - SIV_r: BBB nonce-misuse security (*highly inefficient*)

- GCM, CCM, and OCB[†] are *limited* to birthday bound security AES-{GCM,CCM,OCB[†]} is secure up to 2⁶⁴ queries
- 64-bit security might be *insufficient*
 - exabyte-scale $(\simeq 2^{60})$ in use, zetabyte-scale $(\simeq 2^{70})$ expected
 - Limited generic multi-user security
- Standardise a bigger block cipher [an effective long term solution(?)]
 - Replacing AES-128 might not be viable
 - Noticeable setup time expected
- BBB secure (nonce-based) AEAD modes
 - CHM: full *n*-bit security (insecure with a single misuse)
 - SCM: graceful degradation (limited to n/2-bit security for arbitrary misuse)
 - SIV_r: BBB nonce-misuse security (highly inefficient)

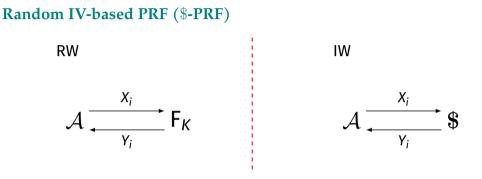

To solve two problems:

- Unique nonce requirement
- Limited security (birthday bound)

To solve two problems:

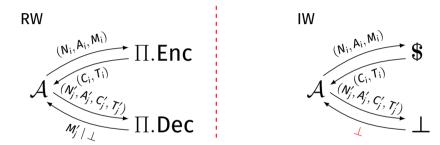

- Unique nonce requirement
- Limited security (birthday bound)

Design a block cipher-based efficient, misuse-resistant BBB-secure AEAD mode

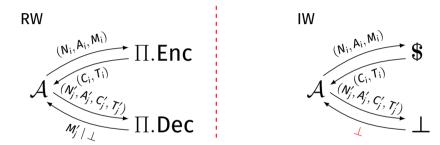


 $\mathbf{Adv}_{\mathcal{O}_{re}}^{\mathsf{game}}(\mathcal{A}) \coloneqq \left| \Pr\left(\mathcal{A} \text{ returns } 1 \text{ in } \mathsf{RW}\right) - \Pr\left(\mathcal{A} \text{ returns } 1 \text{ in } \mathsf{IW}\right) \right|$

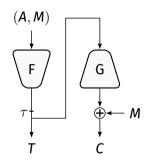
- Adversary's resources: q (query), ℓ (max. length), σ (total data) etc.
- Game: ideal world functionality + adversary's power



- Ideal world: a uniform random function \$
- \mathcal{A} makes chosen plaintext queries
- $\mathbf{Adv}_{F}^{prf}(\mathcal{A})$: the PRF advantage of \mathcal{A} against F

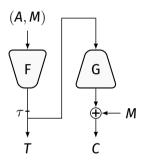

- Ideal world: a uniform random function \$
- *A* makes random plaintext queries
- $\mathbf{Adv}_{\mathsf{F}}^{\$-\mathsf{prf}}(\mathcal{A})$: the $\$-\mathsf{PRF}$ advantage of $\mathcal A$ against $\mathsf F$

Misuse-resistant AE (MRAE)



- Ideal world: a uniform random function \$ and the *reject* oracle \bot
- \mathcal{A} 's queries must satisfy $(N'_i, A'_i, C'_i, T'_i) \neq (N_i, A_i, C_i, T_i)$
- $\mathbf{Adv}_{\Pi}^{mrae}(\mathcal{A})$: the MRAE advantage of \mathcal{A} against Π
- DAEADs achieve MRAE security naturally!

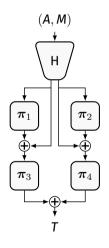
Misuse-resistant AE (MRAE)



- Ideal world: a uniform random function \$ and the *reject* oracle \bot
- \mathcal{A} 's queries must satisfy $(N'_i, A'_i, C'_i, T'_i) \neq (N_i, A_i, C_i, T_i)$
- $\mathbf{Adv}_{\Pi}^{mrae}(\mathcal{A})$: the MRAE advantage of \mathcal{A} against Π
- DAEADs achieve MRAE security naturally!

