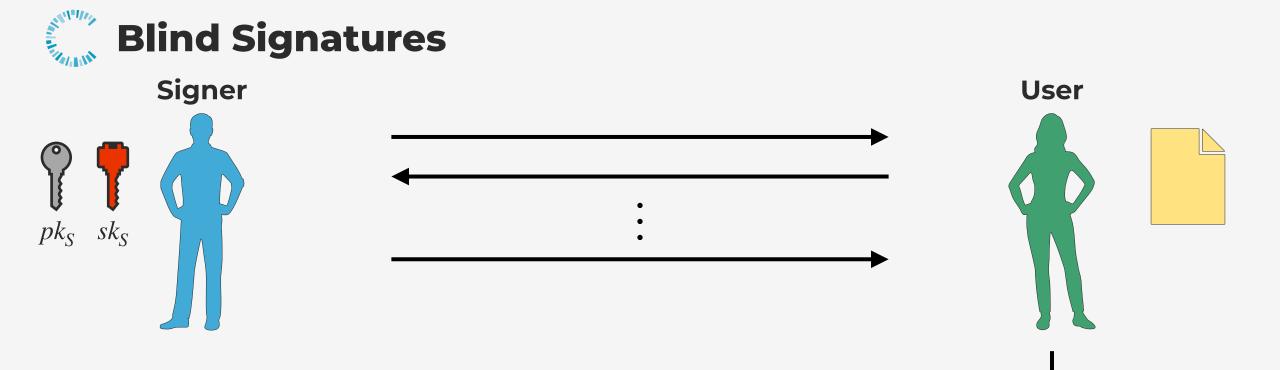


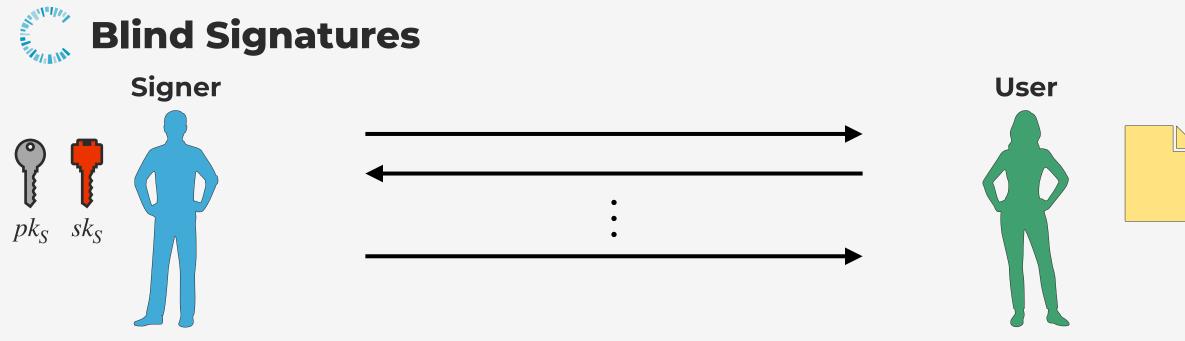
Non-Interactive Blind Signatures from RSA Assumption and More

L. Hanzlik, <u>E. Paracucchi</u>, R. Zanotto

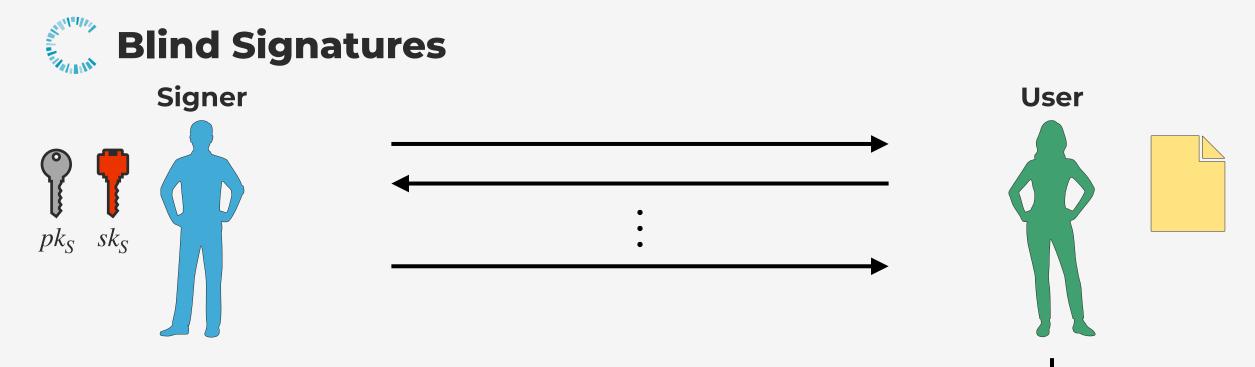
Eurocypt 2025 | Madrid | May 6th







• Blindness: the signer does not learn the message



- Blindness: the signer does not learn the message
- **Unforgeability:** the user needs the signer to get a valid signature

