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Blind Signatures 
Signer User

• Blindness: the signer does not learn the message 

• Unforgeability: the user needs the signer to get a valid 
signature

pkS skS
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Applications of BS

Introduced by David Chaum in 1980s. Used as one-time anonymous tokens 

💰 e-Cash 

🪪 Anonymous Credentials 

🎟 Privacy Pass 

In many applications the message is just a random string 

No need of interaction
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Non-Interactive Blind Signatures [Han23]
Signer User

• Blindness: cannot link a signature to a presignature 

• Unforgeability: cannot create  signatures from  
 presignatures

ℓ + 1
ℓ

pkU skUpkS skS
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Challenges

The user’s public key corresponds to a long-term public key for other schemes 
such as GitHub public keys, PGP keys etc. 

The scheme proposed in [Han23] uses specific keys; users need to generate 
ad hoc keys  

This work: construction of a NIBS compatible with standard RSA keys (N, e)
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2PC and Yao’s Garbled Circuits

We need some way for the signer to send obliviously some data to the user

Sign(sk, ⋅ )

Garbled encoding of the fuction  Sign(sk, ⋅ )

Labels for the circuit sent using oblivious transfer

The construction is interactive!
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Non-Interactive Oblivious Transfer (NIOT)

m0, m1, pk
Sender Receiver

pk, sk

ct0, ct1, cnt

b, mb

pk
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Non-Interactive Blind Signature

Signer User

0 1 0 1

Sign(sk, 01)

Garbled  
encoding

Lables encrypted 
with NIOT
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Our Contribution

🧰 Generic semi-honest NIBS from Yao’s GC + NIOT 

⚙ Efficient garbling of signing functions 

− Pointcheval-Sanders signatures 

− RSA based signaturers 

🔗 Construction of NIOT supporting RSA keys 

😈 Fully malicious NIBS for PS signature (non generic) 

Rest of this talk
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Quadratic Residuosity

The public key  must somehow encode the user’s choice in a way that 
the sender cannot distinguish 

Quadratic residuosity problem: decide whether an element  with 
Jacobi symbol 1 is a quadratic residue or a quadratic non-residue 

 square               non-square

N = pq

x ∈ ℤN

m0 ⟺ m1 ⟺
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Goldwasser-Micali vs Cocks

 non-square 
 factorization of 

pk : N, x ∈ ℤN
sk : N

 square 
 factorization of ,  s.t. 

pk : N, x ∈ ℤN
sk : N s s2 ≡ x (mod N )

Hiding property 
If  is a square,   
statistically hides 

x GM . Enc(x, m)
m

Hiding property 
If  is a non-square, and  is 
squarefree  
then  statistically 
hides 

x N

Cocks . Enc(x, m)
m
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NIOT Construction, squarefree modulus

m0, m1, pk = N
Sender Receiver

pk = N, sk = fact(N )

ct0, ct1, cnt

 
 

x ← ℋN(N, cnt)
ct0 ← Cocks . Enc(x, m0)
ct1 ← GM . Enc(x, m1)
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NIOT Construction, squarefree modulus

m0, m1, pk = N
Sender Receiver

pk = N, sk = fact(N )

 
 

x ← ℋN(N, cnt)
ct0 ← Cocks . Enc(x, m0)
ct1 ← GM . Enc(x, m1)

ct0, ct1, cnt

 
if  is a square: 

 
else: 

x ← ℋ(N, cnt)
x

m ← Cocks . Dec(x, ct0)

m ← GM . Dec(x, ct1)



50

Generic Modulus

If  is not squarefree then a malicious receiver might decrypt both ciphertexts N



51

Generic Modulus

If  is not squarefree then a malicious receiver might decrypt both ciphertexts 

Idea: encrypt the ciphertext  with a key  that can be recovered only if  
is squarefree

N

ct0, ct1 k N
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Sender: sample  and derive a key , encrypt the 
ciphertexts with  and send them along with  for   
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Generic Modulus

If  is not sqf  the equation  has (zero or)  
at least  solutions in  

Sender: sample  and derive a key , encrypt the 
ciphertexts with  and send them along with  for   

• If  is sqf then w.h.p.  then the receiver can recover from ’s 
the (unique) ’s and hence  
• Otherwise the equation  has more than  solutions, hence will recover 

the right  with probability less than . Therefore a malicious can decrypt 
with probability less than 

N ⇒ d = gcd(N, ϕ(N )) > 1 ⇒ XN = a
d > 1 ℤ*N

a1, …, aλ ← ℤN k = ℋ(a1, …, aλ)
k bi := aN

i i = 0,…, λ

N gcd(N, ϕ(N )) = 1 bi
ai k

XN = bi d
ai 1/d

(1/d)λ
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NIOT Construction, generic modulus

m0, m1, pk = N
Sender Receiver

pk = N, sk = fact(N )

 
 

 

 
 

 for 

x ← ℋN(N, cnt)
ct0 ← Cocks . Enc(x, m0)
ct1 ← GM . Enc(x, m1)

a1, …, aλ ← ℤN
k ← ℋ(a1, …, aλ)
bi ← aN

i i = 0,…, λ

 
if  is a square: 

 
else: 

x ← ℋ(N, cnt)
x

m ← Cocks . Dec(x, ct0)

m ← GM . Dec(x, ct1)

 
             
Enck(ct0), Enck(ct1), cnt,

b1, …, bλ

From  recover  
Recover 

bi k
ct0, ct1
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Wrapping it up

⭐ We have built a NIOT supporting RSA user’s public key 
This gives us, combined with efficient garbling of signing functions, the  
first NIBS compatible with standard RSA keys 

🧩 Generic paradigm to constuct NIBS 

🔮 Future work: 
− Post-quantum construction 
− More applications
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PS Signature

Public parameters:   

: sample  and , set  and . Return the pair 

 

: sample  and output  

: parse  and check if 

p, G1, G2, GT, e

KeyGen g ← G2 (x, y) ← ℤ2
p X = gx Y = gy

pk = (X, Y ), sk = (x, y)

Sign(sk, m) h ← G1 σ = (h, hx+ym)

Verify(pk, m, σ) σ = (σ1, σ2) e(σ1, X ⋅ Ym) = e(σ2, g)
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Garbling PS Signature

We garble the second component  
Let , we consider the binary decomposition of  

Compute  such that , set  

For  define  and  
Derive ciphertexts  and  for some keys  

Garbled function:  
Labels: 

σ2
ℓ = ⌊log p⌋ m = m1…mℓ

a1, …, aℓ ∈ G1

ℓ

∏
i=0

ai = 1G1
d = a0 ⋅ hx

i = 1,…, ℓ s0
i = ai s1

i = ai ⋅ h2i−1y

ct0
i = Enc(k0

i , s0
i ) ct1

i = Enc(k1
i , s1

i ) k0
i , k1

i

{ct0
i , ct1

i }i, h, d
{k0

i , k1
i }i