- Two main components:
 - F: a PRF
 - G: a random IV-based PRF
- Inverse-free
- Parallelizable
- Composition Bound [RS: EC '06, IM: ToSC '16]:

$$\mathbf{Adv}^{\mathsf{mrae}}_{\mathsf{SIV}}(\mathcal{A}) \leq \mathbf{Adv}^{\mathsf{prf}}_{\mathsf{F}}(\mathcal{B}) + \mathbf{Adv}^{\$\text{-prf}}_{\mathsf{G}}(\mathcal{C}) + \frac{\mathsf{q}}{2^{\tau}}$$


- Two main components:
 - F: a PRF
 - G: a random IV-based PRF
- Inverse-free
- Parallelizable
- Composition Bound [RS: EC '06, IM: ToSC '16]:

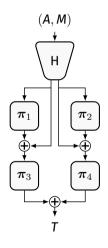
$$\mathbf{Adv}^{mrae}_{\mathsf{SIV}}(\mathcal{A}) \leq \mathbf{Adv}^{\mathsf{prf}}_{\mathsf{F}}(\mathcal{B}) + \mathbf{Adv}^{\$\text{-prf}}_{\mathsf{G}}(\mathcal{C}) + \frac{\mathsf{q}}{2^\tau}$$

TODOs:

- 1. A BBB secure PRF component with au > n bits of output
- 2. A BBB secure random IV-based PRF component

Revisiting HtmB-p2 [CJN: AC '20]

- Hashing solves two purposes:
 - Handling arbitrary length inputs
 - Inputs to $\pi_{\{1,2\}}$ have controlled collisions


 \implies Optimal Security for HtmB

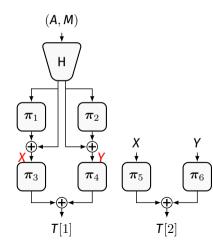
• HtmB-p2 PRF Bound [CJN: AC '20, CDNPS EC '23]:

$$\mathbf{Adv}_{\mathsf{HtmB-p2}}^{\mathsf{prf}}(\mathcal{A}) = O\left(rac{\mathbf{q}}{2^{n}} + \mathbf{q}^{2}\epsilon_{\mathsf{coll}}
ight)$$

• Limitation: only *n*-bit outputs

Revisiting HtmB-p2 [CJN: AC '20]

- Hashing solves two purposes:
 - Handling arbitrary length inputs
 - Inputs to $\pi_{\{1,2\}}$ have controlled collisions

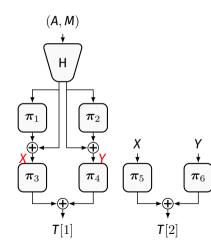

 \implies Optimal Security for HtmB

• HtmB-p2 PRF Bound [CJN: AC '20, CDNPS EC '23]:

$$\mathbf{Adv}^{\mathsf{prf}}_{\mathsf{HtmB-p2}}(\mathcal{A}) = \mathbf{O}\left(rac{\mathbf{q}}{2^{n}} + \mathbf{q}^{2}\epsilon_{\mathit{coll}}
ight)$$

• Limitation: only *n*-bit outputs

F*: **A BBB secure PRF with** 2*n***-bit outputs**

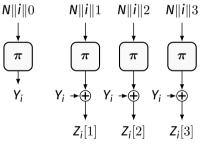

- HtmB-p2*:
 - Duplicates the HtmB-p2 finalization
 - Additional *n* bits at the cost of two calls

• F*: HtmB-p2* with a PMAC+ like hash

 * is $\operatorname{optimally}$ secure [for lengths up to $\sqrt{2^n}$]

$$\mathbf{Adv}_{\mathsf{F}^*}^{\mathsf{prf}}(\mathcal{A}) = \mathbf{O}\left(\frac{\sigma}{2^n}\right)$$

F*: **A BBB secure PRF with** 2*n***-bit outputs**



- HtmB-p2*:
 - Duplicates the HtmB-p2 finalization
 - Additional *n* bits at the cost of two calls
- F*: HtmB-p2* with a PMAC+ like hash