Anonymous Credentials

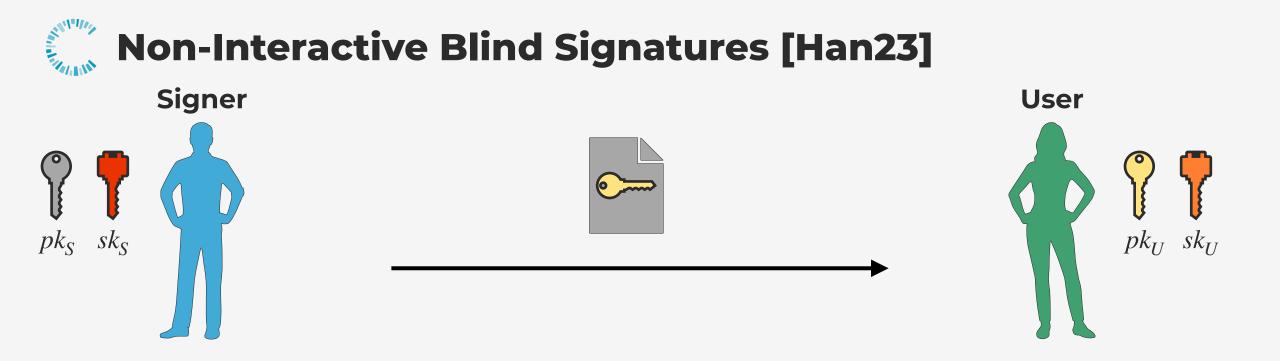
Anonymous Credentials

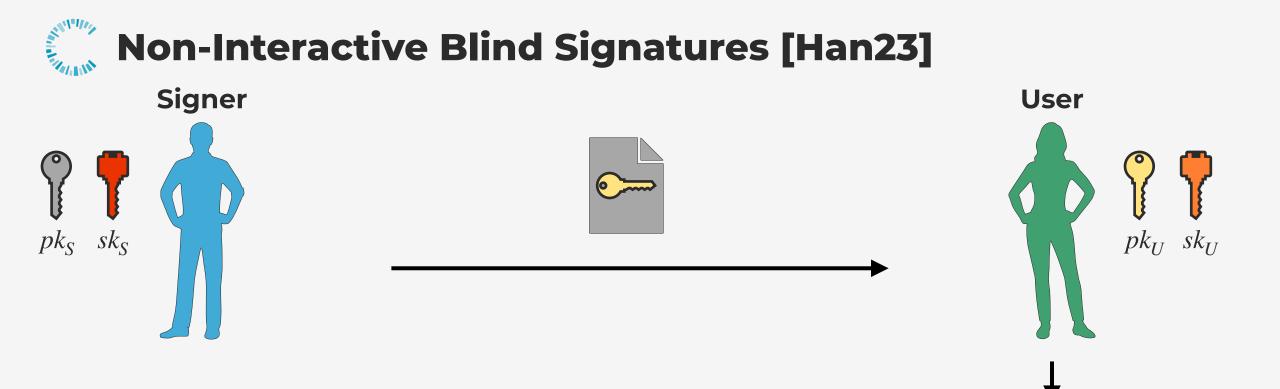
In many applications the message is just a random string

