
Eurocypt 2025 | Madrid | May 6th

Non-Interactive Blind 
Signatures from RSA 
Assumption and More
L. Hanzlik, E. Paracucchi, R. Zanotto



2

Blind Signatures 
Signer User

pkS skS



3

Blind Signatures 
Signer User

pkS skS



4

Blind Signatures 
Signer User

• Blindness: the signer does not learn the message 

pkS skS



5

Blind Signatures 
Signer User

• Blindness: the signer does not learn the message 

• Unforgeability: the user needs the signer to get a valid 
signature

pkS skS



6

Applications of BS

Introduced by David Chaum in 1980s. Used as one-time anonymous tokens



7

Applications of BS

Introduced by David Chaum in 1980s. Used as one-time anonymous tokens 

💰 e-Cash 



8

Applications of BS

Introduced by David Chaum in 1980s. Used as one-time anonymous tokens 

💰 e-Cash 

🪪 Anonymous Credentials



9

Applications of BS

Introduced by David Chaum in 1980s. Used as one-time anonymous tokens 

💰 e-Cash 

🪪 Anonymous Credentials 

🎟 Privacy Pass 



10

Applications of BS

Introduced by David Chaum in 1980s. Used as one-time anonymous tokens 

💰 e-Cash 

🪪 Anonymous Credentials 

🎟 Privacy Pass 

In many applications the message is just a random string 



11

Applications of BS

Introduced by David Chaum in 1980s. Used as one-time anonymous tokens 

💰 e-Cash 

🪪 Anonymous Credentials 

🎟 Privacy Pass 

In many applications the message is just a random string 

No need of interaction



12

Non-Interactive Blind Signatures [Han23]
Signer User

pkS skS pkU skU



13

Non-Interactive Blind Signatures [Han23]
Signer User

pkU skUpkS skS



14

Non-Interactive Blind Signatures [Han23]
Signer User

• Blindness: cannot link a signature to a presignature 

pkU skUpkS skS



15

Non-Interactive Blind Signatures [Han23]
Signer User

• Blindness: cannot link a signature to a presignature 

• Unforgeability: cannot create  signatures from  
 presignatures

ℓ + 1
ℓ

pkU skUpkS skS



16

Airdropping



17

Airdropping
Signer Users

Selected users public keys



18

Airdropping
Signer Users

Selected users public keys



19

Airdropping
Signer Users

Selected users public keys



20

Challenges

The user’s public key corresponds to a long-term public key for other schemes 
such as GitHub public keys, PGP keys etc. 



21

Challenges

The user’s public key corresponds to a long-term public key for other schemes 
such as GitHub public keys, PGP keys, etc. 

The scheme proposed in [Han23] uses specific keys; users need to generate 
ad hoc keys  



22

Challenges

The user’s public key corresponds to a long-term public key for other schemes 
such as GitHub public keys, PGP keys etc. 

The scheme proposed in [Han23] uses specific keys; users need to generate 
ad hoc keys  

This work: construction of a NIBS compatible with standard RSA keys (N, e)



23

2PC and Yao’s Garbled Circuits

We need some way for the signer to send obliviously some data to the user



24

2PC and Yao’s Garbled Circuits

We need some way for the signer to send obliviously some data to the user

Sign(sk, ⋅ )

Garbled encoding of the fuction  Sign(sk, ⋅ )



25

2PC and Yao’s Garbled Circuits

We need some way for the signer to send obliviously some data to the user

Sign(sk, ⋅ )

Garbled encoding of the fuction  Sign(sk, ⋅ )

Labels for the circuit sent using oblivious transfer



26

2PC and Yao’s Garbled Circuits

We need some way for the signer to send obliviously some data to the user

Sign(sk, ⋅ )

Garbled encoding of the fuction  Sign(sk, ⋅ )

Labels for the circuit sent using oblivious transfer

The construction is interactive!



27

Non-Interactive Oblivious Transfer (NIOT)

m0, m1, pk
Sender Receiver

pk, sk



28

Non-Interactive Oblivious Transfer (NIOT)

m0, m1, pk
Sender Receiver

pk, sk

ct0, ct1, cnt



29

Non-Interactive Oblivious Transfer (NIOT)

m0, m1, pk
Sender Receiver

pk, sk

ct0, ct1, cnt

b, mb



30

Non-Interactive Oblivious Transfer (NIOT)

m0, m1, pk
Sender Receiver

pk, sk

ct0, ct1, cnt

b, mb

pk



31

Non-Interactive Blind Signature

Signer User
Garbled  

encoding
Lables encrypted 

with NIOT



32

Non-Interactive Blind Signature

Signer User
Garbled  

encoding
Lables encrypted 

with NIOT



33

Non-Interactive Blind Signature

Signer User

0 1 0 1

Sign(sk, 01)