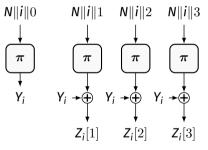
 F^* is optimally secure [for lengths up to $\sqrt{2^n}$]

$$\mathbf{Adv}_{\mathsf{F}^*}^{\mathsf{prf}}(\mathcal{A}) = \mathbf{O}\left(rac{\sigma}{2^n}
ight)$$

Revisiting CENC [Iwata: FSE '06]

The *i*-th chunk of keystream (r=3)

- Keystream is generated in chunks of *r* blocks
- Fully parallelizable

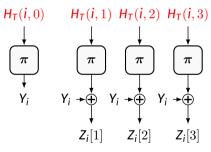

• Rate
$$\approx \left(\frac{r}{r+1}\right)$$

• Optimally secure if IVs are *unique* [IMV: ePrint '16]

• Limitations:

- |N| < n (we require $\approx 2n$)
 - Only birthday-bound \$-PRF secure

Revisiting CENC [Iwata: FSE '06]


The *i*-th chunk of keystream (r=3)

- Keystream is generated in chunks of *r* blocks
- Fully parallelizable

• Rate
$$\approx \left(\frac{r}{r+1}\right)$$

- Optimally secure if IVs are unique [IMV: ePrint '16]
- Limitations:
 - |N| < n (we require $\approx 2n$)
 - Only birthday-bound \$-PRF secure

GiantStar: A BBB secure random IV-based PRF

The *i*-th chunk of keystream (r=3)

- CTR-based encoding \rightarrow *lightweight* hash
 - Use the random IV as key
- Inherits all the the efficiency traits of CENC

• Secure if hash is 2-wise independent

GiantStar is BBB secure [for moderately large l]

$$\mathbf{Adv}_{\mathsf{GiantStar}}^{\$-\mathsf{prf}}(\mathcal{A}) = O\left(\frac{r\sigma}{2^n} + \frac{r\sigma^2\ell}{2^{2n}}\right)$$

GiantStar: A BBB secure random IV-based PRF

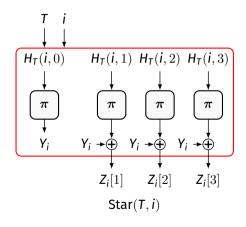
The *i*-th chunk of keystream (r=3)

- CTR-based encoding \rightarrow *lightweight* hash
 - Use the random IV as key
- Inherits all the the efficiency traits of CENC
- Secure if hash is 2-wise independent

GiantStar is BBB secure [for moderately large l]

$$\mathbf{Adv}_{\mathsf{GiantStar}}^{\$-\mathsf{prf}}(\mathcal{A}) = \mathbf{O}\left(\frac{\mathbf{r}\sigma}{2^{\mathbf{n}}} + \frac{\mathbf{r}\sigma^{2}\ell}{2^{2\mathbf{n}}}\right)$$

GiantStar: A BBB secure random IV-based PRF

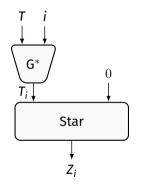

The *i*-th chunk of keystream (r=3)

- CTR-based encoding \rightarrow *lightweight* hash
 - Use the random IV as key
- Inherits all the the efficiency traits of CENC
- Secure if hash is 2-wise independent

GiantStar is BBB secure [for moderately large l]

$$\mathbf{Adv}^{\$-\mathsf{prf}}_{\mathsf{GiantStar}}(\mathcal{A}) = \mathbf{O}\left(\frac{\mathbf{r}\sigma}{2^n} + \frac{\mathbf{r}\sigma^2\boldsymbol{\ell}}{2^{2n}}\right)$$

Star: A fixed-length BBB secure random IV-based PRF



- Star \equiv GiantStar with
 - Fixed chunk index *i*
 - Restricted to \leq *r*-block outputs