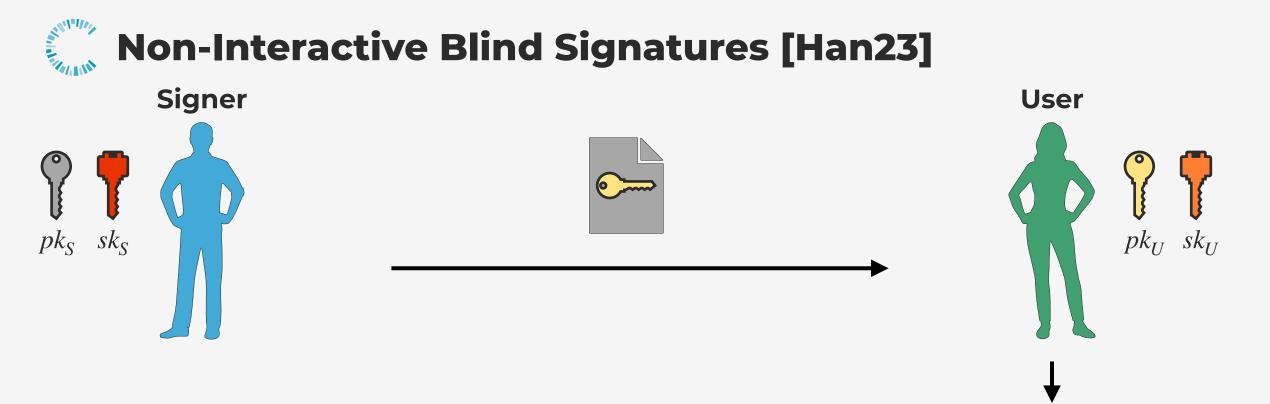
Anonymous Credentials

In many applications the message is just a random string

No need of interaction

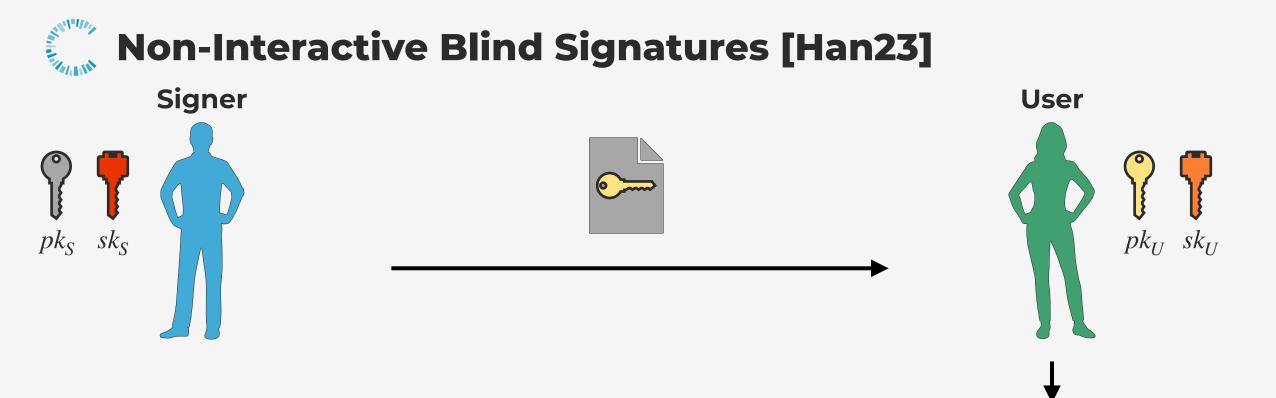






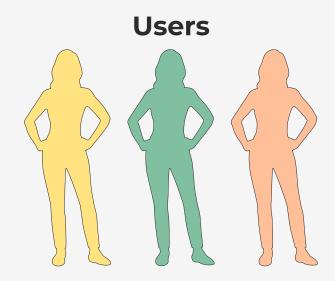
• Blindness: cannot link a signature to a presignature

14

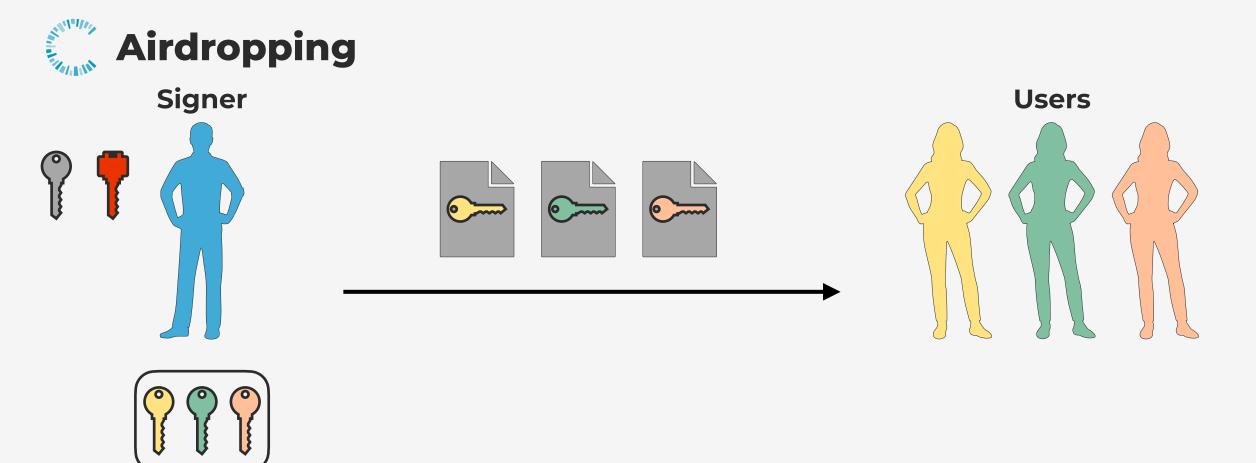


- Blindness: cannot link a signature to a presignature
- Unforgeability: cannot create $\ell+1$ signatures from ℓ presignatures