Garbled  
encoding

Lables encrypted 
with NIOT



34

Our Contribution

🧰 Generic semi-honest NIBS from Yao’s GC + NIOT 



35

Our Contribution

🧰 Generic semi-honest NIBS from Yao’s GC + NIOT 

⚙ Efficient garbling of signing functions 

− Pointcheval-Sanders signatures 

− RSA based signaturers 



36

Our Contribution

🧰 Generic semi-honest NIBS from Yao’s GC + NIOT 

⚙ Efficient garbling of signing functions 

− Pointcheval-Sanders signatures 

− RSA based signaturers 

🔗 Construction of NIOT supporting RSA keys 



37

Our Contribution

🧰 Generic semi-honest NIBS from Yao’s GC + NIOT 

⚙ Efficient garbling of signing functions 

− Pointcheval-Sanders signatures 

− RSA based signaturers 

🔗 Construction of NIOT supporting RSA keys 

😈 Fully malicious NIBS for PS signature (non generic) 



38

Our Contribution

🧰 Generic semi-honest NIBS from Yao’s GC + NIOT 

⚙ Efficient garbling of signing functions 

− Pointcheval-Sanders signatures 

− RSA based signaturers 

🔗 Construction of NIOT supporting RSA keys 

😈 Fully malicious NIBS for PS signature (non generic) 

Rest of this talk



39

Quadratic Residuosity

The public key  must somehow encode the user’s choice in a way that 
the sender cannot distinguish 

N = pq



40

Quadratic Residuosity

The public key  must somehow encode the user’s choice in a way that 
the sender cannot distinguish 

Quadratic residuosity problem: decide whether an element  with 
Jacobi symbol 1 is a quadratic residue or a quadratic non-residue 

N = pq

x ∈ ℤN



41

Quadratic Residuosity

The public key  must somehow encode the user’s choice in a way that 
the sender cannot distinguish 

Quadratic residuosity problem: decide whether an element  with 
Jacobi symbol 1 is a quadratic residue or a quadratic non-residue 

 square               non-square

N = pq

x ∈ ℤN

m0 ⟺ m1 ⟺



42

Goldwasser-Micali vs Cocks



43

Goldwasser-Micali vs Cocks

 non-square 
 factorization of 

pk : N, x ∈ ℤN
sk : N



44

Goldwasser-Micali vs Cocks

 non-square 
 factorization of 

pk : N, x ∈ ℤN
sk : N

Hiding property 
If  is a square,   
statistically hides 

x GM . Enc(x, m)
m



45

Goldwasser-Micali vs Cocks

 non-square 
 factorization of 

pk : N, x ∈ ℤN
sk : N

 square 
 factorization of ,  s.t. 

pk : N, x ∈ ℤN
sk : N s s2 ≡ x (mod N )

Hiding property 
If  is a square,   
statistically hides 

x GM . Enc(x, m)
m



46

Goldwasser-Micali vs Cocks

 non-square 
 factorization of 

pk : N, x ∈ ℤN
sk : N

 square 
 factorization of ,  s.t. 

pk : N, x ∈ ℤN
sk : N s s2 ≡ x (mod N )

Hiding property 
If  is a square,   
statistically hides 

x GM . Enc(x, m)
m

Hiding property 
If  is a non-square, and  is 
squarefree  
then  statistically 
hides 

x N

Cocks . Enc(x, m)
m



47

NIOT Construction, squarefree modulus

m0, m1, pk = N
Sender Receiver

pk = N, sk = fact(N )



48

NIOT Construction, squarefree modulus

m0, m1, pk = N
Sender Receiver

pk = N, sk = fact(N )

ct0, ct1, cnt

 
 

x ← ℋN(N, cnt)
ct0 ← Cocks . Enc(x, m0)
ct1 ← GM . Enc(x, m1)



49

NIOT Construction, squarefree modulus

m0, m1, pk = N
Sender Receiver

pk = N, sk = fact(N )

 
 

x ← ℋN(N, cnt)
ct0 ← Cocks . Enc(x, m0)
ct1 ← GM . Enc(x, m1)

ct0, ct1, cnt

 
if  is a square: 

 
else: 

x ← ℋ(N, cnt)
x

m ← Cocks . Dec(x, ct0)

m ← GM . Dec(x, ct1)



50

Generic Modulus

If  is not squarefree then a malicious receiver might decrypt both ciphertexts N



51

Generic Modulus

If  is not squarefree then a malicious receiver might decrypt both ciphertexts 

Idea: encrypt the ciphertext  with a key  that can be recovered only if  
is squarefree