Star is optimally secure

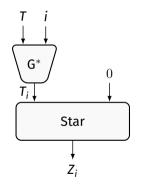
$$\mathbf{Adv}^{\$ ext{-prf}}_{\mathsf{Star}}(\mathcal{A}) = \mathbf{O}\left(rac{\mathbf{rq}}{2^n}
ight)$$

Snowflake: A length-independent BBB secure random IV-based PRF

The *i*-th chunk of keystream

• Fresh 2*n*-bit randomness per chunk

$$\mathbf{Adv}^{\$\text{-prf}}_{\mathsf{Snowflake}}(\mathcal{A}) \leq \mathbf{Adv}^{\$\text{-prf}}_{\mathsf{Star}}(\mathcal{B}) + \mathbf{Adv}^{\$\text{-prf}}_{\mathsf{G}^*}(\mathcal{C})$$


- G* must have length-independent bound!
- G* can be relatively heavier
 - in the paper: 6 calls per chunk

Snowflake is optimally secure

$$\mathbf{Adv}^{\$ ext{-prf}}_{\mathsf{Snowflake}}(\mathcal{A}) = \mathbf{O}\left(rac{r\sigma}{2^n}
ight)$$

The Random-IV PRF Component (Option 2)

Snowflake: A length-independent BBB secure random IV-based PRF

The *i*-th chunk of keystream

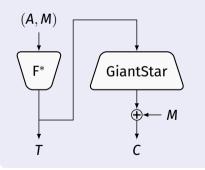
• Fresh 2*n*-bit randomness per chunk

$$\mathbf{Adv}^{\$\text{-prf}}_{\mathsf{Snowflake}}(\mathcal{A}) \leq \mathbf{Adv}^{\$\text{-prf}}_{\mathsf{Star}}(\mathcal{B}) + \mathbf{Adv}^{\$\text{-prf}}_{\mathsf{G}^*}(\mathcal{C})$$

- G* must have length-independent bound!
- G* can be relatively heavier
 - in the paper: 6 calls per chunk

Snowflake is optimally secure

$$\mathbf{Adv}^{\$ ext{-prf}}_{\mathsf{Snowflake}}(\mathcal{A}) = oldsymbol{O}\left(rac{oldsymbol{r}\sigma}{2^n}
ight)$$

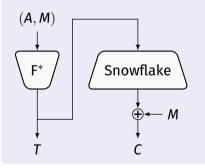

Our Contributions

Two misuse-resistant BBB-secure AEAD modes

Our Contributions

Two misuse-resistant BBB-secure AEAD modes

DENC1


- Highly parallelizable
- Tag size $\tau = 2n$ -bit
- Max. input length $\ell \leq \sqrt{2^n}$ -block
- Rate $\geq \left(rac{r}{2r+0.5}
 ight)$ (pprox 0.498 for r=64)
- BBB secure for moderate message lengths

$$\mathbf{Adv}_{\mathsf{DENC1}}^{\mathsf{mrae}}(\mathcal{A}) = \mathbf{O}\left(\frac{\mathbf{r}\sigma^{2}\ell}{2^{2n}}\right)$$

Our Contributions

Two misuse-resistant BBB-secure AEAD modes

DENC2

- Highly parallelizable
- Tag size $\tau = 2n$ -bit
- Max. input length $\ell \leq \sqrt{2^n}$ -block
- Rate $\geq \left(\frac{r}{2r+3.5}\right)$ (≈ 0.486 for r = 64)
- Length-independent optimal security

$$\mathbf{Adv}_{\mathsf{DENC1}}^{\mathsf{mrae}}(\mathcal{A}) = \mathbf{O}\left(\frac{\mathbf{r}\sigma}{2^n}\right)$$

Making GCM Great Again: Toward Full Security and Longer Nonces

Woohyuk Chung¹ Seongha Hwang¹ Seongkwang Kim² **Byeonghak Lee**² Jooyoung Lee¹

¹KAIST, Korea ²Samsung SDS, Korea

Eurocrypt 2025

2025. 05. 06.

Same Motivation, Different Goal

Recall: We require BBB-secure AEAD with low nonce misusing risk.