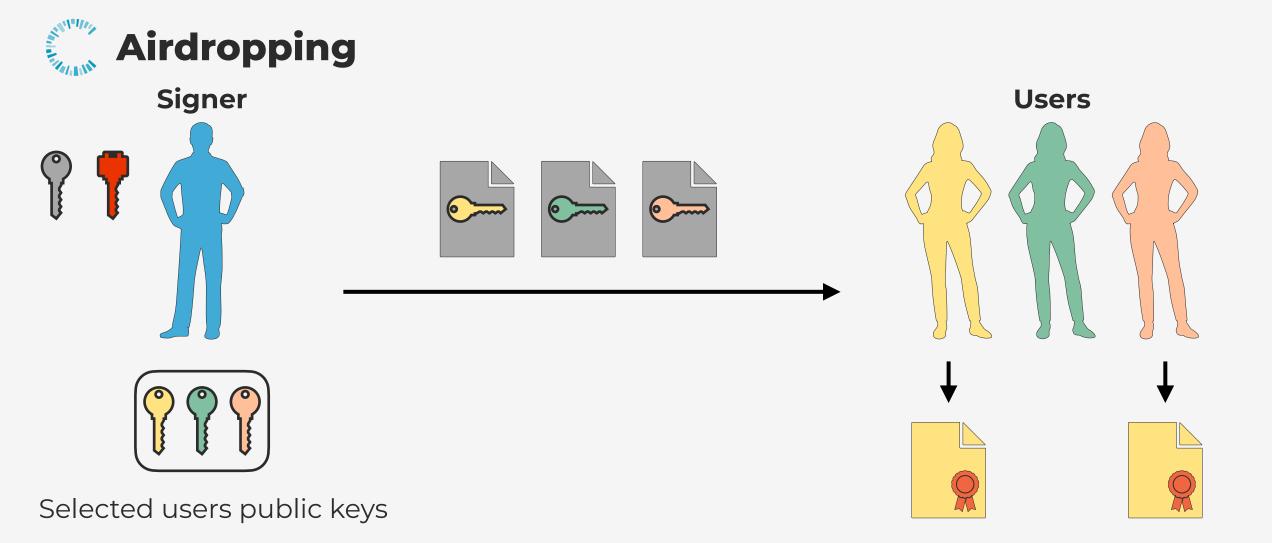
15



Selected users public keys



Selected users public keys



The user's public key corresponds to a long-term public key for other schemes such as GitHub public keys, PGP keys etc.

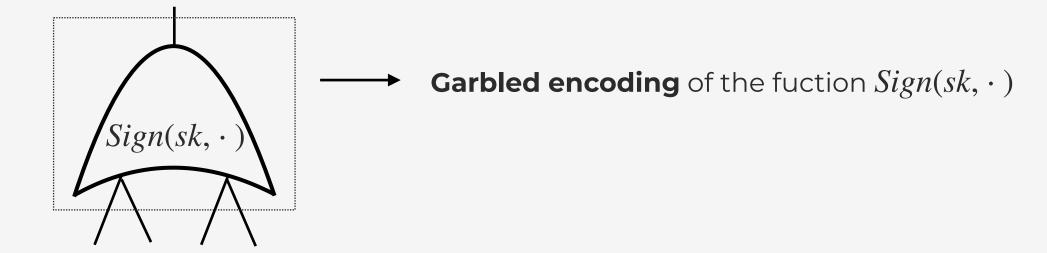
The user's public key corresponds to a long-term public key for other schemes such as GitHub public keys, PGP keys, etc.

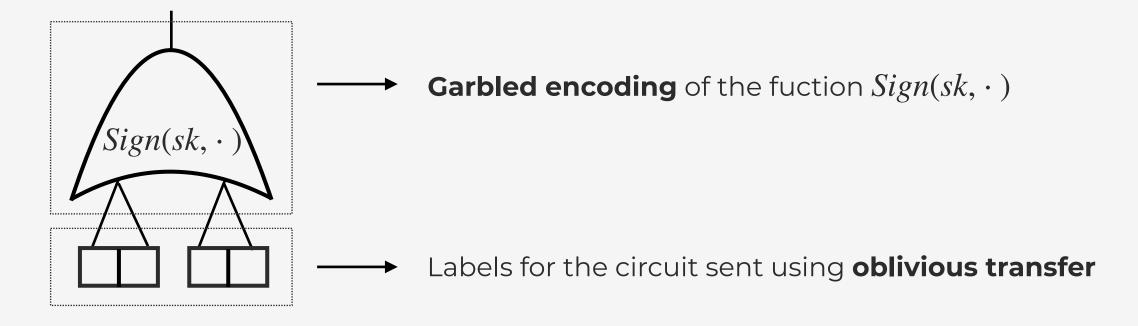
The scheme proposed in [Han23] uses **specific keys**; users need to generate ad hoc keys