N

ct0, ct1 k N



52

Generic Modulus

If  is not sqf  the equation  has (zero or)  
at least  solutions in  

N ⇒ d = gcd(N, ϕ(N )) > 1 ⇒ XN = a
d > 1 ℤ*N



53

Generic Modulus

If  is not sqf  the equation  has (zero or)  
at least  solutions in  

Sender: sample  and derive a key , encrypt the 
ciphertexts with  and send them along with  for   

N ⇒ d = gcd(N, ϕ(N )) > 1 ⇒ XN = a
d > 1 ℤ*N

a1, …, aλ ← ℤN k = ℋ(a1, …, aλ)
k bi := aN

i i = 0,…, λ



54

Generic Modulus

If  is not sqf  the equation  has (zero or)  
at least  solutions in  

Sender: sample  and derive a key , encrypt the 
ciphertexts with  and send them along with  for   

• If  is sqf then w.h.p.  then the receiver can recover from ’s 
the (unique) ’s and hence  

N ⇒ d = gcd(N, ϕ(N )) > 1 ⇒ XN = a
d > 1 ℤ*N

a1, …, aλ ← ℤN k = ℋ(a1, …, aλ)
k bi := aN

i i = 0,…, λ

N gcd(N, ϕ(N )) = 1 bi
ai k



55

Generic Modulus

If  is not sqf  the equation  has (zero or)  
at least  solutions in  

Sender: sample  and derive a key , encrypt the 
ciphertexts with  and send them along with  for   

• If  is sqf then w.h.p.  then the receiver can recover from ’s 
the (unique) ’s and hence  
• Otherwise the equation  has more than  solutions, hence will recover 

the right  with probability less than . Therefore a malicious can decrypt 
with probability less than 

N ⇒ d = gcd(N, ϕ(N )) > 1 ⇒ XN = a
d > 1 ℤ*N

a1, …, aλ ← ℤN k = ℋ(a1, …, aλ)
k bi := aN

i i = 0,…, λ

N gcd(N, ϕ(N )) = 1 bi
ai k

XN = bi d
ai 1/d

(1/d)λ



56

NIOT Construction, generic modulus

m0, m1, pk = N
Sender Receiver

pk = N, sk = fact(N )

 
 

 

 
 

 for 

x ← ℋN(N, cnt)
ct0 ← Cocks . Enc(x, m0)
ct1 ← GM . Enc(x, m1)

a1, …, aλ ← ℤN
k ← ℋ(a1, …, aλ)
bi ← aN

i i = 0,…, λ

 
if  is a square: 

 
else: 

x ← ℋ(N, cnt)
x

m ← Cocks . Dec(x, ct0)

m ← GM . Dec(x, ct1)

 
             
Enck(ct0), Enck(ct1), cnt,

b1, …, bλ

From  recover  
Recover 

bi k
ct0, ct1



57

Wrapping it up

⭐ We have built a NIOT supporting RSA user’s public key 
This gives us, combined with efficient garbling of signing functions, the  
first NIBS compatible with standard RSA keys 



58

Wrapping it up

⭐ We have built a NIOT supporting RSA user’s public key 
This gives us, combined with efficient garbling of signing functions, the  
first NIBS compatible with standard RSA keys 

🧩 Generic paradigm to constuct NIBS 



59

Wrapping it up

⭐ We have built a NIOT supporting RSA user’s public key 
This gives us, combined with efficient garbling of signing functions, the  
first NIBS compatible with standard RSA keys 

🧩 Generic paradigm to constuct NIBS 

🔮 Future work: 
− Post-quantum construction 
− More applications



60

PS Signature

Public parameters:   

: sample  and , set  and . Return the pair 

 

: sample  and output  

: parse  and check if 

p, G1, G2, GT, e

KeyGen g ← G2 (x, y) ← ℤ2
p X = gx Y = gy

pk = (X, Y ), sk = (x, y)

Sign(sk, m) h ← G1 σ = (h, hx+ym)

Verify(pk, m, σ) σ = (σ1, σ2) e(σ1, X ⋅ Ym) = e(σ2, g)



61

Garbling PS Signature

We garble the second component  
Let , we consider the binary decomposition of  

Compute  such that , set  

For  define  and  
Derive ciphertexts  and  for some keys  

Garbled function:  
Labels: 

σ2
ℓ = ⌊log p⌋ m = m1…mℓ

a1, …, aℓ ∈ G1

ℓ

∏
i=0

ai = 1G1
d = a0 ⋅ hx

i = 1,…, ℓ s0
i = ai s1

i = ai ⋅ h2i−1y

ct0
i = Enc(k0

i , s0
i ) ct1

i = Enc(k1
i , s1

i ) k0
i , k1

i

{ct0
i , ct1

i }i, h, d
{k0

i , k1
i }i