- 1. Design a misuse-resistant AE
 - AES-GCM-SIV, DENC1, DENC2, ...
 - Best for security, but inherently two pass
- 2. Design a nonce-based AE with extended nonces
 - DNDK-GCM: requires carefully generated nonces and BC with 2n-bit key

Same Motivation, Different Goal

Recall: We require BBB-secure AEAD with low nonce misusing risk.

- 1. Design a misuse-resistant AE
 - AES-GCM-SIV, DENC1, DENC2, ...
 - Best for security, but inherently two pass
- 2. Design a nonce-based AE with extended nonces
 - DNDK-GCM: requires carefully generated nonces and BC with 2n-bit key

Same Motivation, Different Goal

Recall: We require BBB-secure AEAD with low nonce misusing risk.

- 1. Design a misuse-resistant AE
 - AES-GCM-SIV, DENC1, DENC2, ...
 - Best for security, but inherently two pass
- 2. Design a nonce-based AE with extended nonces
 - DNDK-GCM: requires carefully generated nonces and BC with 2n-bit key

Our Goal:

- Block cipher based AE with full security
 - + Provably secure under standard PRP assumption
- Efficiency is comparable to GCM
- Support extended nonces or provide nonce misuse resistance
- Support arbitrary length message

Starting Point: CENC

Cipher-based ENCryption (CENC)

• CTR-type encryption mode with full security

$$\mathsf{Adv}^{\mathsf{prf}}_{\mathsf{CENC}[E,r]}(oldsymbol{q},oldsymbol{\sigma},oldsymbol{l}) \leq oldsymbol{O}\left(rac{oldsymbol{\sigma}}{2^{oldsymbol{n}}}
ight)$$

- limitation: $|\text{nonce}| + |\text{counter}| \le n$
 - \Rightarrow still have nonce misusing risk and short length limitation

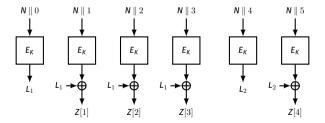


Figure: The first 4 keystream blocks from $CENC[E_K, w](N, \cdot)$ with w = 3.

Building Blocks - eCTR

enhanced CTR (eCTR) (\simeq GiantStar !)

• almost fully secure variable output length PRF (VOL-PRF) with 2n-bit random IV

$$\mathbf{Adv}^{\$-\mathsf{prf}}_{\mathsf{eCTR}[E,r]}(\mathcal{A}) \leq \mathbf{O}\left(\frac{r\sigma}{2^n} + \frac{r\sigma^2l}{2^{2n}}\right)$$

limitation: requires random IV
 ⇒ enough for iv-based AE, but we want nonce-based

Figure: The first 4 blocks from $eCTR[E_K, w](A, B)$ with w = 3.

Building Blocks - HteC

Hash-then-eCTR (HteC)

• almost fully secure variable input/output length PRF (VIL-VOL-PRF)

$$\mathsf{Adv}_{\mathsf{HteC}[\mathsf{H},\mathsf{E},w]}^{\mathsf{prf}}(\mathcal{A}) \leq \mathsf{O}\left(\frac{w\sigma}{2^n} + \frac{w\sigma^2 l}{2^{2n}}\right)$$

where *H* is δ -universal hash (UH)

• UH-then-PRP outputs (= A, B) are not fully random but enough for eCTR input

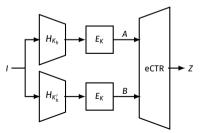


Figure: The HteC VIL-VOL pseudorandom function.

Our Contribution

eGCM/eGCM-SIV: enhanced variant of GCM/GCM-SIV

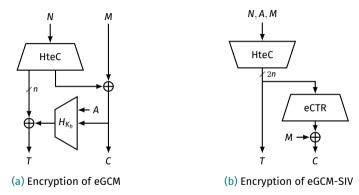
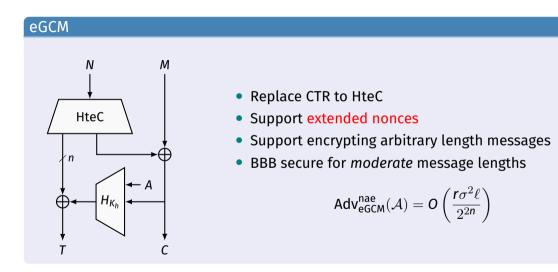
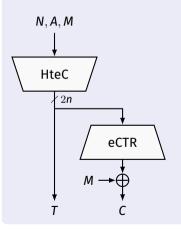