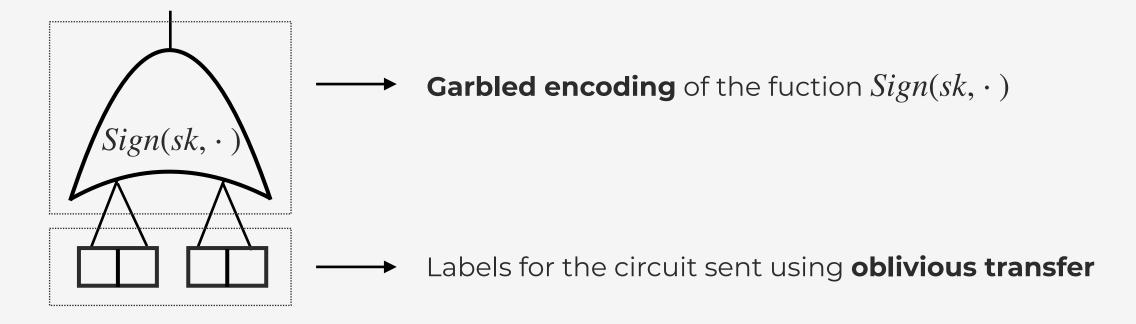
The user's public key corresponds to a long-term public key for other schemes such as GitHub public keys, PGP keys etc.

The scheme proposed in [Han23] uses **specific keys**; users need to generate ad hoc keys

This work: construction of a NIBS compatible with standard RSA keys (N, e)



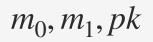




The construction is interactive!

Non-Interactive Oblivious Transfer (NIOT)

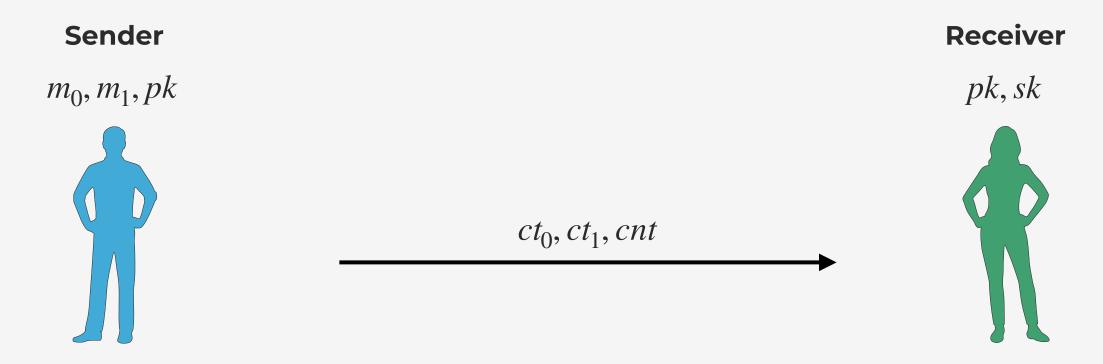
Sender



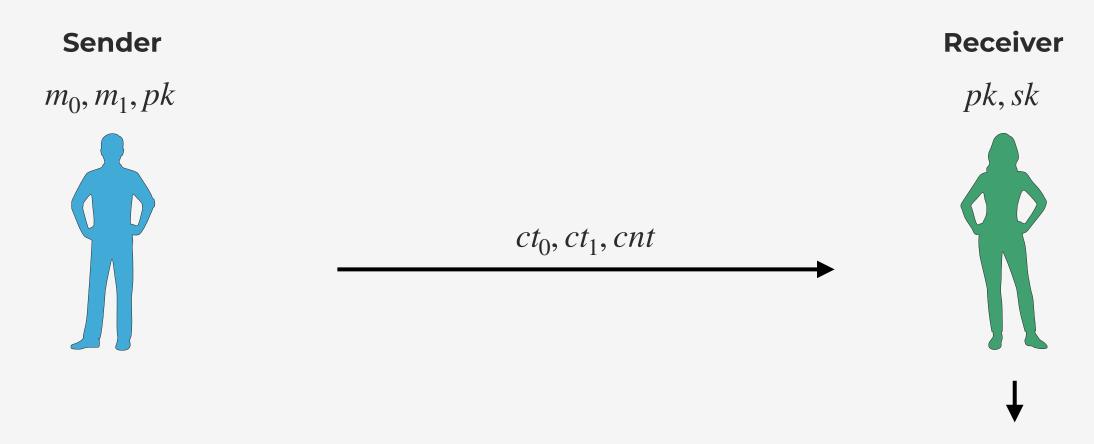
Receiver

pk, sk

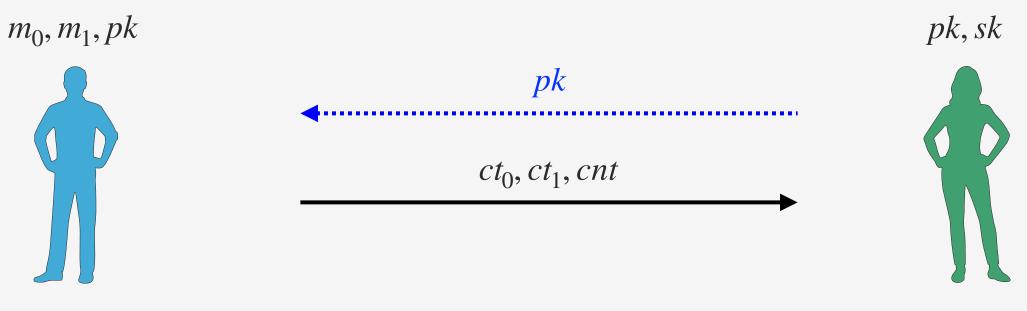
Non-Interactive Oblivious Transfer (NIOT)



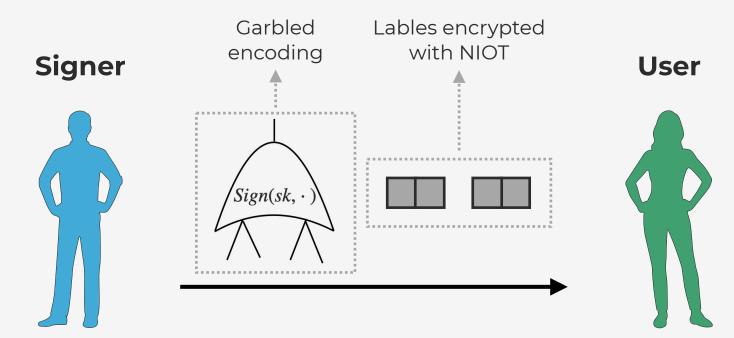
Non-Interactive Oblivious Transfer (NIOT)

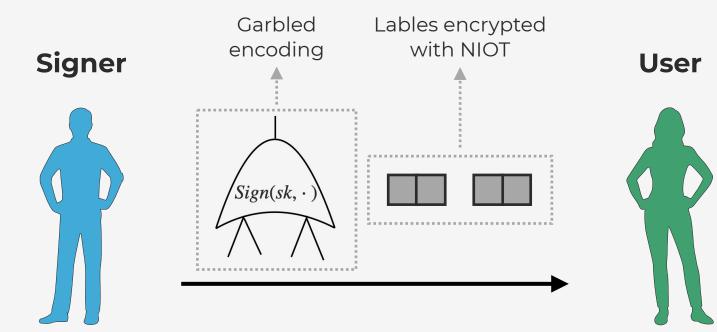


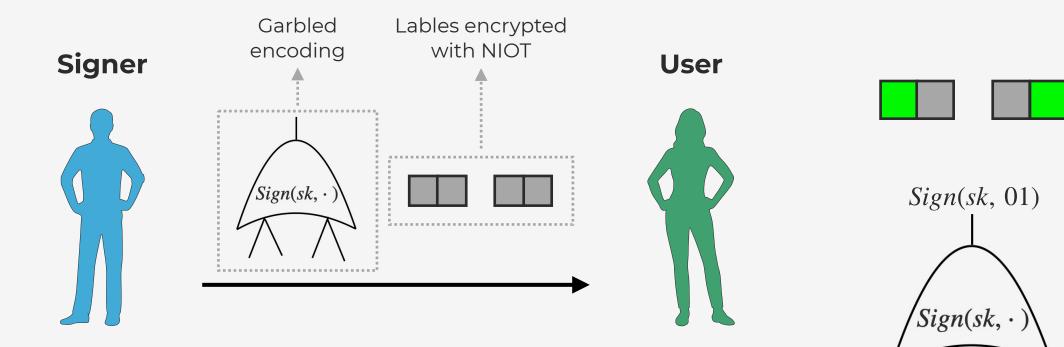
Non-Interactive Oblivious Transfer (NIOT) Sender Receiver



 b, m_b







0 1

Generic semi-honest NIBS from Yao's GC + NIOT

Efficient garbling of signing functions

- Pointcheval-Sanders signatures
- RSA based signaturers

Generic semi-honest NIBS from Yao's GC + NIOT

Efficient garbling of signing functions

- Pointcheval-Sanders signatures
- RSA based signaturers

Generic semi-honest NIBS from Yao's GC + NIOT

Efficient garbling of signing functions

- Pointcheval-Sanders signatures
- RSA based signaturers

W Fully malicious NIBS for PS signature (non generic)