Figure: The eGCM and eGCM-SIV AE schemes. A nonce, an associated data, and a message are denoted *N*, *A* and *M*, respectively

Our Contribution

eGCM-SIV

- Use HteC as PRF and replace CTR to eCTR
- Support encrypting arbitrary length messages
- BBB secure for moderate message lengths

$$\mathsf{Adv}^{\mathsf{dae}}_{\mathsf{eGCM-SIV}}(\mathcal{A}) = \mathcal{O}\left(rac{\mathit{r}\sigma^{2}\ell}{2^{2n}}
ight)$$

Comparison

AEAD	Rate -	Security		
AEAU	Rate	NR	NM	
OCB3	1	n/2	-	
GCM	1/2	${\it n}/2$	-	
CIP, CHM, mGCM, eGCM	$\lesssim 1/2^{\dagger}$	n	-	
AES-GCM-SIV	1/2	n	n/2	
SCM	1/2	n	n/2	
CWC+	$\lesssim 1/2^{\dagger}$	3n/4	n/2 (auth only)	
eGCM-SIV, DENC1, DENC2	$\stackrel{\sim}{\lesssim} 1/2^{\dagger}$	n	n	

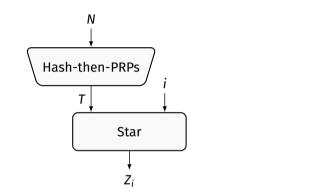
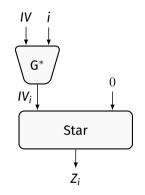
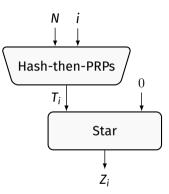

^{*} Depends on the parameter w, while we write $\lesssim 1/2$ since the rate approaches 1/2 as w increases and w can be set to a large enough value.

Table: Comparion of eGCM, eGCM-SIV, DENC1 and DENC2 and other block cipher based AE schemes. The maximum message length (= l) is assumed to be a small constant. Note that DENC2 has length-independent security.


Benchmark

Message			
1KB	4KB	64KB	
0.52	0.47	0.45	
1.65	1.02	0.83	
0.93	0.89	0.88	
1.33	1.07	0.99	
1.19	1.11	1.07	
1.33	1.15	1.12	
1.31	1.20	1.18	
1.42	1.38	1.32	
	0.52 1.65 0.93 1.33 1.19 1.33 1.31	1KB 4KB 0.52 0.47 1.65 1.02 0.93 0.89 1.33 1.07 1.19 1.11 1.33 1.15 1.31 1.20	

Table: Benchmark of eGCM, eGCM-SIV, DAE1 and DAE2 and other block cipher based AE schemes. Throughput is measured in cycles per byte, for empty associated data.



- Use arbitrary length nonces
- Simpler compressing function
- Length-dependent security

- Use random IVs (enough for SIV)
- Length-independent security
- G* is heavy!

Combining Two Papers: **HteC** + **SnowFlake**

- G* is replaced by Hash-then-PRPs \Rightarrow faster and support nonce!
- VIL-VOL-PRF with (output) length-independent security
- Can be used to construct fully secure NAE and DAE

Towards Optimally Secure DAEs

- DENC1: almost fully secure DAE
- DENC2: fully secure DAE (length-independent security)

Making GCM Great Again

- HteC: almost fully secure VIL-VOL-PRF
- eGCM: almost fully secure NAE with extended nonces
- eGCM-SIV: almost fully secure DAE

Our results can also be applied to:

- Accordion ciphers: Hash-CTR-Hash \Rightarrow Hash-(eCTR/SnowFlake)-Hash
- Nonce-key derivation: HteC and HteC+SnowFlake are PRF

Thank you for your attention!