Generic semi-honest NIBS from Yao's GC + NIOT

Efficient garbling of signing functions

- Pointcheval-Sanders signatures
- RSA based signaturers —

Rest of this talk Construction of NIOT supporting RSA keys

W Fully malicious NIBS for PS signature (non generic)

The public key N = pq must somehow encode the user's choice in a way that the sender cannot distinguish

The public key N = pq must somehow encode the user's choice in a way that the sender cannot distinguish

Quadratic residuosity problem: decide whether an element $x \in \mathbb{Z}_N$ with Jacobi symbol 1 is a quadratic residue or a quadratic non-residue

The public key N = pq must somehow encode the user's choice in a way that the sender cannot distinguish

Quadratic residuosity problem: decide whether an element $x \in \mathbb{Z}_N$ with Jacobi symbol 1 is a quadratic residue or a quadratic non-residue

$$m_0 \iff$$
 square $m_1 \iff$ non-square

 $pk: N, x \in \mathbb{Z}_N$ non-square sk: factorization of N

 $pk: N, x \in \mathbb{Z}_N$ non-square sk: factorization of N

Hiding property

If x is a square, GM. Enc(x, m)

statistically hides *m*

 $pk: N, x \in \mathbb{Z}_N$ non-square sk: factorization of N

Hiding property

If x is a square, GM. Enc(x, m)

statistically hides *m*

 $pk: N, x \in \mathbb{Z}_N$ square sk: factorization of N, s s.t. $s^2 \equiv x \pmod{N}$

 $pk: N, x \in \mathbb{Z}_N$ non-square sk: factorization of N

Hiding property

If x is a square, GM. Enc(x, m)

statistically hides m

 $pk: N, x \in \mathbb{Z}_N$ square sk: factorization of N, s s.t. $s^2 \equiv x \pmod{N}$

Hiding property

If x is a non-square, and N is <u>squarefree</u> then Cocks. Enc(x, m) statistically hides m

NIOT Construction, squarefree modulus

Sender

 $m_0, m_1, pk = N$

Receiver

pk = N, sk = fact(N)

NIOT Construction, squarefree modulus

Sender

 $m_0, m_1, pk = N$

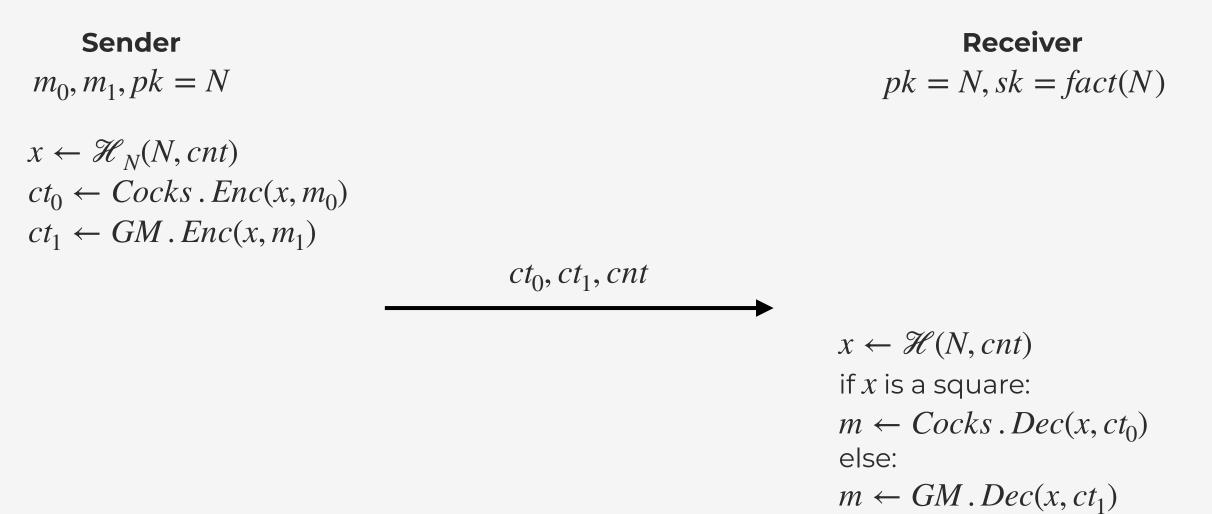
 $\begin{aligned} x &\leftarrow \mathcal{H}_N(N, cnt) \\ ct_0 &\leftarrow Cocks . Enc(x, m_0) \\ ct_1 &\leftarrow GM . Enc(x, m_1) \end{aligned}$

 ct_0, ct_1, cnt

Receiver

pk = N, sk = fact(N)

NIOT Construction, squarefree modulus



If N is not squarefree then a malicious receiver might decrypt both ciphertexts

If N is not squarefree then a malicious receiver might decrypt both ciphertexts

Idea: encrypt the ciphertext ct_0 , ct_1 with a key k that can be recovered only if N is squarefree

Sender: sample $a_1, \ldots, a_{\lambda} \leftarrow \mathbb{Z}_N$ and derive a key $k = \mathscr{H}(a_1, \ldots, a_{\lambda})$, encrypt the ciphertexts with k and send them along with $b_i := a_i^N$ for $i = 0, \ldots, \lambda$

Sender: sample $a_1, \ldots, a_{\lambda} \leftarrow \mathbb{Z}_N$ and derive a key $k = \mathscr{H}(a_1, \ldots, a_{\lambda})$, encrypt the ciphertexts with k and send them along with $b_i := a_i^N$ for $i = 0, \ldots, \lambda$

• If N is sqf then w.h.p. $gcd(N, \phi(N)) = 1$ then the receiver can recover from b_i 's the (unique) a_i 's and hence k

Sender: sample $a_1, \ldots, a_{\lambda} \leftarrow \mathbb{Z}_N$ and derive a key $k = \mathscr{H}(a_1, \ldots, a_{\lambda})$, encrypt the ciphertexts with k and send them along with $b_i := a_i^N$ for $i = 0, \ldots, \lambda$

- If N is sqf then w.h.p. $gcd(N, \phi(N)) = 1$ then the receiver can recover from b_i 's the (unique) a_i 's and hence k
- Otherwise the equation $X^N = b_i$ has more than d solutions, hence will recover the right a_i with probability less than 1/d. Therefore a malicious can decrypt with probability less than $(1/d)^{\lambda}$

NIOT Construction, generic modulus

Sender

 $m_0, m_1, pk = N$

 $a_1, \ldots, a_\lambda \leftarrow \mathbb{Z}_N$

 $k \leftarrow \mathscr{H}(a_1, \ldots, a_{\lambda})$

 $b_i \leftarrow a_i^N$ for $i = 0, ..., \lambda$

 $\begin{array}{l} x \leftarrow \mathcal{H}_N(N, cnt) \\ ct_0 \leftarrow Cocks \, . \, Enc(x, m_0) \\ ct_1 \leftarrow GM \, . \, Enc(x, m_1) \end{array}$

 $Enc_k(ct_0), Enc_k(ct_1), cnt,$ b_1, \dots, b_λ **Receiver** pk = N, sk = fact(N)

From b_i recover kRecover ct_0, ct_1

 $\begin{array}{l} x \leftarrow \mathscr{H}(N, cnt) \\ \text{if } x \text{ is a square:} \\ m \leftarrow Cocks \, . \, Dec(x, ct_0) \\ \text{else:} \end{array}$

 $m \leftarrow GM . Dec(x, ct_1)$

🙀 We have built a NIOT supporting RSA user's public key

This gives us, combined with efficient garbling of signing functions, the **first NIBS compatible with standard RSA keys**

We have built a **NIOT supporting RSA user's public key** This gives us, combined with efficient garbling of signing functions, the first NIBS compatible with standard RSA keys

Generic paradigm to constuct NIBS

We have built a NIOT supporting RSA user's public key This gives us, combined with efficient garbling of signing functions, the first NIBS compatible with standard RSA keys

Generic paradigm to constuct NIBS

Future work:

- Post-quantum construction
- More applications

Public parameters: p, G_1, G_2, G_T, e

KeyGen: sample $g \leftarrow G_2$ and $(x, y) \leftarrow \mathbb{Z}_p^2$, set $X = g^x$ and $Y = g^y$. Return the pair pk = (X, Y), sk = (x, y)

Sign(sk, m): sample $h \leftarrow G_1$ and output $\sigma = (h, h^{x+ym})$

 $Verify(pk, m, \sigma)$: parse $\sigma = (\sigma_1, \sigma_2)$ and check if $e(\sigma_1, X \cdot Y^m) = e(\sigma_2, g)$

We garble the second component σ_2 Let $\ell = \lfloor \log p \rfloor$, we consider the binary decomposition of $m = m_1 \dots m_\ell$

Compute
$$a_1, \ldots, a_{\ell} \in G_1$$
 such that $\prod_{i=0}^{\ell} a_i = 1_{G_1}$, set $d = a_0 \cdot h^x$
For $i = 1, \ldots, \ell$ define $s_i^0 = a_i$ and $s_i^1 = a_i \cdot h^{2^{i-1}y}$
Derive ciphertexts $ct_i^0 = Enc(k_i^0, s_i^0)$ and $ct_i^1 = Enc(k_i^1, s_i^1)$ for some keys k_i^0, k_i^1

Garbled function: $\{ct_i^0, ct_i^1\}_i, h, d$ Labels: $\{k_i^0, k_i^1\}_i$